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Abstract. We give an accessible exposition and analysis to algorithmic mesh
refinement via newest vertex bisection for triangular meshes. We prove a purely
combinatorial amortized complexity estimate whose constant depends only on
the mesh topology but not on geometric quantities. Furthermore, we extend
newest vertex bisection to two-dimensional triangulations of arbitrary topol-
ogy. This includes but is not restricted to triangulations of two-dimensional
embedded manifolds.

1. Introduction

The algorithmic local refinement of triangulations is an important topic of scien-
tific computing and poses interesting research problems in computational geometry
and combinatorics. A variety of approaches, which differ in their refinement strate-
gies, have been published in the literature. A popular class of mesh refinement
algorithms utilizes newest vertex bisection: triangles are bisected along the edge
opposite to the most recently created (that is, newest) vertex.

This exposition gives a thorough combinatorial description of newest vertex bi-
section and its amortized complexity analysis in two dimensions. Our main result is
an amortized complexity analysis of newest vertex bisection that is purely combina-
torial and does not depend on geometric quantities. We describe and analyze newest
vertex bisection for a class of triangulations larger than those in prior works. In
particular, we cover embedded surfaces of arbitrary topology and singular surfaces
that appear, for example, in numerical simulations over surfaces.

We now give an outline of local mesh refinement and newest vertex bisection
to establish the background of this research. The general problem setting of local
mesh refinement is the following: given an initial triangular mesh, a user marks
triangles for refinement, and the refinement algorithm then refines, that is, sub-
divides those marked triangles and possibly other triangles too. This procedure
of marking and refining is repeated over and over again, producing a sequence of
progressively refined meshes. In this context the user might be, for example, a nu-
merical simulation code. The mesh refinement algorithm is an online algorithm in
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the terminology of theoretical computer science since the user reveals the markings
of triangles only successively.

The meshes produced by the refinement algorithm need to satisfy two require-
ments, one combinatorial and the other geometric; see Figure 1. On the one hand,
we require the meshes to satisfy the combinatorial condition of consistency. This
simply means that triangles are either disjoint or meet at a common vertex or edge.
Many data structures in implementations can only represent consistent meshes. On
the other hand, we require geometric stability for the sequence of meshes, which
loosely means that the triangles produced retain good shape. Mathematically, their
angles are bounded from below. Having both requirements satisfied at the same
time is non-trivial and has inspired a variety of different refinement algorithms in
the literature.

We focus on newest vertex bisection (NVB) in this article. Here, we divide a
triangle along the line from its newest vertex to the midpoint of the opposite edge,
which is also called the refinement edge of that triangle. That midpoint is then
the most recently created, newest, vertex of the two new triangles, and hence the
newest vertex bisection can be repeated. It is easy to prove geometric stability
if all refinements are newest vertex bisections. To ensure that we only generate
consistent meshes, we must further restrict ourselves to compatible bisections: the
simultaneous bisection of all triangles sharing a common edge that is the refinement
edge of all those triangles.

We will describe how for every selection of triangles to be refined one can re-
cursively construct a finite sequence of compatible bisections whose successive exe-
cution will refine the selected triangles. The bisection of any triangle may depend
on the prior bisection of its neighboring triangles. Our mesh refinement algorithm
processes those dependencies recursively.

The refinement of any selection of triangles invokes additional refinements in our
recursive algorithm, and an amortized complexity estimate asserts that the addi-
tional work stays within feasible bounds: over repeated calls to the mesh refinement
algorithm, the total number of triangles bisected is linearly bounded in the numbers

Figure 1. Left: inconsistent refinement of a triangle. Right: un-
stable refinement of a triangle.

Figure 2. Illustration of a sequence of newest vertex bisections.
Refinement edges indicated with a bar.
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of triangles ever selected by the user. The constant in the upper bound depends
on a few parameters of the initial mesh. Such an amortized complexity estimate
was proven first for the recursive newest vertex bisection of Binev, Dahmen and
DeVore [6] in two dimensions and later by Stevenson [36] in arbitrary dimension.
Different versions of the basic proof technique have appeared in the literature (see
Nochetto [31] or Karkulik, Pavlicek and Preatorius [24]).

The upper bounds in the amortized complexity estimates depend on geometric
properties of the mesh. We elaborate how the upper bound grows with the ra-
tio of the largest diameter and the smallest volume of the triangles in the initial
triangulation. Thus the upper bound will deteriorate if the initial mesh is highly
non-uniform. But the presence of geometric quantities in the complexity estimate
is counterintuitive in the first place, since newest vertex bisection is a purely combi-
natorial algorithm that does not see the geometry. We “combinatorialize” the basic
proof technique in the literature and state a purely combinatorial constant in our
complexity estimate. The constant depends only on the maximum number of tri-
angles adjacent to any vertex. Such a combinatorial estimate is naturally expected,
since newest vertex bisection is defined in purely combinatorial language, and any
dependence on geometric properties must therefore be an artifact of the proof.

This exposition provides a technical reference for newest vertex bisection over
triangulated surfaces. Most of the sources on mesh refinement focuses on triangu-
lations of domains. Our exposition analyzes newest vertex bisection for arbitrary
embedded triangulations of dimension two without any constraints on the topology.
This includes triangulations of embedded surfaces, as well as “singular” surfaces that
are not manifolds anymore.

Localized mesh refinement is a fundamental for the feasible numerical solution of
partial differential equations and its amortized complexity analysis enters the com-
plexity analysis of adaptive finite element methods. Surface finite element methods
have seen a surge of research activity in recent years [18, 14, 33, 23, 20, 19, 9, 10, 11],
and numerical simulations over singular surfaces have recently attracted attention
[21, 32]. Our analysis enables analogous complexity bounds for adaptive finite
element methods over surfaces [22, 17, 8, 12, 15, 7]. When triangular surfaces
approximate an embedded two-dimensional manifold, then the purely combinato-
rial refinement is often followed by additional geometric transformations, such as
moving newly created vertices onto the true surface [16, 28]. In that regard, a
geometry-independent purely combinatorial complexity estimate is clearly advan-
tageous.

We finish this introduction with a brief overview of bisection algorithms. Even
though mesh refinement is a topic of computational geometry and combinatorics,
many contributions have come from scholars of numerical analysis. The idea of
newest vertex bisection has appeared in two classes of algorithms, called iterative
and recursive [25, 30], which differ in how the global mesh consistency is preserved.
The iterative algorithms perform bisections that temporarily lead to inconsistent
meshes; additional closure bisections repair these inconsistencies but may lead to
new inconsistencies themselves. Closure bisections are performed until no new in-
consistency has been produced. Such iterative refinement algorithms include the
methods proposed by Bänsch [3], Liu and Joe [26], and Arnold, Mukherjee and
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Pouly [1]. We remark that Rivara [34, 35] describes a iterative longest edge bisec-
tion. By contrast, recursive algorithms always perform newest vertex bisections that
retain consistency; if a triangle is to be bisected, the algorithm constructs a sequence
of bisections which always preserve the mesh consistency and eventually lead to bi-
section of the original triangle. Recursive algorithms do not require data structures
to handle temporary intermediate inconsistent meshes, which makes them much
easier to implement in practice. Recursive refinement algorithms have been studied
by Mitchell [29], Kossaczky [25], Traxler [37], Maubach [27], and Stevenson [36],
and they are also the subject of this article. The coarsening of triangulations has
been studied by Bartels and Schreier [4] and by Long and Zhang [13].

It is our explicit hope that our exposition encourages research in local mesh re-
finement through techniques from theoretical computer science and combinatorics.
We would like to highlight what we believe are two particularly interesting possi-
bilities to extend upon the results in this article by combinatorial techniques.

On the one hand, the assignment of initial refinement edges, which is equivalent
to finding a perfect matching in a particular class of graphs, is algorithmically and
mathematically interesting in its own right. We are aware of the sequential linear-
time algorithm by Biebl, Bose, Demaine, and Lubiw [5]. To our best knowledge, not
much is known about the parallel complexity of this problem. On the other hand,
we believe that there is considerable room for improving the constant in our amor-
tized analysis. We mention work by Atalay and Mount [2] that bounds the number
of newest vertex bisections necessary to rebuild consistency for a non-consistent
triangulation that has resulted from several newest vertex bisections; their result
translates to a purely combinatorial complexity estimate when the only triangles
marked are children of previously marked triangles. We allow a more generally
marking of triangles but our computational experiments indicate that our upper
bound is not sharp.

The remainder of this paper is structured as follows. In Section 2 we review the
geometric aspects of newest vertex bisection over a single triangle. In Section 3 we
introduce the combinatorial structures to be used for the newest vertex bisection
algorithm over entire triangulations. We develop the global refinement procedure in
Section 4 and review different forms of the global newest vertex bisection algorithms
in Section 5. We prove the asymptotic complexity estimate in Section 6. Finally,
algorithms for the initial assignment of refinement edges are reviewed in Section 7.

2. Geometry and Similarity Classes

In this section we discuss geometric quantities associated with triangles and de-
scribe newest vertex bisection repeatedly applied to a single triangle. We prove
geometric stability and bound the number of similarity classes.

A triangle T in Rd is the convex closure of three affinely independent points. We
write diam(T ) for the diameter and meas(T ) for the two-dimensional measure of
T . For any edge e of the triangle T , we write |e| for the length of that edge. The
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shape measure µ(T ) is the quantity

µ(T ) :=
diam(T )2

meas(T )
.(1)

The shape measure quantifies how far a triangle is from being degenerate. For
example, a flat triangle has small measure but large diameter and hence it has a
large shape measure. The shape measure µ(T ) quantifies in how far the edges of T
have comparable lengths. For any edge e of the triangle T we have

|e| ≤ diam(T ) ≤ µ(T )|e|,(2)

as follows from |e|diam(T ) ≥ 2 meas(T ) ≥ diam(T )2/µ(T ).

Henceforth, for every triangle we choose one of its three edges and call that edge
the refinement edge of that triangle. The vertex opposite to the refinement edge is
called the refinement vertex of the triangle. Letting T = [v0, v1, v2] be a triangle
with refinement edge [v1, v2] and letting vN = 1

2 (v1 + v2) denote the midpoint
of T ’s refinement edge, the children of T are the triangle T− = [v0, v1, vN ] with
refinement edge [v0, v1] and the triangle T+ = [v0, v2, vN ] with refinement edge
[v0, v2]. Conversely we call T the parent of T− and T+. Note that the refinement
edges of the children are the respective edges opposite to vN . We say that a triangle
S is a descendant of T if either S = T , or S is a child of T , or S is a child of a
descendant of T . Note that the refinement vertex of any triangle created is always
the newest vertex, which is why we call this newest vertex bisection (NVB).

We introduce the notion of level whenever the original triangle T is understood:
the original triangle T has level `(T ) = 0, and whenever a triangle S has level
`(S) ∈ N0, then its children S− and S+ have level `(S−) = `(S+) = `(S) + 1.

Recall that a similarity transformation is any combination of translations, scal-
ings, and orthogonal transformations. We call two triangles T and T ′ with their
respective choice of refinement edge are similar if they can be mapped to each other
by a similarity transformation that maps the refinement edge of T onto the refine-
ment edge of T ′. This defines an equivalence classes and we call the corresponding
equivalence classes similarity classes. When two triangles T and T ′ are similar,
then µ(T ) = µ(T ′).

For similar triangles T and T ′ we have µ(T ) = µ(T ′). This follows easily by
considering the effects of translations, scalings, and orthogonal transformations on
diameters and measures of triangles.

Theorem 2.1.
The descendants of a triangle T belong to no more than four similarity classes. If
S is a descendant of T , then µ(S) ≤ 4µ(T )

Proof. Let T be a triangle with refinement edge. We consider the standard triangle
T̂ ⊂ R2 whose vertices are the origin and the two standard unit vectors and whose
refinement edge is the edge opposite the origin. We fix an affine mapping φ which
maps T̂ onto T and which maps the refinement edge onto the refinement edge. We
observe that φ maps the descendents of T̂ onto the descendents of T in a one-to-one
manner.
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The descendants of T̂ of generation one, two and three are depicted in Figure 3.
We divide those descendants into four types as indicated in that figure. Within
each type, the triangles are not only similar but can be mapped onto each other
using only translations and positive scalings. Consequently, the triangles of the
same type are mapped under φ onto the same similarity class. We conclude that
the descendants of T fall into only four similarity classes.

Since bisection halves the triangle measure, the descendants of T̂ of generation
zero, one, and two have measure at least meas(T̂ )/4. We conclude that analo-
gously the descendants of T of generation zero, one, and two have measure at
least meas(T )/4. Since the descendants of T of generation up to two already are
instances for all similarity classes of the descendants of T , and similar triangles
have the same shape measure, the desired estimate on the shape measures of T ’s
descendants follows. �
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Figure 3. Descendants of the standard triangle after three
refinement steps when the refinement edge is opposite the origin.
Affine transformations preserve the indicated similarity classes.

Based on the preceding theorem, we can relate the diameters and measures of
descending triangles to the diameter and measure of the original triangle as in the
following lemma.

Lemma 2.2.
Suppose that T is a descendant of the triangle T0. Then

meas(T ) = 2−`(T ) meas(T0).(3)

Furthermore,

2 · 2−`(T )µ(T0)−1diam(T0)2 ≤ diam(T )2 ≤ 4 · 2−`(T )diam(T0)2.(4)

Proof. The first identity follows by an induction argument, using that the children
triangles have the same height as their parent triangle but exactly half of their
parent’s base length. For the second identity, we use Theorem 2.1 and calculate

diam(T )2 = µ(T ) meas(T ) ≤ 4µ(T0) meas(T )

= 4µ(T0)2−`(T ) meas(T0) = 4 · 2−`(T )diam(T0)2.



NVB OVER GENERALIZED TRIANGULATIONS 7

On the other hand, since µ(T ) ≥ 2, we get

diam(T )2 ≥ 2 meas(T ) = 2 · 2−`(T ) meas(T0) = 2 · 2−`(T )µ(T0)−1diam(T0)2.

The proof is complete. �

Remark 2.3.
The estimate for the descendant’s shape measure in Theorem 2.1 is optimal, as can
be seen from newest vertex bisection of an isosceles triangle whose refinement edge
is a narrow base.

3. Triangulations and Compatible Divisions

In this section we formally define triangulations and several combinatorial struc-
tures that help us understand the recursive mesh refinement algorithm that we
introduce later in this article.

A triangulation is a collection T of triangles in Rd such that for every two distinct
triangles T, T ′ ∈ T the intersection T ∩ T ′ is either empty, a common edge of T
and T ′, or a common vertex of T and T ′.

We let E = E(T ) be the set of edges of the triangles in T and let V = V(T )
denote the set of vertices of the triangles in T . We call an edge e ∈ E a border edge
if it is shared by only one single triangle T ∈ T ; otherwise it is shared by more than
one triangle and we call it an interior edge then. Likewise, we call v ∈ V a border
vertex if it is contained in a border edge and we call it interior vertex otherwise.

We emphasize that every triangle is assumed with a choice of refinement edge.
We write R(T ) ∈ E for the refinement edge of a triangle T ∈ T and R(T ) ⊆ E for
the set of refinement edges of all triangles in T .

We call a triangulation T manifold-like if every edge e ∈ E is shared by at most
two different triangles. Obviously, that means precisely that all interior edges have
exactly two different adjacent triangles.

Remark 3.1.
Manifold-like triangulations are typical for many applications of mesh refinement,
such as the numerical solution of partial differential equations. In the case d = 2 this
includes triangulations of domains, and in the case d = 3 this includes triangulated
surfaces embedded in Euclidean 3-space; see Figure 4. We remark that a manifold-
like triangulation may still have vertices around which the triangulation does not
look like a manifold.

We call an edge e ∈ E compatibly bisectable if it is the refinement edge of all
triangles adjacent to e, that is, for all T ∈ T with e ⊂ T we have R(T ) = e.
We call T ∈ T compatibly bisectable if its refinement edge R(T ) is compatibly
bisectable.

Compatible bisection is the operation of bisecting all triangles sharing a compat-
ibly bisectable edge. Compatible bisections are the fundamental building block of
our algorithms.

Note that if e is a border edge, then e is compatible bisectable if and only if it
is refinement edge of the single triangle T ∈ T that contains e.

If the triangulation is manifold-like, then every interior edge e is an edge of ex-
actly two distinct triangles T, T ′ ∈ T , and e is compatibly bisectable if and only if
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it is the refinement edge of those two triangles T and T ′.

Let T be a triangulation. Let e ∈ E be an edge that is compatibly bisectable
and let T1, T2, . . . , TN be the list of all triangles adjacent to e. By the definition of
compatible bisection, we have R(Ti) = e for all 1 ≤ i ≤ N .

We explicitly describe the modifications resulting from compatible bisection.
Recall that when v0, v1 ∈ Rn are distinct points, then we write e = [v0, v1] for the
edge between them, and when v0, v1, v2 ∈ Rn are affinely independent points, then
we write e = [v0, v1, v2] for the triangle spanned by them.

The compatible bisection of e generates a new triangulation T ′ by bisecting the
triangles T1, T2, . . . , TN from their respective refinement vertices to the midpoint of
their common refinement edge. These bisections are newest vertex bisections. More
precisely, this works as follows. The edge e = [v−, v+] contains two distinct vertices
v−, v+ ∈ V. Each triangle Ti = [v−, v+, vi] adjacent to e contains the two vertices
v− and v+ and a third distinct vertex vi. Its other two edges are e−i = [v−, vi] and
e+
i = [v+, vi]. The middle point of e is

v0 :=
1

2
v− +

1

2
v+,

and we define new edges e−, e+, and ei and new triangles T−i and T+
i through

e− := [v−, v0], e+ := [v+, v0], ei := [vi, v
0],

T−i := [v−, vi, v
0], T+

i := [v+, vi, v
0].

We then set

T ′ := (T \ {T1, . . . , TN}) ∪ {T−1 , T
+
1 , . . . , T

−
N , T

+
N }.

It is clear that T ′ is a triangulation. Its set of edges and vertices are

V(T ′) = V ∪ {v0}, E(T ′) = (E \ {e}) ∪ {e−, e+, e1, . . . , eN},

respectively. The new assignment of refinement edges R′ : T ′ → E(T ′) is

R′(T ) :=


R(T ) if T ∈ T \ {T1, . . . , TN},
e−i if T = T−i for some 1 ≤ i ≤ N,
e+
i if T = T+

i for some 1 ≤ i ≤ N.

Figure 4. Left and center: manifold-like triangulation, the center
having a “singular” vertex. Right: non-manifold-like triangulation
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Lemma 3.2.
Let T be a triangulation, let e ∈ E be compatibly bisectable, and let T ′ be the
triangulation after compatible bisection of e. Then T is manifold-like if and only if
T ′ is manifold-like.

Proof. Compatible bisection along the bisected edge e introduces two new edges,
which replace e, and one further edge for each triangle adjacent to e. Each of the
two edges replacing e has the same number of adjacent triangles in T ′ as e has in
T . Each of the new edges dividing a triangle has exactly two adjacent triangles in
T ′. For each triangle of T adjacent to e, the two edges that are not bisected are
still in E(T ′), with the same number of adjacent triangles. We conclude that T is
manifold-like if and only if T ′ is manifold-like. �

Compatible bisections preserve consistency and are geometrically stable since
they are based on newest vertex bisection. However, the user may request the
bisection of triangles that are not compatibly bisectable. In the next section we
explain how to resolve such requests using only compatible bisections.

4. Dependency Graphs

The main result of this section is that any triangle of a triangulation can be re-
fined via a specific sequence of compatible bisections. We utilize graph-theoretical
concepts for this endeavor.

For every triangulation T we define the triangle dependency graph GT (T ) as the
simple directed graph GT (T ) = (NT (T ),AT (T )) whose the set of nodes NT (T ) =
T is the set of triangles and whose the set of arrows is

AT (T ) =

{
(T, T ′) ∈ T × T

∣∣∣∣ T 6= T ′, R(T ) ⊂ T ′
}
.

In this graph, we have an arrow from a triangle T to another triangle T ′ precisely
if the refinement edge of T is an edge of T ′.

For every triangulation T we define the edge dependency graph GE(T ) as the
simple directed graph GE(T ) = (NE(T ),AE(T )) whose set of nodes NE(T ) =
R(T ) is the set of refinement edges and whose the set of arrows is

AE(T ) =

{
(E,E′) ∈ R(T )×R(T )

∣∣∣∣ E 6= E′, ∃T ∈ T : E ⊂ T,R(T ) = E′
}
.

In other words, the nodes in the edge dependency graph are the edges E , and we
have an arrow from an edge E to another edge E′ if E is the refinement edge of some
triangle but is also an edge of another triangle T whose refinement edge, however,
is a different edge E′.

The compatible bisectability of an edge can be expressed in terms of these graphs.
If e ∈ R(T ) is the refinement edge of some triangle, then e is compatibly bisectable
if and only if the triangles in T which are adjacent to e constitute a clique in the
triangle dependency graph.

The description in the edge dependency graph is even simpler. If e ∈ R(T ) is
the refinement edge of some triangle, then e is compatibly bisectable if and only
if there are no arrows going out from e in the edge dependency graph. This just
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means that compatible bisectable edges are precisely the sinks in the directed graph
GE(T ).

Remark 4.1.
In a manifold-like triangulation, every edge is shared by at most two triangles.
Hence, there is at most one arrow going out from every node in the triangle depen-
dency graph and there is at most one arrow going out from every node in the edge
dependency graph.

Remark 4.2.
We remark that an arrow pointing from a triangle T1 to another triangle T2 in the
triangle dependency graph corresponds to the situation in newest vertex bisection
that to bisect T1 requires T2 to bisected, either simultaneously or in a preprocessing
step. Similarly for the edge dependency graph: an arrow pointing from an edge E1

to another edge E2 corresponds to the situation in newest vertex bisection that to
bisect along an edge E1, it is required to bisect along another E2 as preprocessing.

We call a triangulation T acyclic if GE(T ) contains no cycles. This is the case if
and only if all cycles in GT (T ) are part of a clique. The intuition is that the edge
dependency graph is acyclic precisely if there are no cyclic dependencies between
the refinement edges.

We state the following two lemmas for completeness, characterizing compatibly
bisectable edges and acyclic assignments of refinement edges in terms of graph
theoretical properties.

Lemma 4.3.
An edge e ∈ E(T ) is compatibly bisectable if and only if all triangles adjacent to e
form a complete subgraph in GT (T ).

Proof. By definition, e is compatibly bisectable if and only if it is the refinement
edge of all triangles adjacent to e, which precisely means that every triangle adjacent
to e depends on every other triangle adjacent to e. This is the case if and only if
all triangles adjacent to e form a complete subgraph in GT (T ). �

Lemma 4.4.
The graph GE(T ) is acyclic if and only if all cycles in GT (T ) are part of a complete
subgraph. In particular, if T is manifold-like, then GE(T ) is acyclic if and only if
all cycles in GT (T ) have exactly two members.

Proof. Suppose that GE(T ) contains a cycle e0, e1, . . . , em ∈ R(T ) with e0 = em.
Then there exists a sequence T0, . . . , Tm ∈ T with R(Ti) = ei and T0 = Tm and
Ti depends on Ti+1 for 0 ≤ i < m. If those triangles were a complete subgraph
in GT (T ), then those triangles would share their refinement edge with each other,
which would imply e0 = · · · = em, contradicting our assumption that these edges
are a cycle in GE(T ). So GT (T ) must contain a cycle that is not part of a complete
subgraph.

Conversely, suppose that GE(T ) is acyclic but that GT (T ) contains a cycle
T0, . . . , Tm ∈ T with T0 = Tm that is not a complete subgraph of GT (T ). Then
there are two triangles Ti and Tj that do not depend on each other, so R(Ti) 6=
R(Tj). But then it follows that there exists a cycle in GE(T ) that contains R(Ti)
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and R(Tj), contradicting GE(T ) being acyclic. Hence every cycle in GT (T ) must
be part of a complete subgraph.

The specialization in the case of manifold-like T is obvious. �

Remark 4.5.
If the triangulation is manifold-like, then GE(T ) has at most one outgoing arrow
per node. Hence for a manifold-like triangulation, GE(T ) is acyclic if and only if
it is a branching in the terminology of graph theory.

If an assignment of refinement edges is acyclic, then after any compatible bisec-
tion the resulting assignment of refinement edges will be acyclic again.

Lemma 4.6.
Let T be a triangulation. Let e ∈ E be compatibly bisectable, and let T ′ be the
triangulation after compatible bisection of e. If GE(T ) is acyclic, then GE(T ′) is
acyclic.

Proof. Suppose that GE(T ) but that GE(T ′) contains a cycle. Then the edges
of that cycle are already in E since none the new edges introduced by compatible
bisection are refinement edges. Furthermore, any triangle of T ′ that contains two
of the edges in that cycle are already members of T . Hence GE(T ) has a cycle.
This contradicts GE(T ) being acyclic, so GE(T ′) must be acyclic too. �

Suppose that GE(T ) is acyclic. If e, e′ ∈ R(T ) are refinement edges such that
from e we can reach e′ in the edge dependency graph, then we say that e depends
on e′ and that e′ is necessary for e. Furthermore, if e, e′ ∈ R(T ) are refinement
edges such that there is an arrow from e to e′ in the edge dependency graph, then
we say that e depends immediately on e′ and that e′ is immediately necessary for
e. In particular, each edge e depends on itself and is necessary for itself. A finite
sequence e1, . . . , eN ∈ R(T ) of refinement edges is called a dependency chain if for
all 1 ≤ i ≤ N the subsequence ei+1, . . . , eN contains all the refinement edges on
which ei depends. Note that the last edge eN is compatibly bisectable by definition
of dependency chain.

Lemma 4.7.
Let T be an acyclic triangulation and let e1, . . . , eN ∈ R(T ) be a dependency chain.
Then eN is compatibly bisectable, and e1, . . . , eN−1 ∈ R(T ′) is a dependency chain
in the triangulation T ′ that is obtained after compatible bisection along eN .

Proof. This follows from definitions. �

We conclude that whenever we want to have a set of edges refined via a sequence
of compatible bisections, we should find the dependency chain that contains those
marked edges. The next lemma asserts that this is always feasible.

Theorem 4.8.
Let T be a acyclic triangulation and let M ⊆ R(T ). Then there exists a unique
minimal dependency chain e1, . . . , eN ∈ R(T ) that contains all edges inM.
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Proof. Consider the minimal subgraph of GE(T ) that contains the marked edges
M and all the edges reachable from M within GE(T ). This subgraph is acyclic.
Topological sorting of its nodes then produces the required dependency chain. �

In implementations we only perform the minimal refinements for any set of
marked edges. Suppose we have an acyclic triangulation T . WheneverM⊆ E(T )
is a set of marked edges, we write

T ′ := Refine (T ,M)

for the triangulation T ′ that is obtained from the processing the minimal depen-
dency chain associated toM.

Lemma 4.9.
Let T be a triangulation and let U ⊆ T be a subtriangulation. If T ′ is a trian-
gulation constructed from repeated recursive refinement starting with T , then the
descendants of triangles in U can be constructed from repeated recursive refinement
starting with U .

Proof. This is obvious. �

5. Algorithms for Global Mesh Refinement

Suppose that we have an acyclic triangulation T . As we have shown in the
preceding section, for any set M ⊆ E(T ) of marked edges we can find a unique
minimal sequence of compatible bisections that will have that set of edges refined.
The compatible bisections preserve the consistency of the mesh, and repeated ap-
plication of this mark-refine procedure is geometrically stable. In this section, we
outline a few possible implementations of the refinement step.

The considerations so far imply that any set of marked edges is eventually re-
fined if we keep bisecting compatibly bisectable edges necessary for those marked
edges; see Algorithm 1 for an abstract pseudocode. By construction, the algorithm
terminates, and we will have bisected only those edges necessary for the refinement
of the marked edges.

Algorithm 1 Global Bisection Algorithm

1: procedure Refine( T ,M⊆ R(T ) )
2: whileM 6= ∅ do
3: Pick eM ∈M.
4: Let e ∈ E be compatible bisectable and necessary for eM .
5: Bisect along e and letM :=M\ {e}.

An alternative form of Refine constructs the entire dependency chain of the
marked edges prior to starting the sequence of refinements; see Algorithm 2. We can
construct a dependency chain e1, . . . , eN that contains any arbitrary setM⊆ R(T )
of marked edges using some subprocedure, such as breadth-first search in the edge
dependency graph starting from the edges inM. Then all marked edges will have
been refined after working through the dependency chain.

Finally, we give an recursive form of Refine; see Algorithm 3. Conceptually,
the algorithm travels from any marked edge to a sink of the edge dependency graph
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Algorithm 2 Global Bisection Algorithm (alternative version)

1: procedure Refine( T ,M⊆ R(T ) )
2: Construct minimal dependency chain e1, . . . , eN forM.
3: for k from N down to 1 do
4: Bisect along ek.

and then returns to the marked edges, performing compatible bisections along the
way. It requires a subroutine to determine whether a marked edge has already been
refined in prior operations.

Algorithm 3 Global Bisection Algorithm (recursive form)

1: procedure Refine( T ,M = {e1, . . . , eM} ⊆ R(T ) )
2: for m from 1 to M do
3: if em has not been bisected yet then
4: RecursiveRefinement(T , em)

1: procedure RecursiveRefinement( T , e )
2: for e′ ∈ R(T ) \ {e} necessary for e and sharing a triangle with e do
3: RecursiveRefinement(T , e′)
4: Perform compatible bisection of e

In most applications it is the triangles that are marked for refinement and the
number of triangles created is the quantity that is of interest. Therefore our amor-
tized complexity will be given in terms of the number of triangles marked and
refined. We “overload” RecursiveRefinement as follows:

Algorithm 4 Global Bisection Algorithm (recursive form, triangles marked)

1: procedure Refine( T , U ⊆ T )
2: Let E = {e ∈ E(T ) | ∃T ∈ T : R(T ) = e}
3: Refine(T , E)

6. Amortized Complexity

Recursive newest vertex bisection not only refines the marked triangles but also
performs compatible bisections along additional edges. In this section we derive an
amortized complexity estimate that bounds the number of additional bisections:
we show that the total number of triangles bisected is bounded by the number of
triangles marked for refinement.

We consider a sequence of triangulations that is recursively defined by the ap-
plication of Refine with a sequence of marked edges. Formally, starting with the
initial triangulation T0 we define a sequence of triangulations T0, T1, T2, . . . by

Ti+1 := Refine (Ti,Mi) , i ∈ N0,

whereMi ⊆ E(Ti) is a set of edges marked in the i-th triangulation.
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6.1. Levels and Combinatorial Results. We first develop several combinatorial
results that relate to the notion of level of triangles. In this subsection, we fix a
triangulation T that has evolved from repeatedly invoking recursive refinement,
starting from the initial triangulation T0.

The level of a triangle is defined recursively as follows. All triangles T ∈ T0 in
the initial triangulation are said to have level `(T ) = 0. If a triangle T ′ is a child of
the triangle T , then the level of T ′ is `(T ′) := `(T )+1. In other words, the children
of a triangle have one level more than the parent triangle.

We say that a triangulation is ideally matched if all triangles in that triangulation
are compatibly bisectable.

Remark 6.1.
A triangulation of a closed compact surface without boundary is ideally matched if
the assignment of refinement edges describes a perfect matching in the adjacency
graph of the triangulation. Triangles with a boundary edge may have that edge
selected as refinement edge.

Lemma 6.2.
Let T0 be ideally matched and let T, S ∈ T be adjacent. Assume that T immediately
depends on S. If S does not immediately depend on T , then `(T ) = `(S) + 1.
Otherwise `(T ) = `(S).

Proof. It suffices to show that this property is invariant under compatible bisections.
Let e ∈ R(T ) be the edge along which we bisect. Let T1, . . . , TN be the triangles
adjacent to e and let T+

1 , T
−
1 , . . . , T

+
N , T

−
N be the respective child triangles after

compatible bisection. Then `(T1) = · · · = `(TN ) and for all 1 ≤ i ≤ N we have
`(T−i ) = `(T+

i ) = `(Ti) + 1. By construction, adjacent children of the original
triangles have the same level and do not depend on each other.

Let S ∈ T be adjacent to one of the triangles Ti but not share the edge e. Then
S will be adjacent to a child of Ti, say, to T+

i . If S immediately depends on Ti, then
`(S) = `(Ti) + 1, and S will be in mutual dependence with T+

i with whom it shares
the same level. If S does not immediately depend on Ti, then `(S) = `(Ti) and one
of the children will have a non-reciprocal dependence on S with `(S) + 1 = `(T+

i ).
This shows the desired result. �

Lemma 6.3.
Let T0 be ideally matched. Let S, T ∈ T such that T immediately depends on S.
Then `(T ) ≥ `(S) and the descendants of S that appear after compatible bisection
of T have level at most `(T ) + 1.

Proof. The inequality `(T ) ≥ `(S) follows from Lemma 6.2. Let S′ be a descendant
of S that appears during recursive refinement. If S has been compatibly bisectable
in T , then S′ is a child of S and thus `(S′) = `(S) + 1 ≤ `(T ) + 1. Otherwise S′ is
a child or grandchild of S. Then `(S′) ≤ `(S) + 2 ≤ `(T ) + 1. �

We now prove several auxiliary results with the goal of proving an analogue
of Lemma 6.3 for when the initial triangulation T0 is not ideally matched. The
following lemmata can be found in [24] and are included to keep the presentation
self-contained.
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Lemma 6.4.
Let T, S ∈ T be adjacent descendants of the same triangle in T0. Assume that T
immediately depends on S. If S does not immediately depend on T , then `(T ) =
`(S) + 1. Otherwise `(T ) = `(S).

Proof. Let T0 ∈ T0 be the ancestor of S and T . Then U0 = {T0} is ideally matched.
If S and T are descendants of T0 via recursive refinement over T0, then they are
also descendants of T0 via recursive refinement over U0. The claim now follows from
Lemma 6.2. �

Lemma 6.5.
Let T0, S0 ∈ T0 be adjacent such that the shared edge of T0 and S0 is either the
refinement edge of both or none of them. Let T, S ∈ T be adjacent descendants of
T0 and S0, respectively. Assume that T immediately depends on S. If S does not
immediately depend on T , then `(T ) = `(S) + 1. Otherwise `(T ) = `(S).

Proof. The first compatible bisection performed on S0 or T0 must be the compatible
bisection of S, producing a child S′ that is compatibly bisectable with T . Consider
the triangulation U0 = {S′, T}. Descendants of S adjacent to T are descendants of
S′. We introduce a new level function `′ on U0 such that `′(S′) = `′(T ) = 0. Since
U0 is ideally matched, we use Lemma 6.2 together with `′(S) + 1 = `(S). �

Lemma 6.6.
Let T0, S0 ∈ T0 be adjacent such that T0 immediately depends on S0 but not vice
versa. Let T, S ∈ T be adjacent descendants of T0 and S0, respectively. If T
immediately depends on S but not vice versa, then `(T ) = `(S). If instead S
immediately depends on T but not vice versa, then `(S) = `(T ) + 2. Otherwise,
`(T ) = `(S)− 1.

Proof. Let T0 and S0 be the ancestors of T and S, respectively, in the initial mesh
T0. Then S and T are adjacent. We see that S must be a descendant of a child
of S0, say, S+

0 . Then T, S ∈ T appear after newest vertex bisection applied to the
mesh U := {T0, S

+
0 } which is ideally matched. Let us introduce a new notion of

level g on the mesh U . Then g(T ) = `(T ) and g(S) + 1 = `(S).
We have g(T ) = g(S) if and only if the edge shared by S and T is either the

refinement edge of both of them or neither of them, and in that case we `(T ) =
`(S)− 1.

If S immediately depends on T but not vice versa, then g(S) = g(T ) + 1, and
hence `(S) − 1 = `(T ) + 1, that is, `(S) = `(T ) + 2. If instead T immediately
depends on S but not vice versa, then g(T ) = g(S) + 1, that is, `(T ) = `(S). �

We now have an analogue of Lemma 6.3 for general initial triangulations T0.

Lemma 6.7.
Let S, T ∈ T such that T depends on S. Then `(T )+1 ≥ `(S) and the descendants
of S that appear after recursive refinement have level at most `(T ) + 2.

Proof. A careful inspection of Lemmas 6.4, 6.5, and 6.6 immediately shows the
inequality `(T ) + 1 ≥ `(S).

Let S′ be a descendant of S that appears during recursive refinement of T . If
S has been compatibly bisectable in T , then S′ is a child of S. In that case,
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`(S′) = `(S) + 1 ≤ `(T ) + 2. If S has not been compatibly bisectable in T , then S′
is a child or grandchild of S. Another inspection of Lemmas 6.4, 6.5, and 6.6 shows
that `(S) ≤ `(T ) and thus `(S′) ≤ `(T ) + 2. �

It is evident that the level of triangles does not increase along a refinement
chain (with the possible exception of the very end). We would like to quantify to
which extent the level stays constant throughout the chain. The following lemma
quantitatively strengthens a result by Karkulik, Pavlicek and Preatorius [24, Propo-
sition 6.vii].

Lemma 6.8.
Let T1, . . . , Tk ∈ T be a sequence of triangles such that for all 2 ≤ i ≤ k we have
`(Ti) = `(Ti−1) and Ti−1 immediately depending on Ti but not vice versa.

Then k is at most the length of the longest dependency chain in the initial
triangulation. Furthermore, if `(T1) > 0 and k ≥ 3, then all triangles Ti share a
common vertex v ∈ V(T0) and k is at most the valency of v in T0.

Proof. If `(T1) = 0, then obviously k is at most the maximal length of any re-
finement sequence in the initial triangulation. So it remains to consider the case
`(T1) > 0.

Let Si ∈ T0 be the ancestor of Ti in the original triangulation. Suppose that
Si−1 = Si for some 2 ≤ i ≤ k. If `(Ti−1) = `(Ti). then Theorem 4.9 and Lemma 6.4
imply a contradiction. Thus consecutive triangles in the sequence must be descen-
dants of different ancestors in T0. By Lemma 6.5 and Lemma 6.4, we see that
Si−1 immediately depends on Si but not vice versa. Hence k must be at most the
maximal length of any refinement sequence in the initial triangulation.

Now assume k ≥ 3. We see that the triangles T2, . . . , Tk−1 each have two different
edges that are contained in edges of E(T0) and thus each has a vertex contained in
V(T0). Suppose that one of the triangles has two vertices in V(T0). Then `(Ti) = 1
because `(Ti) > 0 by assumption, and the aforementioned edge e ∈ E(T0) is the
refinement edge of Ti. But e is not the refinement edge of Ti+1 by assumption. We
see that the parents of Ti and Ti+1 in T0 must not have been mutually dependent.
Then `(Ti) > `(Ti+1) by Lemma 6.5 and a contradiction follows. We conclude that
each Ti with 2 ≤ i ≤ k− 1 has at most one vertex from V(T0). It is easily seen that
this vertex v ∈ V(T0) is common to every Ti, 1 ≤ i ≤ k. This yields the desired
bound. �

6.2. Triangulation Parameters and an Auxiliary Lemma. The remaining
auxiliary lemmas of this section and also our main result involve several parameters
that depend on combinatorial and geometric properties of the triangulation.

We introduce a constant ζ ∈ {0, 1} that we set to ζ = 0 if T0 is ideally matched
and that we set to ζ = 1 otherwise. This constant is essentially a ’binary flag’ and
allows us to improve the bounds in the main result.

We fix constants 0 < D1 ≤ D2 such that for all triangles T ∈ T we have

D12−`(T )/2 ≤ meas(T )
1
2 ≤ diam(T ) ≤ D22−`(T )/2.(5)

For example, we may choose

D1 = min
T0∈T0

meas(T0)
1
2 , D2 = 2 max

T0∈T0
diam(T0),

in accordance with Lemma 2.2.
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We will discuss a few definitions and results that refer to the distance between
two triangles. The distance d(S, T ) between triangles S and T is the infimum of
the lengths of all rectifiable paths from S to T that are contained in T0.

We assume that for any δ ≥ 0 we have a constant C],δ > 0 such for any T ′ ∈ T
for all 1 ≤ k ≤ `(T ′) + ζ + 1 we have

|{S ∈ T | d(S, T ′) ≤ δ2−k/2, `(S) = k}| ≤ C],δ.(6)

An illustration for this technical definition is provided below. The existence of the
constant C],δ > 0 is clear from the following intuition: if d(S, T ′) ≤ δ2−k/2 and
`(S) = k, then S is contained in a ball around T ′ of radius comparable to δ22−k.
While that ball has area comparable to δ22−k, the triangle S as area comparable
to 2−k. So the set in (6) must have uniformly bounded cardinality.

To make this intuitive notion rigorous and bound the constant C],δ, we prove
the following two auxiliary results.

Lemma 6.9.
For R > 0 small enough there exists a constant Cπ,R > 0 such that any ball B of
radius at most R within T0 satisfies the inequality

meas (B) ≤ Cπ,RR2.

For all R > 0 we have Cπ,R <∞ for each triangulation.

Proof. Let ε > 0 be the shortest edge length of T . Let C > 0 such that every
triangle T ∈ T0 is sharing a vertex with at most C triangles from T0. Let x
be a point in the triangulation and let r ∈ [0, ε). Then the set Br(x) contains
points of at most C different triangles and the intersection of Br(x) and each of
those triangles has measure at most πr2. Hence meas(Br(x)) ≤ Cπr2. Hence
Cπ,R = max{Cπr2,meas(T )/ε2} is the upper bound. �

Remark 6.10.
For example, we have Cπ,δ = π if the triangulation is embedded in R2. Generally
Cπ,δ might be larger though.

Lemma 6.11.
For all δ ≥ 0 we have C],δ <∞.

Proof. Let T ∈ T . Suppose that S ∈ T satisfies

`(S) ≤ `(T ) + 1 + ζ, d(S, T ) ≤ δ2−`(S)/2.

Recall that

meas(S) ≥ D2
12−`(S), diam(S) ≤ D22−`(S)/2, diam(T ) ≤ D22−`(T )/2.

Evidently, S is contained within a radius of diam(T ) + δ2−`(S)/2 + diam(S) around
any point of T . We estimate

diam(T ) + δ2−`(S)/2 + diam(S)

≤ D22−`(S)/2+1/2+ζ/2 + δ2−`(S)/2 +D22−`(S)/2

≤
(
21/2+ζ/2D2 + δ +D2

)
2−`(S)/2.

Hence that ball’s volume is at most Cπ,ρρ22−`(S) with ρ = 21/2+ζ/2D2 + δ + D2.
We conclude that C],δ ≤ Cπ,δρ2/D2

1. �
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Throughout the derivation of the main result, we use a few purely numerical
constants. Here and below, we abbreviate

CΣ :=

∞∑
i=0

2−i/2 =
1

1− 1/
√

2
.

We also assume to have two sequences of positive real numbers (ak)k≥−1−ζ and
(bk)k≥0 satisfying b0 ≥ 1 and

A :=

∞∑
k=−1−ζ

ak <∞, B :=

∞∑
k=0

2−k/2bk <∞, γ := inf
k∈N0

akbk > 0.(7)

Remark 6.12.
The sequences can be chosen as ak = (k + 2 + ζ)−2 and bk = 2

k
4 . Then A = π2/6,

B = (1− 2−1/4)−1, and γ ≥ 3/100. This choice of parameters has appeared in the
literature with minor variations (see [6, 36, 31, 24]) but is by no means the only
possible choice.

The following auxiliary result states that any triangle is only necessary for other
triangles when they are not too far away.

Theorem 6.13.
Let T, S ∈ T such that T depends on S. Let S′ be either S, a child of S, or a
grandchild of S that is constructed by invoking recursive refinement on T . Then

d(S′, T ) ≤ CD2−`(S
′)/2.

Here, CD := D2CLCΣ.

Proof. There exists a sequence of pairwise distinct triangles T0, T1, . . . , Tk such that
T0 = S and Tk = T and such that Ti immediately depends on Ti−1 for 1 ≤ i ≤ k.
Let zi ∈ Ti be the midpoint of the refinement edge of Ti for 0 ≤ i ≤ k. Note that
zi ∈ S is adjacent to every grandchild of Ti.

For any 1 ≤ i ≤ k the segment from zi to zi−1 is an edge of some grandchild
Si−1 of Ti−1. For any j ∈ {0, 1} we thus see

d(zj , zk) ≤
k∑

i=j+1

d(zi−1, zi)

≤
k∑

i=j+1

diam(Si−1) ≤
k−1∑
i=j

diam(Si) ≤ D2

k∑
i=j+1

2−`(Si−1)/2

Let j ∈ {0, 1} be such that `(Ti) ≤ `(Ti+1) for any j ≤ i < k. We then have
`(Si) ≤ `(Si+1) for any j ≤ i < k. Note that j = 1 is a valid choice since we assume
that Ti does not depend on Ti+1 for 1 ≤ i ≤ k − 1. For any such choice of j, we
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have

d(zj , zk) ≤
k−1∑
i=j

diam(Si)

≤
∞∑

l=`(Sj)

∑
j≤i≤k−1
`(Si)=l

diam(Si) ≤ D2

∞∑
l=0

∑
j≤i≤k−1
`(Si)=l

2−(`(Sj)+l)/2

≤ D2CL2−`(Sj)/2
∞∑
l=0

2−l/2 ≤ D2CLCΣ2−`(Sj)/2.

Consider the case that T0 is not compatibly bisectable with T1. Then j = 0 is a valid
choice and all grandchildren of T0 are adjacent to z0. Together with `(S′) ≤ `(S0)
we get

d(S′, T ) ≤ D2CLCΣ2−`(S0)/2 ≤ D2CLCΣ2−`(S
′)/2.

Now consider the case that T0 is compatibly bisectable with T1. Then S′ = S
or S′ is a child of S. Then all grandchildren of T0 are adjacent to z1, and so
d(S′, T ) ≤ d(z1, zk). We have `(T0) = `(T1) or `(T0) = `(T1) + 1. In either case,

`(S′) ≤ `(T0) + 1 ≤ `(T1) + 2 ≤ `(S1).

This shows that

d(z1, zk) ≤ D2CLCΣ2−`(S1)/2 ≤ D2CLCΣ2−`(S
′)/2,

which is the desired estimate. �

Corollary 6.14.
Let S, T ∈ T such that T depends on S. Then d(T, S) ≤ CD.

Remark 6.15.
The preceding corollary has an immediate relevance to the implementation of newest
vertex bisection in a parallel setting with distributed memory. It restricts the
physical range of dependency chains.

We now have the machinery to prove the amortized complexity estimate of our
mesh refinement algorithm.

Theorem 6.16.
There exists Λ > 0, depending only on T0, such that for all sequencesM0,M1, . . . ,Mg

of sets of triangles marked for refinement we have

|Tg| − |T0| ≤ Λ

g−1∑
i=0

|Mi|.(8)

Explicitly, we have

Λ ≤ C],δA

min{a−1, a−1−ζ , a0, γ}
, δ := (CD +D2)B.

Proof. Let us writeM =M0 ∪M1 ∪ · · · ∪Mg. We construct a function

λ : (Tg \ T0)×M→ R(9)
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such that

∀T ′ ∈M :
∑

T∈Tg\T0

λ(T, T ′) ≤ CE ,(10)

∀T ∈ Tg \ T0 :
∑
T ′∈M

λ(T, T ′) ≥ CE ,(11)

It will then follow that

CE (|Tg| − |T0|) ≤
∑

T∈Tg\T0

∑
T ′∈M

λ(T, T ′) ≤
∑
T ′∈M

CE ≤ |M| · CE .

Thus Λ := CE/CE is the constant that we are looking for. Hence it remains to find
the function λ satisfying the upper and lower bounds (10) and (11).

We define the quantity

δ := (CD +D2)B.

The aforementioned function λ is defined by

λ(T, T ′) =

{
a`(T ′)−`(T ) if d(T, T ′) < δ2−`(T )/2 and `(T ) ≤ `(T ′) + 1 + ζ,

0 otherwise.

In particular, for T ∈ T and T ′ ∈ M we have λ(T, T ′) > 0 only if T has level at
most `(T ′) + 1 + ζ.

We prove the upper bound (10). Fix T ′ ∈M. The definition of λ then gives

∑
T∈Tg\T0

λ(T, T ′) =

`(T ′)+1+ζ∑
k=1

∑
T∈Tg\T0
`(T )=k

λ(T, T ′) =

`(T ′)+1+ζ∑
k=1

∑
T∈Tg\T0
`(T )=k

a`(T ′)−k.

If T ∈ Tg \T0 with `(T ) ≤ `(T ′)+1+ζ and λ(T, T ′) > 0, then d(T, T ′) < δ2−`(T )/2.
Evidently, using Theorem 6.11, we have

∑
T∈Tg\T0

λ(T, T ′) ≤ C],δ
`(T ′)+1+ζ∑

k=1

a`(T ′)−k

≤ C],δ
`(T ′)−1∑
k=−1−ζ

ak ≤ C],δ
∞∑

k=−1−ζ

ak = C],δA =: CE ,

which is the desired upper bound.

Next we prove the lower bound (11). We fix T0 ∈ Tg \ T0. By assumption, there
exists a triangle T1 ∈M such that T0 has been created by invoking the global mesh
refinement algorithm on T1. We iterate this construction. Suppose that we have
defined T0, T1, . . . , Ti, then either Ti ∈ T0 or there exists a triangle Ti+1 ∈ M such
that Ti has been created by invoking the global mesh refinement algorithm on Ti+1.
In this manner, we construct triangles T0, T1, . . . , TJ , where finally TJ ∈ T0 is in
the original triangulation.

We have `(TJ) < `(T0) since T0 /∈ T0 but TJ ∈ T0. Hence there exists a minimal
index 1 ≤ s ≤ J such that `(Ts) < `(T0). We have `(T0) ≤ `(Ti) for 0 ≤ i < s
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by definition. According to Lemma 6.3 and Lemma 6.7, for all 0 ≤ i < J we have
`(Ti) ≤ `(Ti+1) + 1 + ζ. Therefore,

`(Ts) < `(T0) ≤ `(Ts−1) ≤ `(Ts) + 1 + ζ

We conclude that `(Ts)− `(T0) ∈ {−1,−1− ζ}.
By definition, for any 1 ≤ j ≤ J we have λ(T0, Tj) > 0 only if d(T0, Tj) <

δ2−`(T0)/2 and `(T0) ≤ `(Tj) + 1+ζ. We now bound the distance d(T0, Tj) from
above.

For 1 ≤ j ≤ s and l ∈ N0 we define

m(l, j) := |{ 0 ≤ i ≤ j − 1 | `(Ti) = `(T0) + l }| .(12)

In other words, m(l, j) is the number of those triangles among the T0, · · · , Tj−1

whose level equals `(T0) + l.
By the triangle inequality and an induction argument,

d(T0, Tj) ≤
j∑
i=1

d(Ti−1, Ti) +

j−1∑
i=1

diam(Ti).

Using (5) and Lemma 6.13, we get

d(T0, Tj) ≤ CD

j∑
i=1

2−`(Ti−1)/2 +D2

j−1∑
i=1

2−`(Ti)/2

≤ CD

j−1∑
i=0

2−`(Ti)/2 +D2

j−1∑
i=1

2−`(Ti)/2.

Since 0 ≤ j ≤ s − 1 we have `(Ti) ≥ `(T0) for all 0 ≤ i ≤ j − 1, the definition of
m(i, j) gives

d(T0, Tj) ≤ (CD +D2)

j−1∑
i=0

2−`(Ti)/2

= (CD +D2)

∞∑
l=0

m(l, j)2−(`(T0)+l)/2

= (CD +D2)2−`(T0)/2
∞∑
l=0

m(l, j)2−l/2.

Here conduct a case distinction based on the size of m(l, j).

Case 1: Consider the case that m(l, s) ≤ bl for all l ∈ N0. We then find

d(T0, Ts) ≤ (CD +D2)2−`(T0)/2
∞∑
l=0

m(l, s)2−l/2

≤ (CD +D2)2−`(T0)/2
∞∑
l=0

bl2
−l/2

≤ (CD +D2)B · 2−`(T0)/2

≤ δ2−`(T0)/2.
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This bound on d(T0, Ts), the condition `(Ts) − `(T0) ∈ {−1,−1− ζ}, and the
definition of λ now imply∑

T∈M
λ(T0, T ) ≥ λ(T0, Ts) = a`(Ts)−`(T0) ≥ min{a−1, a−1−ζ} > 0.

Case 2: Consider the case that there exists a level difference ` ∈ N0 such that
m(`, s) > b`. For each such level difference `, there exists a minimal index j(`) such
that m(`, j(`)) > b`. We let `∗ be the level difference for which the index j(`∗) is
minimal, and we write j∗ = j(`∗). Note that we have m(`∗, s) > 1 since b`∗ > 0
by assumption on the sequence, and that by definition of m(`∗, j∗) we have j∗ ≥ 1.
By construction, m(`∗, j∗) > b`∗ and

m(`, j∗ − 1) ≤ b`, ` ≥ 0.

For any 1 ≤ i ≤ j∗ − 1 such that `(Ti) = `(T0) + ` we now get

d(T0, Ti) ≤ (CD +D2)2−`(T0)/2
∞∑
l=0

m(l, i)2−l/2

≤ (CD +D2)2−`(T0)/2
∞∑
l=0

m(l, j∗ − 1)2−l/2

≤ (CD +D2)2−`(T0)/2
∞∑
l=0

bl2
−l/2

≤ (CD +D2)B2−`(T0)/2

≤ δ2−`(T0)/2.

We conduct a further case distinction based on `∗. Consider the case that `∗ = 0.
Since we then have b0 ≥ 1 and m(0, j∗) > b0 we find j∗ ≥ 2. Hence there exists
1 ≤ i ≤ j∗− 1 such that `(Ti) = `(T0). Moreover, Ti ∈M. The definition of λ now
shows ∑

T ′∈M
λ(T0, T

′) ≥ λ(T0, Ti) = a`(Ti)−`(T0) = a0 > 0

Now consider the case that `∗ > 0. For any 1 ≤ i ≤ j∗ − 1 with `(Ti) = `(T0) + `∗

we have Ti ∈M and `(Ti) ≥ `(T0) in particular. So the definition of λ shows

λ(T0, Ti) = a`(Ti)−`(T0) = a`∗

Therefore ∑
T ′∈M

λ(T0, T
′) ≥ m(`∗, j∗)a`∗ ≥ b`∗a`∗ ≥ inf

`≥1
a`b` = γ > 0

based on the assumptions (7).

To summarize, for any T0 ∈ Tg \ T0 we have∑
T ′∈M

λ(T0, T
′) ≥ min{a−1, a−1−ζ , a0, γ} := CE > 0

which is the desired lower bound. �
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Theorem 6.17.
There exists Λ > 0, depending only on T0, such that for all sequencesM0,M1, . . . ,Mg

of sets of triangles marked for refinement we have

|Tg| − |T0| ≤ Λ

g−1∑
i=0

|Mi|.(13)

where

Λ ≤
Cπ,δ

(
1 + 21/2+ζ/2 + (1 + CLCΣ)B

)2
A

min{a−1, a−1−ζ , a0, γ}
· D

2
2

D2
1

.

Proof. This follows from Theorem 6.16 and unfolding definitions. We have previ-
ously seen that

CD ≤ 1 + CLCΣ, C],δ ≤ Cπ,δD−2
1

(
21/2+ζ/2

√
3/4D2 + δ +D2

)2

.

Hence δ = (1 + CLCΣ)D2B and we bound C],δ explicitly by

C],δ ≤ Cπ,δD−2
1

(
21/2+ζ/2

√
3/4D2 + (1 + CLCΣ)D2B +D2

)2

.

≤ Cπ,δD2
2D
−2
1

(
1 + 21/2+ζ/2

√
3/4 + (1 + CLCΣ)B

)2

.

We come to the desired conclusion. �

Remark 6.18.
The techniques in the proof of Theorem 6.16 resemble the accounting method for
amortized analysis in theoretical computer science. The idea of the proof is that
every marked triangle deposits a bounded amount of money into the triangles of
the last triangulation such that every one of those triangles receives a minimum
amount of money. If the total amount of money invested remains non-negative,
then the amortized costs per bisection are uniformly bounded.

The preceding result reproduces the basic proof techniques of prior works. The
estimate will deteriorate if the mesh is very non-uniform, that is, the ratio D2/D1

is very large. This dependence on the geometry appears unnecessary for a combina-
torial algorithm. Our recursive newest vertex bisection only depends on the initial
triangulation, the initial assignment of refinement edges, and the marking of trian-
gles; it does not depend on the geometry of the triangulation. For that reason, we
naturally expect a purely combinatorial amortized complexity estimate, which does
not depend on geometric properties of the triangulation. We derive such a combi-
natorial estimate from the preceding theorem by replacing the initial triangulation
by a combinatorially equivalent one which has uniform geometric properties.

For any T ∈ T0 we define Γ(0, T ) := {T} and recursively

Γ(k, T ) := {S ∈ T0 : ∃T ′ ∈ Γ(k − 1, T ) : S ∩ T ′ 6= ∅} , k ∈ N.

The cardinality of Γ(T, k) is the number of triangles in a local patch around T . We
write Γ(k) := maxT∈T0 Γ(k, T ).

Theorem 6.19.
There exists Λ > 0, depending only on T0, such that for all sequencesM0,M1, . . . ,Mg
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of sets of triangles marked for refinement we have

|Tg| − |T0| ≤ Λ

g−1∑
i=0

|Mi|,(14)

where

Λ ≤ |Γ (dρ/he)|Aπρ2

D2
1 min{a−1, a−1−ζ , a0, γ}

,

ρ = D2 + 21/2+ζ/2
√

3/4D2 + δ,

δ = (1 + CLCΣ)D2B, h =
√

3/2, D1 =

√
3

2
, D2 =

√
6,

and where Γ > 0 is such that every triangle from T0 is sharing a vertex with at
most Γ triangles from T0.

Proof. Let N be the number of vertices v1, v2, . . . , vN in the triangulation T0. We
define a triangulation T̂0 embedded in RN as follows: whenever T = [vi, vj , vk] ∈ T0,
then T̂ = [ei, ej , ek] ∈ T̂0. It follows that T0 and T̂0 are combinatorially equivalent
and that newest vertex bisection on one triangulation corresponds to newest vertex
bisection on the other. To finish the proof, it remains to estimate the relevant
parameters that appear in Theorem 6.16.

We analyze the similarity classes of the triangles that appear during refinement.
We call these classes type 0, type I, and type II, respectively. Write L =

√
2.

The initial triangulation contains equilateral triangles that we classify as type
0. They have diameter d0 = L, area A0 = L2

√
3/4, and shape measure µ0 =

4/
√

3. Furthermore, their height is h = L
√

3/2. The first bisection produces right-
angled triangles of type I. They have diameter d1 = L, area A1 = L2

√
3/8, and

shape measure µ1 = 8/
√

3. The second bisection produces triangles of type 0 and
isosceles triangle of type II. The latter have diameter d2 = h = L

√
3/2 and area

A2 = L2
√

3/8, with shape measure µ2 = 2
√

3. Triangles of type 0 and II appear
only with even level and triangles of type I with odd level. Writing D1 =

√
3

2 and
D2 =

√
6, we observe the inequalities

D12−`(T )/2 ≤ meas(T )
1
2 ≤ diam(T ) ≤ D22−`(T )/2.

Next, we estimate the constant C],δ for some δ > 0. Let T ∈ T be a descendant of
T0 ∈ T0 and k ∈ N. We define the set

C(T, δ, k) :=
{
S ∈ T | d(S, T ) ≤ δ2−k/2, `(S) = k

}
Suppose that S ∈ C(T, δ, k) with 1 ≤ k ≤ `(T )+ζ+1. Then S and T are contained
in a ball centered at a point in T and of radius bounded by√

3/4diam(T ) + δ2−k/2 + diam(S)

≤
√

3/4D22−`(T )/2 + δ2−k/2 +D22−`(T )/2

≤
√

3/4D221/2+ζ/22−k/2 + δ2−k/2 +D22−k/2

≤
(
D2 + 21/2+ζ/2

√
3/4D2 + δ

)
2−k/2.

We write ρ := D2 + 21/2+ζ/2
√

3/4D2 + δ. The ball of radius ρ2−k/2 around any
point in T0 ∈ T0 is contained within triangles of the set Γ

(
dρ2−k/2/he, T0

)
.
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So the area of that ball is at most
∣∣Γ (dρ2−k/2/he, T0

)∣∣πρ22−k. Every triangle
in C(T, k) has area at least D2

12−k. Consequently,

|C(T, δ, k)| ≤
∣∣∣Γ(dρ2−k/2/he, T0

)∣∣∣πρ2/D2
1.

This yields an upper bound for C],δ.
Letting δ = (CD +D2)B = (1 + CLCΣ)BD2, Theorem 6.16 gives

Λ ≤ C],δA

min{a−1, a−1−ζ , a0, γ}
≤ |Γ (dρ/he)|Aπρ2

D1 min{a−1, a−1−ζ , a0, γ}

≤
∣∣∣Γ(⌈(D2 + 21/2+ζ/2

√
3/4D2 + δ)h−1

⌉)∣∣∣ Aπ
(
D2 + 21/2+ζ/2

√
3/4D2 + δ

)2

D2
1 min{a−1, a−1−ζ , a0, γ}

.

The proof is complete. �

Remark 6.20.
The difference between Theorem 6.16/Corollary 6.17 and Theorem 6.19 becomes
relevant with very non-uniform meshes, such as the procedurally generated tri-
angulation in Figure 5. Our combinatorial result is uniform for further levels of
refinement. The only triangulation properties that enter the combinatorial esti-
mate are CL and Γ(·). In applications CL is small and Γ(·) can be calculated easily
in linear time complexity.

Remark 6.21.
In many applications marked triangles are to be refined by b generations for some
b ≥ 1. We can incorporate this into our framework with additional markings. The
constant in the amortized complexity estimate is then

(
2b − 1

)
Λ.

7. Initial Assignment of Refinement Edges

Our refinement method requires an acyclic assignment of refinement edges in the
initial triangulation. While producing such an acyclic assignment is not particularly
difficult as such, there are still open questions with regards to the computational
details of this problem. We review a number of algorithms for assigning initial
refinement edges, distinguishing two classes: algorithms that retain the initial tri-
angles and algorithms that perform refinement in a preprocessing step.

Let us first review assignment procedures that do not modify the initial trian-
gulation. A completely arbitrary initial choice of refinement edges may produce
circular dependencies, so we need to take care ensuring acyclicity of the initial
refinement.

We can find an acyclic initial assignment of refinement edges with an algorithm
that runs in linear time and parallelizes. Suppose that we fix a total order of the
edges in the initial triangulation. For example, we can order the edges lexicograph-
ically by their vertex indices. If we assign to each triangle its edge that is maximal
with respect to that total order, then the resulting assignment will be acyclic. How-
ever, the resulting assignment may feature long initial refinement chains.

We can produce an initial assignment of refinement edges in linear serial time
such the length of all dependency chains is at most 1; see Algorithm 5. We first
greedily assign refinement edges such that only compatibly bisectable pairs are
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Figure 5. Procedurally generated triangulation approximating a
disk. The quotient of maximum triangle diameter and minimum
triangle area diverges to infinity as the resolution is increased.

Algorithm 5 Greedy Initial Assignment Algorithm

1: procedure GreedyInitialAssignment( T )
2: Set S = ∅.
3: while ∃e ∈ E(T ) : both parent triangles T1, T2 ∈ T of e are unassigned do
4: Set R(T1) = e and R(T2) = e.
5: Set S := S ∪ {T1, T2}.
6: while ∃T ∈ T unassigned do
7: Set R(T ) = e for some edge e of T such that ∃S ∈ S : e ⊂ S.

produced, and then assign refinement edges to any remaining triangles such all
dependency chains have length at most one.

Finally, if the initial triangulation triangulates a planar domain, there exists an
algorithm running in linear serial time that produces an initial assignment of refine-
ment edges such that the triangulation will be ideally matched [5]. This is based
on reducing the problem to finding a perfect matching in a 3-regular planar graph.
It is not obvious how this algorithm can be parallelized. It also seems to be an
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Refinement Notes

Midpoint refinement. Smallest cardinality. All bi-
sectable pairs across triangle boundaries.

Uniform refinement. Original triangle shapes preserved.
Dependencies of depth at most one, all within original
triangle.

Refined midpoint refinement. Triangle shapes better
than midpoint refinement, all dependencies within orig-
inal triangle.

Repeated bisection. All dependencies within original
triangle. Non-uniform across triangulation.

3-uniform refinement. Original shapes preserved. All
triangles compatibly bisectable. Dependencies across
original triangles.

Table 1. Some Schemes for initial refinement with additional notes.

open question how to achieve such an optimal complexity bound for more general
manifold-like triangulations.

The second class of algorithms for the initial assignment of refinement edges
refines the initial mesh in a preprocessing step. These procedures are compara-
tively simple, have linear time complexity, are highly parallelizable, and produce
assignments with dependency chains at length at most one. That being said, they
typically increase the cardinality of the triangulation by a constant factor. While
this may be deemed tolerable in some applications (such as finite element meth-
ods), it may be deemed intolerable in others (such as boundary element methods
or resource critical settings). Table 1 gives a graphical description of some ways to
refine the initial triangles and assign refinement edges in that new triangulation.
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