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Abstract

Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer
length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular
processes using these observed geometries. Enabling such simulations requires watertight meshing
of electron micrograph images into 3D volume meshes, which can then form the basis of computer
simulations of such processes using numerical techniques such as the Finite Element Method (FEM).
In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to
bridge the gap between poorly conditioned meshes generated from segmented micrographs and
boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the
application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite
morphology explored at three different length scales and show that the resulting meshes are suitable
for finite element simulations. This work is an important step towards making physical simulations
of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and
simulate cellular length scale phenomena based on emerging structural data will enable realistic
physical models and advance discovery at the interface of geometry and cellular processes. We posit
that a new frontier at the intersection of computational technologies and single cell biology is now
open.

Author summary

3D imaging of cellular components and associated reconstruction methods have made great strides
in the past decade, opening windows into the complex intracellular organization. These advances
also mean that computational tools need to be developed to work with these images not just for
purposes of visualization but also for biophysical simulations. In this work, we present our recently
rewritten mesh processing software, GAMer 2, which features both mesh conditioning algorithms and
tools to support simulation setup including boundary marking. Using a workflow that consists of
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other open-source softwares along with GAMer 2, we demonstrate the process of going from electron
micrographs to simulations for several scenes of increasing length scales. In our preliminary finite
element simulations of reaction-diffusion in the generated geometries, we reaffirm that the complex
morphology of the cell can impact processes such as signaling. Technologies such as these presented
here are set to enable a new frontier in biophysical simulations in realistic geometries.

List of Acronyms

BPAP Back Propagating Action Potential

EM Electron Microscopy

EPSP Excitatory Postsynaptic Potential

ER Endoplasmic Reticulum

FEA Finite Element Analysis

FEM Finite Element Method

FIB-SEM Focused-ion Beam Milling Scanning Electron
Microscopy

LST Local Structure Tensor

NMDAR N -methyl-D-aspartate Receptor

PDE Partial Differential Equation

PM Plasma Membrane

PSD Postsynaptic Density

SBF-SEM Serial Block-Face Scanning Electron Mi-
croscopy

Introduction

Understanding structure-function relationships at cellular length scales (nm to µm) is one of the
central goals of modern cell biology. While structural determination techniques are routine for very
small and large scales such as molecular and tissue, high-resolution images of mesoscale subcellular
scenes were historically elusive [1]. This was primarily due to the diffraction limits of visible light
and the limitations of X-ray and Electron Microscopy (EM) hardware. Over the past decade,
technological improvements such as improved direct electron detectors have enabled the practical
applications of techniques such as volume electron microscopy [2–6]. Advances in microscopy
techniques in recent years have opened windows into cells, giving us insight into cellular organization
with unprecedented detail [7–13]. Volumetric EM enables the capture of 3D ultrastructural datasets
(i.e., images where fine structures such as membranes of cells and their internal organelles are resolved,
as shown in Fig. 1A). Using these geometries as the basis of simulations provides an opportunity for
the in silico animation of various cellular processes and the generation of experimentally testable
hypotheses. Popular biophysical simulation modalities such as the finite element method [14,15],
particle-based stochastic dynamics [16–19], and the reaction-diffusion master equation [20–26] among
many others require discretizations or meshes representing the geometry of the domain of interest.
Moreover, in biological systems, the localization of molecular species is often heterogeneous [27,28]
which necessitates the need for boundary and region marking to represent this heterogeneity. To
realize these simulations, therefore, a workflow is necessary to go from images to high-quality and
annotated 3D meshes compatible with different numerical simulation modalities. As we review
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below, significant community effort has been invested in the imaging and segmentation steps, as
well as mesh generation for graphics and visualization (Fig. 1A-C). In an effort to bridge advances
in these fields, in this work we describe GAMer 2; software which takes input meshes generated
from contour-tiling and segmentation, applies mesh conditioning algorithms from the graphics
community, and mark faces to demarcate boundary conditions. GAMer 2 is developed for the
common biophysicist and features an easy to use user interface implemented as an add-on to 3D
modeling software Blender along with a Python API PyGAMer. These user interfaces allow for the
definition of marked boundaries corresponding to molecular localizations. The output of GAMer 2 is
a boundary marked and simulation compatible surface or volume mesh (Fig. 1D and E) on which
one can run finite element-based biophysical simulations (Fig. 1F).

Fig 1. Pipeline from electron microscopy data to a reaction-diffusion finite element
simulation on a well-conditioned unstructured tetrahedral mesh. A) Contours of seg-
mented data overlaid on raw slices of electron microscopy data, B) Stacked contours from all slices
of segmented data, C) Primitive initial 3D mesh reconstructed by existing IMOD software, D) Surface
mesh after processing with our system; note the significantly higher quality of the mesh. The
steps from C to D are the core contributions of this manuscript. E) Unstructured tetrahedral
mesh suitable for finite element simulation obtained with TetGen software linked in GAMer 2, F)
Reaction-diffusion model simulated using FEniCS software.

Workflow Steps from Image to Model

In order to develop models from image datasets, a series of steps must be executed. Starting with
image acquisition and ending with a simulation compatible mesh, we summarize the typical workflow
steps and highlight potential difficulties along the way.

Image acquisition and segmentation

Sample preparation begins with either cell culture or the harvesting of biological tissues of interest.
Subsequent preparation steps can vary depending upon the particular volume EM imaging modality
used but primarily include sample dehydration, fixation/staining, embedding, and imaging through
the different cross-sections [29–32].

Once the images are captured, they are post-processed to improve properties such as contrast
and alignment/registration across the stack. From the processed image stack, the boundaries of
interesting features are traced or segmented. To the best of our knowledge, the state-of-the-art
for segmenting electron micrographs of cells remains reliant upon the expertise of biologists for
recognition of organelles and membrane domains in cells. During the segmentation process, the
algorithm or researcher must carefully separate boundary signal from noise. Various schemes ranging
from manual tracing, thresholding and edge-detection, to deep-learning based approaches have been
employed to perform image segmentation [32,33].
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The resulting segmentations from volume EM can be visualized as stacks of contours (Fig. 1B).
This provides an initial glimpse into the 3D shapes of objects of interest. In order to enable modeling
using the shapes represented by the contours, geometric meshes compatible with numerical methods
can be constructed. However, a myriad of complexities often confound this process and necessitate
flexible approaches for mesh generation.

Meshing challenges

A variety of challenges for meshing and subsequent physical simulations can arise at each step. Even
with near-perfect experimental execution, and despite the enhanced surface contrast from heavy
metal stains, images of cellular and organelle membranes are often poorly behaved and contain
sharp and otherwise irregular geometries that are difficult to segment. In more serious cases, thinly
sliced samples can tear or become contaminated during handling. Methodological errors are also
possible. For example, Serial Block-Face Scanning Electron Microscopy (SBF-SEM) datasets in
optimum conditions may have 3 nm lateral (x,y) resolution but 25 nm axial (z) resolution, limited
by the slicing capability of the ultramicrotome [29]. Anisotropic resolution in tandem with variable
slice thickness can cause loss of axial detail.

There are many EM softwares that post-process image stacks to correct for these and other
artifacts. Most of our datasets have been manually segmented and corrected in software such
as IMOD [34], ilastik [35], or TrackEM2 [36]. IMOD and other tools such as ContourTiler in
VolRoverN [37] among others [38, 39] have the capacity to perform contour-tiling operations to
generate a preliminary surface mesh suitable for basic 3D visualization. If the end goal is visualizing
the geometry of the cellular structure, then such meshing operations are often sufficient.

Meshes generated in this manner, however, are often not directly suitable for physical simulations
due to various mesh artifacts as described below (Fig. 1C). Some of these include jagged boundaries,
non-manifold features, and high aspect ratio faces, as shown in Fig. 2. These problems must
be corrected to produce a conditioned surface mesh that is compatible with physical simulations
(Fig. 1D). For simulations that track concentrations in the volume, the conditioned surface mesh is
tetrahedralized (Fig. 1E). We note that although there exist advanced tetrahedral mesh generation
tools, such as TetWild [40], and others [41–46], which can generate Finite Element Analysis (FEA)
compatible volume meshes from these poor quality initial surfaces, these tools are general purpose
and currently not adapted to the length scales of single cells and subcellular structures. Mesh
defects such as disconnects in the Endoplasmic Reticulum (ER) arising from the limited resolving
powers of EM or errors in segmentation (e.g., Fig. 2C, D) require more careful and often manual
curation. Currently, manual curation of cellular data sets remain the gold standard for identifying
and matching cellular structures. A specialist trained in imaging modalities is capable of subjectively
matching the identity of a surface with the underlying micrograph along with some history of
observations from training to determine if an error is likely.

Curating simulation metadata

Once a suitable mesh is generated, other steps may be necessary to facilitate successful simulation.
For example, when modeling biochemical signal transduction, receptors and other molecules may
be localized to particular regions of a scene [47]. Realistic simulations must be able to represent
the observed localization to effectively predict cellular behavior [48–50]. In a simulated model, the
confinement of molecules can be presented as boundary conditions on a marked mesh region (Fig. 1D).
Depending on the situation, such localizations can be arbitrarily or randomly assigned for hypothesis
testing [51] Alternatively, the regions of confinement may be informed by the electron micrographs

4



Fig 2. Initial surface mesh model of a single spine scene with subcellular organelles
imaged by Focused-ion Beam Milling Scanning Electron Microscopy (FIB-SEM) (over-
laid), courtesy of Wu et al. [7], contains many mesh artifacts and is not compatible
with physics-based simulations. A) The blue surface represents the Plasma Membrane (PM)
which contains a hole indicated by the red arrow. B) The yellow surface represents the membrane
of the Endoplasmic Reticulum (ER). C, D) are two views rotated and zoomed-in on B showing
a disconnected region of the ER proofed against micrographs taken at different z-axis locations.
An untraced ghost, indicated by the red arrow, appears between the disconnected segments which
suggests a possible error in the segmentation.

themselves or correlated from another experimental approaches. A robust mesh generation tool
capable of handing and resolving problems across all workflow steps including boundary marking
and other metadata curation is necessary to support simulations from images of subcellular scenes
(Fig. 1E).

Here, we introduce our recently redesigned software, GAMer 2 (Geometry-preserving Adaptive
MeshER version 2), which features mesh conditioning algorithms and simulation setup tools. In
this redesign, we focused on the following software design criteria:

• Easy cross-platform code compilation and distribution.

• Runtime stability with meaningful error messages.

• Easy interactivity for the biophysicist user base.

• Version tracking for code provenance.

The algorithms in GAMer 2 for mesh conditioning remain those described by Yu et al. [52, 53],
by Gao et al. [54, 55], and Chen and Holst [56]. As described in the original manuscripts, the
algorithms seek to preserve mesh features while producing smooth surfaces. We will show in our
illustrative examples that GAMer 2 approximately preserves volume. In this redevelopment, we have
introduced the capability to perform local refinements and now provide end-users with access to
new meta-parameters such as the number of neighbor rings to use in the calculation of the local
structure tensor.

Details of the rewrite including the development of a new Python interface PyGAMer, and GAMer

Blender add-on called BlendGAMer follow. In addition, we summarize new geometric capabilities
such as the estimation of curvatures on meshes.
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Methods

GAMer 2 Development

GAMer 2 is a complete rewrite of GAMer in C++ using the CASC data structure [57] as the underlying
mesh representation. Prior versions of GAMer were susceptible to segmentation faults under certain
conditions, which is now fixed in this major update. In addition to improving the run-time stability,
we have added error handling code to produce actionable notes for the convenience of the end-user.
GAMer 2 continues to be licensed under LGPL v2.1 and the source code can be downloaded from
GitHub (https://github.com/ctlee/gamer) [58].

In this update, we have also redeveloped the Python interface for GAMer and the Blender

add-on. The GAMer 2 Python API, called PyGAMer is generated using pybind11 [59] as opposed to
SWIG [60] used by GAMer. pybind11 provides superior wrapping of C++ template objects which
enables PyGAMer to interact with nearly all elements of GAMer 2 in a Python environment. The
GAMer 2-Blender add-on, now called BlendGAMer, has been rewritten to use the PyGAMer interface.
Blender not only provides a customizable mesh visualization environment, but also tools such as
sculpt mode, which allows users to flexibly manipulate the geometry [61]. With great care to remain
truthful to the underlying data, Blender sculpting tools can be useful for fixing topological issues
such as disconnected ER segments. We briefly review the concepts behind the mesh processing
algorithms from Yu et al. [52, 53].

Mesh Processing

Local Structure Tensor

The mesh processing operations in GAMer are designed to improve mesh quality while preserving the
underlying geometry of the data. We use a Local Structure Tensor (LST) to account for the local
geometry [62–64]. The LST is defined as follows,

T (v) =

Nr∑
i=1

ni ⊗ ni =

Nr∑
i=1

n
x
i n

x
i nxi n
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i nxi n
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i

nyi n
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i nyi n
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i
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i nzin
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i nzin
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 , (1)

where v is the vertex of interest, Nr is the number of neighbors in the r-ring neighborhood, and nx,y,zi

form the normal of the ith neighbor vertex. Vertex normals are defined as the weighted average of
incident face normals. Performing the eigendecomposition of the LST, we obtain information on the
principal orientations of normals in the local neighborhood [65]. The magnitude of the eigenvalue
corresponds to the amount of curvature along the direction of the corresponding eigenvector.
Inspecting the magnitude of the eigenvalues gives several geometric cases:

• Planes: λ1 � λ2 ≈ λ3 ≈ 0

• Ridges and valleys: λ1 ≈ λ2 � λ3 ≈ 0

• Spheres and saddles: λ1 ≈ λ2 ≈ λ3 > 0

Feature preserving mesh smoothing

Finite element simulations are sensitive to the mesh quality [66,67]. Poor quality meshes can lead
to numerical error, instability, long times to solution, and non-convergence. Generally, triangular
meshes with high aspect ratios produce larger errors compared with equilateral elements [68].
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To improve the conditioning of the surface meshes derived from microscopy images, we use an
angle-weighted Laplacian smoothing approach, as shown in Fig. 3A. This scheme is an extension
of the angle weighted smoothing scheme, formulated for 2D and described by Zhou and Shimada,
to three dimensions [69]. In essence, this algorithm applies local torsion springs to the 1-ring
neighborhood of a vertex of interest to balance the angles.

Fig 3. Schematic illustrating GAMer mesh conditioning algorithms. A) angle-based surface
mesh conditioning, and B) anisotropic normal smoothing algorithms which are previously described
by Yu et al. [52, 53] and implemented in GAMer.

Given a vertex x with the set of 1-ring neighbors {v1, . . . ,vN}, where N is the number of
neighbors, ordered such that vi is connected to vi−1 and vi+1 by edges. The 1-ring is connected
such that vN+1 := v1 and v−1 := vN . Traversing the 1-ring neighbors, we define edge vectors
ei−1 := −−−−→vivi−1 and ei+1 := −−−−→vivi+1. This algorithm seeks to move x to lie on the perpendicularly
bisecting plane Πi of ∠(vi−1,vi,vi+1). For each vertex in the 1-ring neighbors, we compute the
perpendicular projection, xi, of x onto Πi. Since small surface mesh angles are more sensitive to
change in x position than large angles, we prioritize their maximization. We define a weighting
factor, αi = ei−1·ei+1

|ei−1|·|ei+1| , which inversely corresponds with ∠(vi−1,vi,vi+1). The average of the
projections weighted by αi gives a new position of x as follows,

x̄ =
1∑N

i=1(αi + 1)

N∑
i=1

(αi + 1)xi. (2)

There are many smoothing algorithms in the literature; the angle-weighted Laplacian smoothing
algorithm described here can outperform other popular smoothing strategies such as those described
in [70–73] which are primarily focused on optimizing the smoothness of surface normals for computer
graphics applications and not mesh angles. Our goal is not to provide an elaborate comparison
against existing algorithms in this manuscript but to demonstrate the utility of our pipeline for
biological images, with a specific goal of using EM-generated images for computational biology
simulations.

Conceptually the fidelity of the local geometry can be maintained by restricting vertex movement
along directions of low curvature. This constraint is achieved by anisotropically dampening vertex
diffusion using information contained in the LST. Although the weighted vertex smoothing scheme,
as described, will reasonably preserve geometric structure, the structure preservation can be further
improved by using the LST. Computing the eigendecomposition of the LST, we obtain eigenvalues
λ1, λ2, λ3 and eigenvectors E1,E2,E3, which correspond to principal orientations of local normals.
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We project x̄ − x onto the eigenvector basis and scale each component by the inverse of the
corresponding eigenvalue,

x̂ = x +
3∑

k=1

1

1 + λk
[(x̄− x) ·Ek]Ek. (3)

This has the effect of dampening movement along directions of high curvature i.e., where λ is
large. In this fashion, our algorithm improves triangle aspect ratios while preserving local geometric
features. We note that our actual implementation iterates between rounds of vertex smoothing
and conventional angle based edge flipping to achieve the desired smoothing effect. Edge flips are
common in mesh processing, and provide a mechanism for both improving angles and reducing the
valency of vertices [74]. A comparison of the angle-weighted smoothing algorithm with and without
LST correction is shown in Fig. 4.

Feature preserving anisotropic normal-based smoothing

To remove additional bumpiness from the mesh, we use a normal-based smoothing approach [75,76],
as shown in Fig. 3B. The goal is to produce smoothly varying normals across the mesh without
compromising mesh angle quality. Given a vertex x of interest, for each incident face i, with normal
ni we rotate x around a rotation axis defined by opposing edge ei such that ni aligns with the
mean normal of neighboring faces n̄i =

∑3
j=1 nij/3. We denote the new position which aligns ni

and n̄i as R(x; ei, θi). Summing up the rotations and weighting by incident face area, ai, we get an
updated position,

x̄ =
1∑N1

i=1 ai

N1∑
i=1

aiR(x; ei, θi). (4)

This is an isotropic scheme that is independent of the local geometric features; meaning that many
iterations of this algorithm may weaken sharp features.

Instead, we use an anisotropic scheme [76,77] to compute the mean neighbor normals,

n̄i =
1∑3

j=1 e
K(ni·nij)

3∑
j=1

eK(ni·nij)nij , (5)

where K is a user defined positive parameter which scales the extent of anisotropy. Under this
scheme, the weighting function decreases as a function of the angle between ni and nij resulting in
the preservation of sharp features.

Feature preserving mesh decimation

The number of degrees of freedom in the mesh influences the computational burden of subsequent
physical simulations. One strategy to reduce the number of degrees of freedom is to perform mesh
decimation or simplification.

There are many strategies for decimation, some reviewed here [78, 79], including topology
preserving Euler operators, other algorithms such as vertex clustering which may not guarantee
topological invariance [80], and remeshing [81]. It is typically desirable to preserve the mesh topology
for physical simulation based applications. Conventional Euler operations for mesh decimation
include vertex removal, edge collapse, and half-edge collapse. As noted earlier, finite element
simulations are sensitive to angles of the mesh. Edge and half-edge collapses can sometimes lead
to vertices with high or low valency and therefore poor angles. Although algorithms to detect
topology-changing edge collapses have been developed [82], we avoid this problem by employing a
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Fig 4. Comparison of 50 iterations of angle weighted smoothing algorithm. A) without
and B) with Local Structure Tensor (LST) based correction. The LST helps to preserve the
geometric structure albeit with slight degradation to the mesh angles. It is a simple metric to
capture local geometric information which can be used to constrain conditioning operations. C)
Mesh angles are improved in both the LST weighted and unweighted meshes. The distribution of
the mesh angles with LST correction are left shifted from 60 degrees.

vertex removal algorithm. First, vertices to be decimated are selected based upon certain criteria
discussed below. We then remove the vertex and re-triangulate the resulting hole. This is achieved
using a recursive triangulation approach, which heuristically balances the edge valency. Given
the boundary loop, we first connect vertices with the fewest incident edges. This produces two
resulting holes that we then fill recursively using the same approach. When a hole contains only
three boundary vertices, they are connected to make a face. We note that while this triangulation
scheme balances vertex valency, it may degrade mesh quality. We solve this by running the geometry
preserving smoothing algorithm on the local region.
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We employ two criteria for selecting which vertices to remove. These criteria can be used
in isolation or together. First, to selectively decimate vertices in low or high curvature regions,
information from the LST can be used. Comparing the magnitudes of the eigenvalues of the LST
provides information about the local geometry near a vertex. For example, to decimate vertices in
flat regions of the mesh, given eigenvalues λ1 ≥ λ2 ≥ λ3, vertices can be selected by checking if the
local region satisfies,

λ2

λ1
< R1, (6)

where R1 is a user specified flatness threshold (smaller is flatter). In a similar fashion, vertices in
curved regions can also be selected. However, decimation of curved regions is typically avoided due
to the potential for losing geometric information.

Instead, to simplify dense areas of the mesh, we employ an edge length based selection criterion,

maxN1
i=1d(x,vi)

D
< R2, (7)

where N1 is the number of vertices in the 1-ring neighborhood of vertex x, d(·, ·) is the distance
between vertices x and vi, D is the mean edge length of the mesh, and R2 is a user specified threshold.
This criterion allows us to control the sparseness of the mesh. We note that the aforementioned
criteria are what is currently implemented in GAMer 2, however the vertex removal decimation
scheme can be employed with any other selection criteria.

Boundary marking and tetrahedralization

To support the definition of boundary conditions on the mesh, it is conventional to assign boundary
marks or identifiers which correspond to different boundary definitions in the physical simulation.
In simplified and idealized geometries it is possible to define functions to assign boundary values.
However, in subcellular scenes where the geometry may be tortuous, local receptor clusters can
be arbitrarily distributed on the manifold, and the resolution may be insufficient to resolve these
features, boundary definition is a non-trivial challenge. In many scenarios, the most biologically
accurate boundary definition may be based off of a biologist’s understanding of the specimen which
transcends the particular datset. For example, a particular image may not be able to resolve how
receptors are distributed but knowledge of relevant immunogold labeling studies may allow the
biologist to propose a physiologically meaningful receptor distribution. The BlendGAMer add-on
supports the facile user-based definition of boundary markers on the surface [61]. Users can utilize
any of the face selection methods (e.g., circle selection demonstrated in Fig. 5) which Blender

provides to select boundaries to mark. Boolean operations and other geometric strategies provided
natively in Blender can also be used for selection. Boundary markers are associated with a unique
material property which helps visually delineate marked assignments. After boundaries are marked,
stacks of surface meshes corresponding to different domains can be grouped and passed from GAMer

2 into TetGen for tetrahedralization [83].

Results

As a demonstration, we apply GAMer 2 to build simulations from electron micrographs and seg-
mentations from Wu et al. [7] which were graciously shared by De Camilli and coworkers. In their
work, Wu et al. imaged dendritic spines from neurons taken from the mouse cerebral cortex or
nucleus accumbens using Focused-ion Beam Milling Scanning Electron Microscopy (FIB-SEM) [7].
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Fig 5. Marking boundaries using BlendGAMer. A) The Postsynaptic Density (PSD) is anno-
tated as a contour in the segmentation and represented as a patch (purple) neighboring the plasma
membrane (yellow). B) Screenshot of boundary marking using BlendGAMer v2.0.5 in Blender 2.80.
The circle select tool is used to select faces of the plasma membrane mesh in proximity to the
Postsynaptic Density (PSD) patches. A user interface allows the user to name boundaries, assign
and unassign face membership, along with setting the marker value.

In addition to their important role in synaptic and structural plasticity, these cellular structures
demonstrate highly tortuous morphologies, high surface-to-volume ratios, and a geometric intricacy
that serves as a good test-bed for our approach. Here we consider several scenes of increasing length
scale: the ER of the single spine geometry which requires nanometer precision and the Plasma
Membrane (PM) of the single spine which has a length scale of a couple of microns (Fig. 6A),
the two spine geometry, a few microns (Fig. 6B), and the dendrite with about 40 spines, with a
length scale in the tens of microns (Fig. 6C). For each of these geometries, using the segmentations
produced by Wu et al., we generated preliminary meshes using the imod2obj utility included with
IMOD [34]. The output initial meshes have units of pixels and were scaled to µm using an 8 nm
isotropic voxel size. Each initial mesh was then processed using algorithms described in §Mesh
Processing and implemented in GAMer 2 [58]. We note that for some meshes, features such as
disconnections of the ER, were manually reconnected using Blender mesh sculpting features. We
will provide a candid discussion of the manual curation steps in the following paragraphs discussing
each scene. Boundaries were marked using BlendGAMer, although PyGAMer and GAMer 2 can be
scripted to assign boundary labels as well, and the conditioned surface meshes were tetrahedralized
using TetGen [83].
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Fig 6. Quantification of mesh quality pre- and post-GAMer 2 processing for several
geometries. Data at varying spatial scales can be processed via the GAMer 2 framework. Surface
meshes of dendritic spine geometries before (left) are compared with their mesh after GAMer 2

processing (middle). The shift in distribution of angles highlights the improvement in mesh quality
(right). A) Surface meshes of a single dendritic spine; the PM is colored cyan and the ER yellow.
Inlay: close-up of the spine apparatus. The standard deviation of the distribution of triangular
angles before is 35.9 and after 9.1. B) Surface mesh of PM of two dendritic spines. Faces marked as
purple are the PSD. Inlay: close-up of a region with a large variance in angle distribution before
GAMer 2 processing. The standard deviation of the distribution of triangular angles before is 41.1
and after 11.1. C) Surface mesh of PM of a dendrite segment with many spines. Inlay: GAMer 2

preserves the intricate details of a highly curved spine head with multiple regions of PSD. The
standard deviation of the distribution of triangular angles before is 41.9 and after 11.1.

The one spine geometry contains two separate membranes: the PM and the ER Fig. 6A – each
with their own problems. The PM contained several large holes on the surface which correspond
to the top and bottom of the image stack. As the dendrite meanders throughout the tissue block,
the cutting planes of the experiment or sample block may result in the artificial truncation of the
image. We have remedied this truncation by triangulating the holes and processing using GAMer 2

algorithms.
The ER mesh contained many more initial artifacts. This is because the detailed and variable

nature of the ER membrane can be poorly resolved by the imaging method. Nixon-Abel and
coworkers found using superresolution fluorescence microscopy that ER tubules have a diameter of
50 to 100 nm and sheet-like structures at the cellular periphery can be much finer [84]. Some ER
morphology cannot even be resolved by the powers of EM [7]. For example, if the ER undergoes
large spatial variation between z-slices then tubules may appear disconnected. Alternatively, the
boundaries of the ER membrane may have poor contrast and can sometimes be missed during
segmentation. We have manually reconnected the ER segments manually in Blender under the
guidance of the underlying EM micrographs. An animated comparison of the initial mesh with
the stack of images is shown in Movie S2. This type of topological artifact arising from errors in
segmentation or poor imaging resolution remains a major challenge to the field. In this work, to
produce a model faithful to the biological context, we have employed human judgement to detect
and rectify similar problems. As imaging technology and machine recognition algorithms improve,
we anticipate that the need for manual curation will be reduced. The decision to manually curate,
or not, is at the discretion of the end-user. BlendGAMer provides only the option for the tight
integration of sculpting and automated mesh processing.

After curation and processing with GAMer 2, the geometric detail of the one spine scene is
preserved. An animated comparison of the meshes output by GAMer 2 is shown in Movie S3.
Notably, this spine contains a specialized form of ER termed the spine apparatus, Fig. 6A, inset,
which consists of seven folded cisternae. This highly organized structure bears geometrical similarities
to a parking garage structure and helicoidal geometries [85–88]. The geometric detail of the spine
apparatus is preserved by the conditioning process in our pipeline.

In Fig. 6, we also show the distribution of the triangular angles of the surface mesh before and
after conditioning. One metric of a well-conditioned mesh is that all the surface triangles are nearly
equilateral [68]. Prior to conditioning, the angle distribution is spread out and contains many large
and small angles. After processing using GAMer, the angles of triangles of the one spine PM mesh are
improved, as indicated by the peaked distribution around 60 degrees. Although the ER structure is
significantly more complex, the angles of triangles of the mesh are also improved, albeit to a lesser
extent than the PM. In scenarios such as this where the length scales of interest are closer to the

13



acquisition resolution, it may be necessary to increase the number of triangles to accurately capture
the fine details with high mesh quality. Table 1 summarizes the number of vertices and triangles
in the initial vs conditioned meshes as well as vertices and tetrahedra in the resultant volumetric
meshes. To accurately capture the curvature of the PM mesh in Fig. 6A about 48% more triangles
were needed compared to the ER mesh in Fig. 6A, inset, which required 270% more triangles, both
relative to the initial mesh.

The approach described here is also applicable for larger systems as we demonstrate with two
spines and a full dendrite. The two spine geometry shown in Fig. 6B is a few microns in length.
Based on the length scales we would expect a well conditioned mesh for this geometry to contain
approximately double the number of triangles in the single spine mesh; however, the orientation of
z-stacks in this mesh is different from that in the single spine geometry which led to an abnormally
large number of triangles: 320,976 versus just 9,330 in the mesh of PM in the single spine. After
GAMer 2 conditioning algorithms were applied, the number of triangles was reduced to 36,050, a
much more reasonable count. As demonstrated, our pipeline is robust and can handle cases where
the initial mesh either generates too few or too many triangles as required for capturing geometric
details. The ER of the two spine geometry was processed in a similar manner to that of the one
spine.

At the tens of microns length scale, we constructed a mesh of a full dendritic segment. We show
a zoomed in section of the mesh before and after conditioning in Fig. 6C. As in the one and two
spine cases, our system robustly handles artifacts such as poor quality triangles and intersecting
faces; Fig. 6C shows that the distribution of the angles post conditioning are comparable to the one
and two spine examples, showing that size does not alter the capability to produce well-conditioned
meshes. Fig. 6C shows an intricate spine head with many different regions of PSD shown in purple;
this geometry is preserved post-conditioning and the PSD is marked with BlendGAMer to denote a
boundary condition.

For all meshes the initial surface area is greater than that of the final result (Table 1. This is
due to the jagged nature of the initial meshes which reflects small deviations in the alignment and
registration of the micrographs and segmentation. As the surfaces are smoothed, the surface area is
therefore reduced. On the other hand, the initial and final volumes of each geometry remain similar.
This is a good indication of the feature-preserving nature of the algorithms.

In Fig. 7 we compare the meshes generated by GAMer 2 with other softwares including TetWild

[40], CGAL 3D Mesh Generation (referred to as CGAL in the subsequent text) [44–46], Hu et al.
Remesh [89], and VolRoverN [37]. For this analysis, we performed a best faith effort to use these
tools using recommended default settings where possible. We do not make any claims of software
supremacy and instead highlight feature differences between the codes. Shown in Fig. 7A are the
distribution of triangular angles for the final surface mesh. We find that GAMer 2 produces a mesh
with more equilateral triangles than other tools.

The radius-ratio is a useful metric for determining the quality of both triangles and tetrahedra, it is
defined as nri

ro
where n is the geometric dimension (i.e. 2 for triangles, 3 for tetrahedra), ri is the radius

of the largest n-sphere which can be inscribed within the shape, and ro is the radius of the smallest
n-sphere which circumscribes the shape. An equilateral triangle and an equilateral tetrahedron both
correspond to a radius-ratio of one [90]. As the radius-ratio approaches zero the element approaches
degeneracy which can affect numerical accuracy, stability, and convergence [66,67].

Fig. 7B compares different codes and their resultant distributions of radius-ratios when applied
to the single spine PM surface mesh. One important difference is that TetWild, CGAL, and Hu et al.
Remesh are fully automated algorithms which employ constraints to guarantee preservation of input
features. We note that all methods tested here, except TetWild, require a watertight and manifold
surface mesh as input. For the sake of this comparison, the same manually curated watertight and
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manifold meshes were used as input for all methods. Noisy features such as the jagged boundaries
resulting from misaligned micrographs or segmentation are often preserved in the surface meshes
generated by these codes. As a result, the triangular angles often deviate from equilateral in order
to represent these preserved fine features. GAMer 2 on the other hand does not strictly preserve
the fine features of the input mesh. The LST is a metric of the local curvature averaged over a
mesh patch. Thus, GAMer 2 generated meshes are smoother but deviate, from the input, more
than those generated by TetWild, CGAL, and Hu et al. Remesh. VolRoverN, on the other hand,
implements the Level Set Boundary-Interior-Exterior (LBIE) algorithm which employs a geometric
flow. The LBIE algorithm is known to work well for spherical geometries and was designed for
smoothing biomolecular meshes constructed as the union of hard spheres [37, 91, 92]. Given the
complex geometry of the dendritic spine, VolRoverN does not preserve the geometry well.

The tetrahedral mesh qualities of meshes produced by each code are compared in Fig. 7C and D.
Notably, no volume meshes are shown for Hu et al. Remesh and VolRoverN since Hu et al. is a
surface remeshing code only and VolRoverN failed to produce a valid volume mesh when called from
the software’s graphical user interface. The other codes TetWild, CGAL, and GAMer 2 all produced
quality tetrahedral meshes as output. The distribution of tetrahedral radius-ratios are shown in
Fig. 7D. We find that CGAL under-performs in comparison to the other two codes. This observation
may be due, in part, to our usage of CGAL. The 3D mesh generation subproject of CGAL is provided
as a library along with several example C++ scripts. For this comparison, we have applied the
bundled script to our mesh of interest with minimal modification. We note that the default settings
in the script may not be ideal for our application. It is possible that by setting stricter mesh quality
targets for optimization, CGAL could perform better.

GAMer 2 Operations Preserve Mesh Topology

As aforementioned, where we deemed appropriate, manual curation was used to modify the topology
of the input meshes. In order to differentiate between the manual modifications and to verify whether
GAMer 2 operations change the topology of the mesh we have computed Betti numbers at several
mesh processing stages. Betti numbers are topological invariants and thus can be used to distinguish
between topological spaces. The kth Betti number βk describes the number of k-dimensional holes
on a surface. Intuitively β0 is the number of connected components, β1 is the number of circular
holes, and β2 is the number of enclosed voids.

The computation of Betti numbers is performed using a modified algorithm by Definado-
Edelsbrunner [93]. In their original work, they describe an algorithm to compute the Betti numbers
of tetrahedral meshes by iterating over a filtration. Since GAMer 2 is primarily a surface mesh
conditioning library, there are no tetrahedra and therefore the Delfinado-Edelsbrunner algorithm is
not applicable. The challenge lies in the determination of when the addition of a triangular face
(i.e., 2-simplex) to a filtration forms an enclosed volume. In the original algorithm, the tetrahedral
simplices are colored such that all adjacent tetrahedra not separated by a closed boundary will be
the same color. The addition of a triangular face in a filtration will produce a void if and only if it
completes a boundary such that the interior and exterior tetrahedra can be colored differently. While
algorithms such as flood-filling or ray-casting and counting surface crossings have been described,
these approaches are often computationally cumbersome especially when applied to meshes with
reentrant surfaces.

We simplify the problem at hand by restricting our calculation to apply for only the set of
topologically manifold surface meshes. If a mesh is both orientable (i.e., a consistent normal
orientation can be assigned for all faces such that no neighboring faces have opposing normals) and
all edges belong to two faces, we say that the mesh is a closed manifold. After iterating through a
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Fig 7. Comparison of GAMer 2 generated meshes with leading mesh generation soft-
wares. A) Distribution of triangular angles of the final Plasma Membrane (PM) and Endoplasmic
Reticulum (ER) surface meshes. B) Quantification of the surface mesh triangle radius-ratios. The
order of meshes is identical to the software ordering in panel A. C) Quantification of tetrahedron
radius-ratios of the tetrahedral mesh output by each software∗. We note that the tetrahedral mesh
produced by GAMer 2 is generated using TetGen from a GAMer 2 conditioned surface mesh. D)
Distribution of tetrahedron radius-ratios of the resulting tetrahedral meshes.
∗In our best faith effort, we were not able to tetrahedralize the PM and ER mesh using VolRoverN.
The tetrahedral meshes for GAMer 2 and TetWild include the ER; CGAL contains only the PM–we
were not able to tetrahedralize both the PM and ER together.

filtration in the manner described by Delfinado-Edelsbrunner, if we find that a mesh is a closed
manifold we increment the first and second Betti numbers (β1, β2) by one.

Betti numbers of the meshes at several processing stages, produced by the modified Delfinado-
Edelsbrunner algorithm, are computed and shown in Table 2. As aforementioned, the initial meshes
produced by imod2obj often contain disjoint surfaces or holes. Comparing against the underlying
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micrographs and data, we have curated each mesh to produce a watertight model. At this point we
apply GAMer 2 meshing operations to produce a conditioned mesh. We find that the topology of
the watertight meshes are identical to that of their corresponding conditioned mesh.

Table 2. Computed Betti numbers for each mesh.

Geometry Component β0 β1 β2

Single Spine

Initial PM† 1 4 0

Watertight PM∗ 1 0 1

Conditioned PM 1 0 1

Initial ER† 6 18 6

Watertight ER∗ 1 18 1

Conditioned ER 1 18 1

Two Spines

Initial PM† 1 0 1

Watertight PM∗ 1 0 1

Conditioned PM 1 0 1

Initial ER† 3 110 3

Watertight ER∗ 1 110 1

Conditioned ER 1 110 1

Dendritic Segment

Initial PM† 45 62 0

Watertight PM∗ 1 0 1

Conditioned PM 1 0 1

† Betti number computation in GAMer 2 only supports manifold surface meshes. Initial meshes have been

curated in a best faith effort to preserve the initial topology (i.e., edges connected to three or more faces are

cleaned up while holes and disconnected components are untouched)
∗ These meshes have been edited to be watertight. Furthermore disconnected components which are artifacts

of earlier workflow stpes have been reconnected.

Estimating Membrane Curvatures in Realistic Geometries

In addition to the generation of simulation compatible meshes of realistic cell geometries, the meshes
from GAMer 2 are amenable to other geometric analysis. The conditioned meshes can yield improved
results for many geometric quantities of interest such as surface area and volume along with other
more complex observables such as surface curvature. Membrane curvatures and minimal surfaces
have long been of interest to biophysicists and mathematicians alike.

One of the advantages of using electron micrographs of membrane structures in cells is that we
can now bridge the gap between membrane mechanics, curvature studies, and realistic geometries.
Current studies of membrane mechanics often assume that the initial membrane configuration is
flat or spherical. However membranes are rarely so well behaved and to the best of our knowledge,
currently no estimates of the curvatures of the plasma membrane or internal membranes exist.

Using the conditioned surface meshes, the curvature can be estimated using methods from discrete
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differential geometry. In GAMer 2, we have implemented the algorithms to compute curvatures
as described by Cazals and Pouget (JETS) [94,95] and Meyer et al. (MDSB) [96]. We note that
the curvature values produced by GAMer 2 are estimates suitable for qualitative comparison and
visualization only. The JETS algorithm fits an osculating jet to a local patch using interpolation or
approximation. From this fitted jet, the curvature is calculated. Depending on the fineness of the
mesh, the jet order, and the details of patch selection, the error in the curvature may vary. On the
other hand, Borelli et al. has previously showed that the estimation of the Gaussian curvature using
the angle defect, which is used by the MDSB algorithm, is valid only for regular meshes with a
vertex valency of 6 [97]. The robust calculation of curvature estimates from discrete meshes remains
an open problem and the accuracy of many approaches are surveyed by Váša et al. in Ref. 98.

Here, we use the meshes produced by GAMer 2 to calculate the curvature of the geometries using
the MDSB algorithm. The principal curvatures κ1 and κ2 are shown in Figs. 8 and 9, respectively.
We note that we have adopted the sign convention where a negative curvature corresponds to a
convex region. A comparison of the MDSB estimate and JETS is shown in Fig. S1. We find that
both algorithms produce qualitatively similar results.

Looking at the first principal curvature, Fig. 8, corresponding to the maximum curvature of the
local region, we find that the distribution of κ1 spans both positive and negative values, centered
around zero for both the PM and ER. The negative regions of κ1 are in regions where the membrane
is convex and the positive regions are in regions where the membranes are concave.

The second principal curvature, which corresponds to the minimum curvature of the local region,
shows a different behavior (Fig. 9). We first observe that for all geometries, this value is primarily
negative. The regions of high bending such as the folds of the spine apparatus in the spine head
(Fig. 9A, B, left panels) are highly curved and are connected by sheets with low curvature. The
curvature along the entire dendrite highlights that the structure is mostly characterized by low
curvature throughout with regions of concentrated high curvature (Fig. 9C). The positive regions of
κ2 are in regions where the membrane is convex and the negative regions are in regions where the
membranes are concave. Thus using the meshes generated from GAMer 2, we are able to quantify
the curvatures along the plasma membrane and the internal organelle membranes using tools from
discrete differential geometry. In addition to estimating the curvatures, we can use the mesh models
to interrogate the impacts of curvature on signaling.

Simulations of a Coupled Volume and Surface Diffusion Model

To showcase how simulations performed on meshes of realistic biological geometries can elucidate
structure-function relationships, we reproduce the results of Ref. 99 on a dendritic spine. The one
spine geometry was used as the spatial domain for a numerical simulation using the finite element
method. Consider the reaction,

A + X
kon−−⇀↽−−
koff

B,

where A is a cytosolic component which binds to X, a membrane bound component, to produce
B, another membrane bound component. The governing equations consist of a volumetric Partial
Differential Equation (PDE),

∂A

∂t
= DA∆A in Ω, (8)
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Fig 8. Estimated first principal curvatures of the spine geometries. The signed first
principal curvature, corresponding to the maximum curvature at each mesh point, is estimated using
GAMer 2. Color bars correspond to curvature values with units of µm−1. We have adopted the sign
convention where negative curvature values refer to convex regions. Geometries are A) single spine
model, left: plasma membrane, right: endoplasmic reticulum; B) two spine model, left: plasma
membrane, right: endoplasmic reticulum; and C) plasma membrane of the dendritic branch model.
Scale bars: full geometries 2µm, inlays: 200 nm. Curvature schematic modified from Wikipedia,
credited to Eric Gaba (CC BY-SA 3.0).
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Fig 9. Estimated second principal curvatures of the spine geometries. The signed second
principal curvature, corresponding to the minimum curvature at each mesh point, is estimated using
GAMer 2. Color bars correspond to curvature values with units of µm−1. We have adopted the sign
convention where negative curvature values refer to convex regions. Geometries are A) single spine
model, left: plasma membrane, right: endoplasmic reticulum; B) two spine model, left: plasma
membrane, right: endoplasmic reticulum; and C) plasma membrane of the dendritic branch model.
Scale bars: full geometries 2µm, inlays: 200 nm. Curvature schematic modified from Wikipedia,
credited to Eric Gaba (CC BY-SA 3.0).
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two surface PDEs,

∂X

∂t
= DX∆SX− konA|∂ΩX + koffB on ∂Ω (9)

∂B

∂t
= DB∆SB + konA|∂ΩX− koffB on ∂Ω, (10)

and a boundary condition for A which couples all three species at the interface:

DA(n · ∇A) = −konAX + koffB on ∂Ω. (11)

DA, DX, andDB are the diffusion coefficients for A, X, and B respectively. n is the outwardly-oriented
unit normal vector, ∆ is the standard Laplacian operator, ∆S is the Laplace-Beltrami operator, Ω
is the volumetric (cytosolic) domain, and ∂Ω is the surface (plasma membrane) domain (illustrated
in Fig. 10A). The parameters used in this system are as follows: kon = 1 µM−1 s−1, koff = 0.1 s−1,
DA = 0.1 . . . 300 µm2 s−1, DX = 0.1 µm2 s−1, and DB = 0.01 µm2 s−1. The initial conditions were
set to A(t = 0) = 1.0 µM, X(t = 0) = 1000 molecules µm−2, and B(t = 0) = 0 molecules µm−2. The
initial concentration of X was set to a large value such that it would not be a rate-limiting factor.

Multiplying each PDE by a test function, integrating over their respective domains, and applying
the divergence theorem results in the variational or weak form of the problem. After discretizing
the time derivatives using the backward Euler method with time-step size δt, and decoupling the
volumetric and surface PDEs using a first-order operator splitting scheme the system becomes:

∫
Ω

A(n+1) −A(n)

δt
vA +DA∇A(n+1) · ∇vA dΩ +

∫
∂Ω
konA(n+1)X̃vA − koffB̃vA dΓ = 0, (12)∫

∂Ω

X(n+1) −X(n)

δt
vX +DX∇SX(n+1) · ∇SvX + konÃX(n+1)vX − koffB

(n+1)vX dΓ = 0, (13)∫
∂Ω

B(n+1) − B(n)

δt
vB +DB∇SB(n+1) · ∇SvB − konÃX(n+1)vB + koffB

(n+1)vB dΓ = 0. (14)

Here, Ã, X̃, and B̃ represent the most recent estimates of A(n+1), X(n+1), and B(n+1). At each
time-step Eq. (12) is solved to estimate A(n+1), this estimate is then used in Eqs. (13) and (14) to
obtain an estimate for X(n+1) and B(n+1) which are used again in Eq. (12) to further improve the
estimate of A(n+1). This cycle continues until a satisfactory convergence criterion is met.

Note that Eqs. (9) and (10) are PDEs that govern phenomena occurring entirely on the surface
∂Ω, with the Laplace-Beltrami operator ∆S appearing as the principle spatial differential operator
acting on functions that live on the surface ∂Ω. The metric γij of the surface ∂Ω encodes the
geometry of the surface, and appears as a spatially varying function in the Laplace-Beltrami operator,
as well as in the area element of integrals over ∂Ω. This class of PDEs with spatial domains being
represented by two-dimensional surfaces, or more generally Riemannian n-manifolds, are known as
geometric PDEs, and arise in a number of areas of pure mathematics and mathematical physics,
as well as in applications in science and engineering. Unfortunately, two distinct challenges arise
in developing numerical methods for geometric PDEs with the necessary convergence properties
to allow for drawing scientific conclusions from simulations. The first is the necessity of treating
the continuous curved spatial manifold only approximately, using some type of computable discrete
proxy (such as an interpolatory triangulation of a smooth two-surface), and then accounting for the
impact of this domain approximation on the overall error in a numerical simulation. The second
difficulty is the need to approximate the metric of the smooth surface that appears in the definition
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of the Laplace-Beltrami operator itself, using some type of computable approximation (such as a
polynomial), and again accounting for the impact of this second distinct approximation on the
overall error in the numerical simulation of phenomena on the surface.

Surface finite element methods have emerged [100–103] over the last few years as an approach to
developing finite element methods for this class of problems that have well-understood convergence
properties, and are both efficient and reliable. The method is formulated on a “flat” triangulated
approximation of the curved domain surface, and the error produced by this approximation is
then controlled using a “variational crimes” framework known as the Strang Lemmas. Our recent
work in this area leverages the Finite Element Exterior Calculus framework [104] to provide a
more general error analysis framework for surface finite element methods on n-surfaces, for static
linear and nonlinear problems [105, 106], as well as for evolution problems on surfaces [107, 108].
Surface finite element methods for geometric PDE have the advantage of allowing for the use of
standard finite element software originally developed for standard (non-geometric) PDE problems
in two-dimensional “flat” domains or three-dimensional volumes, after a fairly simple modification
to the reference element maps commonly used by such software packages. Our approach here is to
make use of the standard finite element software package FEniCS [109], and to use surface finite
element modifications to FEniCS (described e.g. in [14]) for solving our geometric PDE Eqs. (9)
and (10) above.

To demonstrate the role of membrane shape in coupled reaction-diffusion simulations of membrane
and volume components, we simulated the reaction of a volume component A reacting with membrane
bound species X to form membrane bound species B. The volumetric domain, Ω, and the boundary
domain, ∂Ω, are labeled in Fig. 10A. Shown in Fig. 10B and C, are the concentrations of species A
and B in the volume and on the surface respectively. We found that the shape of the dendrite has
a significant effect on the formation of B on the surface and on the depletion of A in the volume.
In regions of high curvature, such as the small protrusions in the head, we found that the density
of B is lower because of local depletion of A. This effect can be seen very clearly along the spine
neck, where the surface area to volume ratio is high and the resulting density of B is lower than
in the dendrite. To investigate if the diffusion coefficient of A affects these results, we varied the
diffusion of A and analyzed its effects on the surface distribution of B. As expected, we found that
as the diffusion coefficient of A is increased, the effects of local depletion are weakened (Fig. 10D).
Fig. 10E shows the maximum and minimum concentrations of B plotted with respect to time. We
find that there is a large initial difference in rates of B formation, as indicated by the large gap
between the maximum and minimum concentrations, subsequently this gap narrows as A is slowly
depleted from the volume. Thus, we show that the meshes generated from GAMer 2 can be used for
systems biology with coupled surface-volume interactions in realistic geometries.

Mesh convergence analysis

Next, we illustrate the effects of GAMer 2 mesh conditioning on FEA results for the model described
above. We investigate the performance improvement as a function of rounds of conditioning. A
common error metric used in FEA is the L2 norm of the difference between a solution computed
on a coarser mesh (u′) and a solution computed on a very fine mesh, which is taken to be the
ground-truth (u), i.e.,

εL2 =

(∫
Ω

(u′ − u)2 dΩ

) 1
2

. (15)

This is a standard procedure that can be used to measure h-refinement convergence rates;
however between iterations of GAMer 2 algorithms the boundaries of the mesh are perturbed slightly.
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Fig 10. Simulations of coupled surface volume diffusion A) Illustration of the domains for
the volume and surface PDEs. B) and C) The concentrations of species A and B, respectively, at
t = 1.0 s when DA is set to 10 µm2/s. D) Difference between maximum and minimum values of B at
t = 1.0 s; the point DA = 10 µm2/s corresponding to panels B) and C) is marked. E) the minimum,
mean, and maximum of B over time when DA = 10 µm2/s; a vertical bar is drawn at t = 1.0s. Scale
bar: 500nm.

Attempting to use εL2 as an error metric is problematic as its integrand is undefined in regions
where Ω′, the domain of u′, and Ω do not intersect.

Therefore, to illustrate the convergence of solutions as the mesh quality is improved using GAMer

2, we used an error metric based on the relative difference in total molecules,

εrel =

∣∣∣∣
∫

Ω′ u
′ dΩ′ −

∫
Ω u dΩ∫

Ω u dΩ

∣∣∣∣ . (16)

Fig. 11 (D-G) shows tetrahedral meshes generated at intermediary steps during the GAMer 2

refinement process. For each mesh, a given number of surface mesh smoothing iterations was
performed; any remaining artifacts that would prevent tetrahedralization such as intersecting
faces were removed and the resultant holes were re-triangulated. The surface meshes were all
tetrahedralized using TetGen with the same parameters. As the surface mesh Fig. 11 A and B
show how as the distribution of surface mesh angles improves, the distribution of radius-ratios
in the corresponding tetrahedral mesh improves. The system Eqs. (8) to (11) was solved on the
aforementioned tetrahedral meshes for a single time-step and the relative error for B was computed
using Eq. (16). The simulation on the most refined mesh (Fig. 11G) was assumed to be the
ground-truth. Fig. 11C shows that the relative error consistently decreased as a result of further
mesh conditioning in GAMer 2. This analysis highlights not only the importance of using a high
quality mesh in FEA but also that GAMer 2 can generate such high quality meshes.
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Fig 11. GAMer 2 mesh conditioning reduces error in the simulated result. A) Distribution
of angles on the surface mesh after 0, 5, 10, 30 smoothing operations. B) Distribution of tetrahedral
radius-ratios*. The tetrahedron radius-ratio is defined as 3ri

ro
where ri is the radius of the inscribed

sphere and ro is the radius of the circumsphere (a value of 1 corresponds to an equilateral tetrahedron).
C) Relative error (Eq. (16)) of B when solving Eqs. (8) to (10) for a single time step. (D-G)
Tetrahedral radius-ratios after 0, 5, 10, 30 smoothing iterations. Generally, for simulation using the
finite element method, most radius-ratios should be greater than 1

3 [90].
∗Artifacts which prevented tetrahedralization, e.g. intersecting faces, were removed and the holes
were remeshed at each step.

Simulation of reaction-diffusion equations on a dendrite

Using the mesh of the dendritic segment we simulated N -methyl-D-aspartate Receptor (NMDAR)
activation due to a Back Propagating Action Potential (BPAP) and Excitatory Postsynaptic
Potential (EPSP) along the entire dendrite shown in Fig. 12 and Movie S4. Because the goal of
this simulation was not to show biological accuracy, but rather to demonstrate that our approach

25



is capable of producing biophysically relevant FEA simulations, we use a simplified version of the
model found in Bell et al. [110].

Fig 12. Time series of calcium dynamics from N -methyl-D-aspartate Receptor (NM-
DAR) opening in response to a prescribed membrane voltage trace in a full dendritic
segment. Boundaries demarcating the Plasma Membrane (PM) and Postsynaptic Density (PSD)
are shown in blue and orange respectively (top). Snapshots of calcium ion concentration throughout
the domain are also shown for several time points. We apply a voltage corresponding to a back
propagating action potential and excitatory postsynaptic potential. NMDAR localized at the PSD
membrane, open in response to the voltage and calcium flows into the cell. Over time, the NMDAR
close, and calcium is scavenged by calcium buffers.

We model a BPAP and EPSP which stimulates NMDAR opening and calcium ion influx into the
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cell. The reaction-diffusion of u, corresponding to calcium ion concentration, is described as follows,

∂u

∂t
= D∆u− u

τ
in Ω, (17)

where D is the diffusion coefficient of u, ∆ is the Laplacian operator, τ is a characteristic decay
time, and Ω is the volumetric domain. We define boundary conditions corresponding to the ionic
flux through NMDARs, JNMDAR, lining the post synaptic density, ∂Ωpsd,

D(n · ∇u) = JNMDAR(t) on ∂Ωpsd, (18)

where n is the outwardly-oriented unit normal vector, and JNMDAR is of the form,

JNMDAR = GNMDAR(t)B(V )(V (t)− Vrest)α. (19)

GNMDAR(t) is a variable conductance which accounts for deactivation of the receptor, B(V ) is a
term which accounts for Mg2+ inhibition, the voltage difference V (t)−Vrest is prescribed to emulate
a BPAP and EPSP, and α is a scaling term which groups factors such as probability of opening,
receptor area density at the PSD, etc.

On the remainder of the plasma membrane which we denote as ∂Ωpm, we enforce the no-flux
boundary condition,

D(n · ∇u) = 0 on ∂Ωpm. (20)

At time t = 0, we set the initial concentration of calcium ions to naught throughout the volume of
the dendrite,

u(x, t = 0) = 0 in Ω̄. (21)

Where Ω̄ is the union of the volumetric and boundary domains,

Ω̄ ≡ Ω ∪ ∂Ω. (22)

The surface of the geometry is composed of only post synaptic density and plasma membrane,

∂Ω ≡ ∂Ωpsd ∪ ∂Ωpm. (23)

Finite element simulations of this model were solved using FEniCS [109].
In this simplified model, we assume that the back propagating potential stimulates the entirety

of the dendritic branch simultaneously, leading to the opening of NMDARs localized to the PSD
and an influx of calcium ions. Several representative snapshots of Ca2+ concentration over time,
across the geometry, are shown in Fig. 12. The Ca2+ transient can be probed by monitoring the
concentration at specific locations, shown in Fig. 13. As expected, we first observe that the calcium
dynamics are spine size, spine shape and PSD-dependent. Probes 1 and 2 in Fig. 13 are in different
spine heads and report differing Ca2+ transients. Furthermore, we observe that the narrow spine
necks act as a diffusion barrier to calcium, preventing diffusing calcium ions from entering the
dendritic shaft as illustrated by probe 3 in Fig. 13. This behavior of the spine neck as a diffusion
barrier is consistent with other observations in the literature [111–114].

This example demonstrates that the meshes produced by GAMer 2 through the workflow are
directly compatible with finite element simulations and will allow for the generation of biophysically
relevant hypotheses.
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Fig 13. Representative traces of Ca2+ concentration over time at three positions. Spine
and PSD morphology affect the calcium ion dynamics. For traces 1 and 2, variations in the PSD
area and spine head volume lead to different peak calcium ion concentrations. At point 3, the
calcium ion concentration values are diminished due to both calcium buffering in the cytosol and
the spine neck behaving as a diffusion barrier.

Discussion

The relationship between cellular shape and function is being uncovered as systems, structural biology,
and physical simulations converge. Beyond traditional compartmentalization, plasma membrane
curvature and cellular ultrastructure have been shown to affect the diffusion and localization of
molecular species in cells [99, 115]. For example, fluorescence experiments have shown that the
dendritic spine necks act as a diffusion barrier to calcium ions, preventing ions from entering the
dendritic shaft [111]. Complementary to this and other experiments, various physical models solving
reaction-diffusion equations in idealized geometries have been developed to further interrogate the
structure-function relationships [51,99,110,116–118].

An important next step will be to expand the spatial realism of these models to incorporate
realistic geometries as informed by volume imaging modalities. Our tool GAMer 2 serves as an
important step towards filling the need for community driven tools to generate meshes from realistic
biological scenes. We have demonstrated the utility of the mesh conditioning algorithms implemented
in GAMer 2 for a variety of systems across several length scales and upwards of hundreds of thousands
of triangles. The volume meshes that result from our tools are of high quality (Fig. 7) and we show
that they can be used for estimating membrane curvatures (Figs. 8 and 9) and in finite element
simulations of reaction-diffusion systems (Figs. 10, 12 and 13).

Bundled with GAMer 2 we include the BlendGAMer add-on which exposes our mesh conditioning
algorithms to the Blender environment. Blender acts as a user interface that provides visual
feedback on the effects of GAMer 2 mesh conditioning operations. Blender also enables the painting
of boundaries using its many mesh selection tools. Beyond the algorithms in GAMer 2, Blender also
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provides an environment for manual curation of mesh artifacts.
Current meshing methods are limited by the need for human biological insight. Experimental

setups for volume electron microscopy are arduous and often messy. Microscopists take great care
to optimize the experimental conditions, however small variations can lead to sample contamination,
tears, precipitation of stain, or other problems. Many of these issues will manifest as artifacts on
the micrographs, which makes it challenging to evaluate the ground truth. Automated segmentation
algorithms using computer vision and machine learning approaches can fail as a result of these
artifacts, and biologists will default to the time-tested, reliable but error-prone mode of manually
tracing boundaries.

This is a unique opportunity for biological mesh generation to differentiate from other meshing
tools employed in other engineering disciplines. To account for the challenges inherent to biology and
wet experiments along with physical simulations, the realization of an automated mesh generation
pipeline will require the development of specialized algorithms which tightly couple information
across the workflow. As additional annotated datasets become available, machine learning models can
be trained to perform tasks that are currently manually executed, such as reconnecting disconnected
ER tubules.

The approach and tools presented here, coupled with advances in localization of various membrane
proteins [119], brings us closer to the goal of in silico biology within realistic geometries. Towards the
goal of making 3D cell modeling more routine, experimentalists can contribute by sharing segmented
datasets from their work along with biological questions of interest. In exchange, modelers can
generate testable predictions and measurements inaccessible to current experimental methods.
Specifically, we anticipate that models enabled using GAMer 2 will be of significant interest to two
broad communities in computational biology: membrane biophysicists, focused on the analysis
and simulation of membrane shapes, curvature generation, and membrane-protein interactions,
and systems biologists, focused on understanding how cell shape and internal organization can
impact signal transduction and the dynamics of second messenger microdomains. Through this
interdisciplinary exchange, any gaps in our current meshing workflows will be identified and patched.

Conclusion

In this study, we present our mesh generation code GAMer 2 and described several applications
going from contours of electron micrographs as input to generate surface and volume meshes that
are compatible with finite element simulations for reaction-diffusion processes. Using the resulting
meshes, we have demonstrated the spatio-temporal dynamics of calcium influx in multiple spines
along a dendrite. Future efforts will focus on the development of biologically relevant models and
generation of experimentally testable hypotheses.

Supporting information
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Fig. S1 Comparison of Meyer-Desbrun-Schröder-Barr (MDSB) and Cazal-Pouget
(JETS) curvature estimates for the single spine geometry. A) First principal curvature of
the plasma membrane. B) Second principal curvature of the plasma membrane. C) First principal
curvature of the endoplasmic reticulum. D) Second principal curvature of the endoplasmic reticulum.
Shown on the left column are the estimated curvature values. On the right column the difference
(∆ = MDSB− JETS) between estimates is shown. The difference values are truncated at the 1st
and 99th percentiles to improve color range. The distribution and full range of differences are
plotted in the inset. Curvature estimates from both algorithms are qualitatively similar. Differences
in quantitative value are the greatest at high curvature regions.

Movie S2 Animation proofing the initial mesh against the segmented micrographs.
The PM (blue) is rendered as a wireframe. The ER (yellow) is displayed as a solid surface. Purple
patches in the segmentation correspond to regions where the PSD is localized. It is using these
labeled patches that the boundary marking is generated.

Movie S3 Animation proofing the GAMer 2 conditioned mesh against the segmented
micrographs. The PM (blue) is rendered as a wireframe. The ER (yellow) is displayed as a solid
surface. Purple patches in the segmentation correspond to regions where the PSD is localized.

Movie S4 Trajectory of calcium ion signaling in the full dendrite geometry.

Dataset S5 Zip of Blender files for all meshes before and after GAMer 2 processing. All
files were generated using Blender version 2.80.
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