On the Performance of SQP Methods for Nonlinear Optimization

Philip E. Gill, Michael A. Saunders and Elizabeth Wong

Abstract This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find approximate solutions of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the Lagrangian is minimized subject to the linearized constraints. Numerical results are given for 1153 problems from the CUTEst test collection. The results indicate that SQP methods based on maintaining a quasi-Newton approximation to the Hessian of the Lagrangian function are both reliable and efficient for general large-scale optimization problems. In particular, the results show that in some situations, quasi-Newton SQP methods are more efficient than interior methods that utilize the exact Hessian of the Lagrangian. The paper concludes with discussion of an SQP method that employs both approximate and exact Hessian information. In this approach the quadratic programming subproblem is either the conventional subproblem defined in terms of a positive-definite quasi-Newton approximate Hessian, or a convexified subproblem based on the exact Hessian.

Philip E. Gill

Department of Mathematics, UC San Diego, La Jolla, CA 92093-0112, e-mail: pgill@ucsd.edu. Research supported in part by National Science Foundation grants DMS-1318480 and DMS-1361421.

Michael A. Saunders

Systems Optimization Laboratory, Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-4121, e-mail: saunders@stanford.edu, Research supported in part by the National Institute of General Medical Sciences of the National Institutes of Health [award U01GM102098].

Elizabeth Wong

Department of Mathematics, UC San Diego, La Jolla, CA 92093-0112, e-mail: elwong@ucsd.edu. Research supported in part by Northrop Grumman Aerospace Systems.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

1 Introduction

This paper concerns the formulation of a sequential quadratic programming (SQP) method for the solution of the nonlinear optimization problem

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & \ell \leq \begin{pmatrix} x \\ Ax \\ c(x) \end{pmatrix} \leq u,
\end{array} \tag{1}$$

where f(x) is a linear or nonlinear objective function, c(x) is a vector of *m* nonlinear constraint functions $c_i(x)$, *A* is a matrix, and ℓ and *u* are vectors of lower and upper bounds. For simplicity, in our discussion of the theoretical aspects of SQP methods we assume that the problem has the form

(NP) minimize
$$f(x)$$
 subject to $c(x) \ge 0$,

where *f* and the *m* components of the constraint vector *c* are assumed to be twice continuously differentiable for all $x \in \mathbb{R}^n$. Any linear constraints and simple bound constraints are included in the definition of *c*. However, we emphasize that the exploitation of the properties of linear constraints is an important issue in the solution of large-scale problems.

No assumptions are made about f and c, other than twice differentiability; for example, the problem need not be convex. The vector g(x) denotes the gradient of f evaluated at x, and J(x) denotes the $m \times n$ constraint Jacobian, which has *i*th row $\nabla c_i(x)^T$, the gradient of the *i*th constraint function c_i evaluated at x. The Lagrangian associated with (NP) is $L(x,y) = f(x) - c(x)^T y$, where y is the *m*-vector of dual variables associated with the inequality constraints $c(x) \ge 0$. The Hessian of the Lagrangian with respect to x is denoted by $H(x,y) = \nabla^2 f(x) - \sum_{i=1}^m y_i \nabla^2 c_i(x)$.

Sequential quadratic programming methods find approximate solutions of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the Lagrangian function is minimized subject to the linearized constraints. In a merit-function based SQP method, the QP solution provides a direction of improvement for a function that represents a compromise between the (often conflicting) aims of minimizing the objective function and reducing the constraint violations. Many SQP methods use an active-set quadratic programming method to solve the QP subproblem. In this situation, the SQP method has a major/minor iteration structure in which each minor iteration is an iteration of the active-set QP solver. The work for a minor iteration is dominated by the cost of solving a system of symmetric indefinite linear equations defined in terms of a subset of the variables and constraints.

Interior-point (IP) methods use a completely different approach to handle the inequality constraints of problem (NP). Interior methods follow a continuous path that terminates at a solution of (NP). In the simplest case, the path is parameterized by a positive scalar parameter μ that may be interpreted as a perturbation for the

first-order optimality conditions for the problem (NP). If $x(\mu)$ denotes a point on the path associated with the parameter value μ , then $x(0) = x^*$, where x^* is a solution of (NP). Each point on the path may be found by applying Newton's method to a system of nonlinear equations that represents perturbed optimality conditions for the original problem (NP). Each iteration of Newton's method involves a system of linear equations defined in terms of the derivatives of f and c. The Newton equations may be written in symmetric form, in which case each iteration requires the solution of a single symmetric indefinite system of equations involving the derivatives of every constraint in the problem.

The conventional wisdom is that when solving a general nonlinear problem "from scratch" (i.e., with no prior knowledge of the properties of a solution), software based on an IP method is generally faster and more reliable than software based on an SQP method. However, as SQP methods have the potential to capitalize on a good initial starting point, they are considered to be more effective for solving a sequence of similar problems, such as a sequence of discretized continuous problems for which some underlying discretization is being refined. This claim is difficult to verify, however, as most test collections include unrelated problems of varying sizes and difficulty, or groups of problems with similar characteristics but slightly different formulations. Providing a fair comparison of SQP and IP methods is also complicated by the fact that very few SQP software packages are able to exploit the second derivatives of a problem. (This issue is considered further in Section 4.) Moreover, IP methods are more straightforward to implement with second derivatives, and most software test environments for optimization provide test problems for which second derivatives are available automatically. Unfortunately, there are many practical problems for which even first derivatives are difficult or expensive to compute. Test results from second-derivative methods are unlikely to be representative in this case.

The purpose of this paper is twofold. First, we provide a comparison of two widely-used software packages for general nonlinear optimization, one an IP method (IPOPT [48, 45, 47]) and one an SQP method (SNOPT7 [16]). These packages are applied to almost all the problems from the CUTEst testing environment [27]. The tests are formulated so that the same derivative information is provided to both packages. In this environment it is shown that conclusions concerning the relative performance of first-derivative IP and SQP methods are more nuanced than the conventional wisdom. In particular, it is shown that active-set methods can be efficient for the solution of "one-off" problems, as is the case with active-set methods for linear programming. In other words, SQP methods may be best suited for some problems, and IP methods may be best for others.

If software is intended to be used in an environment in which second derivatives are available, then it is clear that the method that can best exploit these derivatives should be used. The second purpose of this paper is to extend conventional SQP methods so that second-derivatives can be exploited reliably and efficiently when they are available. These extensions are motivated by some comparisons of firstderivative SQP methods with second-derivative IP methods.

2 Background on SQP methods

The two principal ingredients of a merit-function based SQP method are: (i) a scalarvalued merit function \mathscr{M} that provides a measure of the quality of a given point as an estimate of a solution of the constrained problem; and (ii) a direction of improvement for \mathscr{M} defined as the solution of a quadratic programming subproblem. As in the unconstrained case, the merit function is used in conjunction with a line-search model to define a sufficient decrease in \mathscr{M} at each major iteration. Here we focus on the formulation and solution of the QP subproblem. For more background on the properties of SQP methods see, e.g., Gill and Wong [23].

2.1 Properties of the QP subproblem

Given the *k*th estimate (x_k, y_k) of the primal and dual solution of (NP), a conventional line-search SQP method defines a direction $p_k = \hat{x}_k - x_k$, where \hat{x}_k is a solution of the QP subproblem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & g(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \widehat{H}_k (x - x_k) \\ \text{subject to} & J(x_k) (x - x_k) \ge -c(x_k), \end{array}$$

$$(2)$$

with \hat{H}_k an exact or approximate Hessian of the Lagrangian. If the QP subproblem (2) has a solution, then the QP first-order optimality conditions imply the existence of a primal-dual pair (\hat{x}_k, \hat{y}_k) such that

$$g(x_k) + \widehat{H}_k(\widehat{x}_k - x_k) = J(x_k)^T \widehat{y}_k, \qquad \widehat{y}_k \ge 0,$$
(3)

$$r(\widehat{x}_k) \cdot \widehat{y}_k = 0, \qquad r(\widehat{x}_k) \ge 0, \tag{4}$$

where r(x) is the vector of constraint residuals $r(x) = c(x_k) + J(x_k)(x - x_k)$, and $a \cdot b$ denotes the vector with *i*th component a_ib_i . At any feasible point *x* for (2), the active set associated with the QP subproblem is given by

$$\mathscr{A}(x) = \{ i : r_i(x) = [c(x_k) + J(x_k)(x - x_k)]_i = 0 \}.$$

The optimality conditions for the QP subproblem (2) may be characterized in terms of an index set $\mathscr{W}_k \subseteq \mathscr{A}(\widehat{x}_k)$ such that the rows of $J(x_k)$ with indices in \mathscr{W}_k are linearly independent. If the conditions (3)–(4) hold for at least one primal-dual pair, then there must exist a nonnegative \widehat{y}_k and index set \mathscr{W}_k such that $[\widehat{y}_k]_i = 0$ for $i \notin \mathscr{W}_k$, and

$$g(x_k) + \widehat{H}_k(\widehat{x}_k - x_k) = J_w(x_k)^T \widehat{y}_w, \qquad \widehat{y}_w \ge 0,$$
(5)

$$c_w(x_k) + J_w(x_k)(\widehat{x}_k - x_k) = 0,$$
 $r(\widehat{x}_k) \ge 0,$ (6)

4

where $c_w(x_k)$ and $J_w(x_k)$ denote the rows of $c(x_k)$ and $J(x_k)$ associated with indices in \mathcal{W}_k , and \hat{y}_w is the subvector of \hat{y}_k associated with the indices in \mathcal{W}_k . The linear equalities associated with the conditions (5)–(6) may be written in matrix form

$$\begin{pmatrix} \widehat{H}_k & J_w(x_k)^T \\ J_w(x_k) & 0 \end{pmatrix} \begin{pmatrix} p_k \\ -\widehat{y}_w \end{pmatrix} = - \begin{pmatrix} g(x_k) \\ c_w(x_k) \end{pmatrix},$$
(7)

where $p_k = \hat{x}_k - x_k$. The index set \mathscr{W}_k is said to be *second-order consistent* with respect to \hat{H}_k if the reduced Hessian $Z_w^T \hat{H}_k Z_w$ is positive definite, where the columns of Z_w form a basis for the null-space of $J_w(x_k)$. If \mathscr{W}_k is second-order consistent with respect to \hat{H}_k , then the system of equations (7) is nonsingular and defines unique vectors p_k and \hat{y}_w satisfying

$$p_k^T \widehat{H}_k p_k = -\left(g(x_k) - J_w(x_k)^T \widehat{y}_w\right)^T p_k = -g_L(x_k, \widehat{y}_k)^T p_k,\tag{8}$$

where $g_L(x, y)$ denotes the gradient of the Lagrangian function with respect to *x*, i.e., $g_L(x, y) = g(x) - J(x)^T y$. This identity implies that if \hat{H}_k is positive definite, then p_k is a descent direction for the Lagrangian function defined with the QP multipliers.

The dimension of the reduced Hessian $Z_w^T \hat{H}_k Z_w$ can have a crucial influence on the efficiency of an SQP method. This quantity is an estimate of the number of degrees of freedom in problem (NP), i.e., the dimension of the underlying unconstrained problem defined by restricting *f* to the surface of the active constraints at a solution of the nonlinear problem.

2.2 Active-set methods for the QP subproblem

The SQP methods discussed in this paper exploit certain benefits derived from using a primal-feasible active-set method to solve the QP subproblem. Primal active-set QP methods have two phases: in phase 1, a feasible point is found by minimizing the sum of infeasibilities; in phase 2, the quadratic objective function is minimized while maintaining feasibility. At each QP iterate, a working set of QP constraints is known for which the constraint gradients are linearly independent. At a solution of the QP, this working set is the index set \mathcal{W}_k associated with the QP optimality conditions (5)-(6). At each QP iterate, the working set defines the constraints of an equality constrained subproblem (EOP) whose solution satisfies a system of equations of the form (7). (The precise definition of the working set varies with the method. Some methods restrict the working set to be a subset of the active constraints, while others allow some constraints in the working-set to be strictly satisfied.) If the final QP working set is used to define the initial working set for the next QP subproblem, it is typical for the later OP subproblems to reach optimality in a single iteration because the QP optimality conditions (5)–(6) are satisfied by the solution of the first EQP subproblem, i.e., the EQP solution satisfies the system (7).

3 Numerical results

Before addressing the use of second-derivatives in SQP methods, we present numerical results that have motivated our work. This section includes a summary of the results obtained by running the SQP package SNOPT7 [16] and the IP package IPOPT [48, 45, 47] on problems in the CUTEst test collection [27]. IPOPT is arguably the most successful and widely-used package for nonlinearly constrained optimization. The version of IPOPT used in the runs was version 3.11.8, compiled with the linear solver MA57.

SNOPT7 version 7.4 is a Fortran implementation of the general sequential quadratic programming method discussed in Section 2. SNOPT7 is designed to solve large-scale problems of the form (1). Internally, SNOPT7 transforms this problem into standard form by introducing a vector of slack variables *s*. The equivalent problem is

minimize
$$f(x)$$
 subject to $\begin{pmatrix} Ax \\ c(x) \end{pmatrix} - s = 0, \quad l \le \begin{pmatrix} x \\ s \end{pmatrix} \le u.$ (9)

All runs were made on a MacPro configured with a 2.7GHz 12-core Intel Xeon E5 processor and 64GB of RAM. Both IPOPT and SNOPT7 were compiled using gfortran 4.6 with full code optimization and the optimized BLAS library in the Accelerate framework from Apple. The floating-point precision was 2.22×10^{-16} .

3.1 The active-set method of SNOPT7

To solve the QP subproblems, SNOPT7 employs the convex QP solver SQOPT [17], which is an implementation of a reduced-Hessian, reduced-gradient activeset method. For a QP subproblem associated with a problem expressed in the form (9), all the inequality constraints are simple bounds. Let \hat{H} , \hat{g} and \hat{A} denote the Hessian, gradient and general constraint matrix associated with the *k*th QP subproblem. In a reduced-gradient method, the general QP constraints $\hat{A}x - s = 0$ are partitioned into the form $Bx_B + Sx_S + Nx_N = 0$, where the matrix *B* is square and nonsingular, and the matrices *S*, *N* are the remaining columns of $(\hat{A} - I)$. The vectors x_B , x_S , x_N are the associated basic, superbasic, and nonbasic components of (x, s) (see Gill, Murray and Saunders [16]). The reduced Hessian $Z^T \hat{H}Z$ is defined in terms of the matrix *Z* such that

$$Z = P \begin{pmatrix} -B^{-1}S \\ I \\ 0 \end{pmatrix}, \tag{10}$$

where *P* permutes the columns of $(\widehat{A} - I)$ into the order $(B \ S \ N)$. The matrix *Z* is used only as an operator, i.e., it is not stored explicitly. Products of the form Zv or $Z^T\widehat{g}$ are obtained by solving with *B* or B^T . The package LUSOL [19] is used to maintain sparse LU factors of *B* as the *BSN* partition changes.

6

Туре	Frequency	Characteristics
LP	26	Linear objective, linear constraints
QP	238	Quadratic objective, linear constraints
UC	173	Nonlinear objective, no constraints
BC	141	Nonlinear objective, bound constraints
LC	70	Nonlinear objective, linear constraints
NC	408	Nonlinear objective, nonlinear constraints
FP	100	Constant objective function
NS	19	Non-smooth

Table 1 The 1156 CUTEst problems listed by frequency and type.

At each QP-iteration, the reduced Hessian is positive semidefinite with at most one zero eigenvalue. If the reduced Hessian is nonsingular, a direction in the superbasic variables is computed from the system

$$Z^T \widehat{H} Z p_s = -Z^T \widehat{g} \tag{11}$$

using a dense Cholesky factor of $Z^T \widehat{H} Z$. If the reduced Hessian is singular, the Cholesky factor is used to define p_s such that $Z^T \widehat{H} Z p_s = 0$ and $p_s^T Z^T \widehat{g} < 0$. In this implementation, the number of degrees of freedom associated with the QP subproblem is the number of superbasic variables. If this number is large, then solving the reduced Hessian equations (11) dominates the cost of a QP iteration.

3.2 The CUTEst test collection

The CUTEst distribution of January 14, 2015 (Subversion revision 245) contains 1156 problems in standard interface format (SIF). A list of CUTEst problem types and their frequency is given in Table 1. Although many problems allow for the number of variables and constraints to be adjusted in the SIF file, all the tests are based on the default problem dimensions set in the CUTEst distribution. The three problems *recipe*, *s365*, and *s365mod* are omitted because of the potential for a floating-point exception when the problem functions are evaluated at feasible points. The remaining problems form a grand total of 1153 problems ranging in size from *hs1* (two variables and no constraints) to *bdry2* (251001 variables and 250498 constraints). Of these 1153 problems attempted, 137 have more than 3000 degrees of freedom, with the largest nonlinearly constrained problem (*jannson3*) having almost 20000 degrees of freedom at the solution.

The 19 problems bigbank, bridgend, britgas, concon, core1, core2, gridgena, hs67, hs85, hs87, mconcon, net1, net2, net3, net4, stancmin, twiribg1, twirimd1, and twirism1 are non-smooth, but are included in the test-set nevertheless. The 11 problems fletcbv3, fletchbv, gridgena, indef, lukvle2, mesh, ncvxbqp1, ncvxbqp2,

BEGIN SNOPT Problem					
Superbasics limit	150000				
Reduced Hessian dimension	4000				
Major iterations	1000000				
Iteration limit	1000000				
Major optimality tolerance	1.22e-4				
Time limit	1800				
END SNOPT Problem					
#BEGIN IPOPT Problem					
max_iter	1000000				
# next option for L-BFGS only					
hessian_approximation limited-memory					
linear_solver	ma57				
time_limit	1800				
#END IPOPT Problem					

Fig. 1 The SNOPT7 and IPOPT run-time option files.

qrtquad, *static3*, and *lukvli4* are known to have an objective function that is unbounded below in the feasible region.

Many of the problems are either infeasible or have no known feasible point. The 15 problems *a2nndnil*, *a5nndnil*, *arglale*, *arglble*, *arglcle*, *flosp2hh*, *flosp2hl*, *flosp2hm*, *ktmodel*, *lincont*, *model*, *nash*, *synpop24*, *toysarah*, and *woodsne* have infeasible linear constraints. For nonlinear constraints, no local optimization method is guaranteed to find a feasible point unless certain restrictions are imposed on the class of constraint functions. In the nonlinear case, the failure of an algorithm to find a feasible point does not imply that the problem is infeasible. In the CUTEst test set, the nonlinear problem *burkehan* is known to be infeasible. Another 14 problems have no known feasible point: *argauss*, *arwhdne*, *cont6-qq*, *drcavty3*, *eigenb*, *growth*, *himmelbd*, *junkturn*, *lewispol*, *lubrif*, *lubrifc*, *nuffield*, *nystrom5*, *tro41x9*. We conjecture that these problems are infeasible. (Problems *junkturn* and *nystrom5* are feasible if the constraints are perturbed by 10^{-3} .)

3.3 User-specified options

Both SNOPT7 and IPOPT allow the user to replace the values of certain default run-time options. With the exception of an 1800-second time-limit, all IPOPT runs were made using the default options. Figure 1 lists the SNOPT7 and IPOPT options that differ from their default values. (For a complete list of these options see [48] and [16].) Reduced Hessian dimension specifies the maximum size of the dense reduced Hessian available for SQOPT. If the number of degrees of freedom exceeds this value during the QP solution, SQOPT solves a perturbed version of (11) using the conjugate-gradient solver SYMMLQ [38]. The default Major optimality tolerance for SNOPT7 is 2×10^{-6} (see Section 2.11 of Gill, Murray and Saunders [16]) The larger value of 1.22×10^{-4} was used to match the default optimality tolerance of IPOPT.

3.4 Results obtained using first derivatives only

Table 2 summarizes the results of running SNOPT7 and IPOPT with the L-BFGS option on the 1153 test problems. The constraint format (9) allows SNOPT7 to find a feasible point for the linear constraints before evaluating the objective function and nonlinear constraints. If the linear constraints are infeasible, SNOPT7 terminates immediately without computing the nonlinear functions. Otherwise, all subsequent major iterates satisfy the linear constraints. (Sometimes this feature helps ensure that the functions and gradients are only computed at points where they are well defined.) For brevity, Table 2 lists the number of infeasible problems found by SNOPT7 without distinguishing between linear and nonlinear constraints.

 Table 2
 SNOPT7 and first-derivative IPOPT on 1153 CUTEst problems.

SNOPT7		IPOPT (first derivatives)	
Optimal Optimal, but low accuracy Unbounded Infeasible constraints Locally infeasible constraints	1006 8 11 16 16	Optimal Optimal, but low accuracy Unbounded Infeasible constraints Locally infeasible constraints	772 161 3 10 3
Total successes	1057	Total successes	949
False infeasibility Iteration limit Time limit Numerical problems Final point cannot be improved Total failures	25 4 45 13 9 96	False infeasibility Iteration limit Time limit Diverges Restoration failed Too few degrees of freedom Regularization too large Invalid derivative entry Segmentation fault	9 37 40 8 70 33 1 5 1
		Total failures	204

Of the 19 nonsmooth problems, SNOPT7 solved all but *hs87* and *net4*. IPOPT solved all but *bigbank*, *gridgena*, *hs87*, and *net4*. All 11 unbounded problems were identified correctly by SNOPT7. IPOPT terminated 11 cases with an "unbounded or diverging" diagnostic message, with *indef*, *mesh* and *static3* being correctly identified as unbounded. Problem *gausselm* terminated with a segmentation fault after IPOPT failed to allocate sufficient memory for MA57.

If any QP subproblem is infeasible, or the Lagrange multipliers of the subproblem become large, then SNOPT7 switches to "elastic mode". In this mode, the nonlinear constraint functions are allowed to violate their bounds by an amount that is multiplied by a positive weight and included in the objective function (see, e.g., Gill, Murray and Saunders [16]). This feature allows SNOPT7 to find a local minimizer of the sum of infeasibilities if the nonlinear constraints appear to be infeasible. As mentioned above, the calculation of such a point does not necessarily imply the problem is infeasible. A run was considered to have "failed" if a final point of local infeasibility was declared for a problem that is known to be feasible. SNOPT7 terminated at a "false" infeasible point for 25 problems: a4x12, broydnbd, discs, drugdis, eigmaxc, eigminc, flosp2th flt, hadamard, hatfldf, hs61, lukvle11, lukvle16, lukvle17, lukvle18, mss1, mss2, mss3, optcdeg3, powellsq, s316-322, tro21x5, vanderm1, vanderm2, and vanderm3. This large number of false infeasibilities provides a somewhat misleading picture of the effectiveness of SNOPT7 for finding a feasible point. In particular, a total of 11 of the "infeasible" problems: broydnbd, discs, drugdis, eigmaxc, eigminc, flt, hadamard, hs61, mss2, *mss3*, and *tro21x5*, solve to optimality with the default optimality tolerance 10^{-6} . Similarly, the final sum of infeasibilities for the 7 problems a4x12, flosp2th hatfldf, *lukvle17*, *lukvle18*, *vanderm1*, and *vanderm2*, was of the order of 10^{-5} . Problems fletcher and lootsma have feasible solutions, but their initial points are infeasible and stationary for the sum of infeasibilities. In this situation, the initial point satisfies the first-order conditions for a minimizer of the merit function and SNOPT7 terminates immediately. As this study does not recognize a qualitative distinction between a local and global solution, the outcomes for *fletcher* and *lootsma* are listed as successful.

IPOPT with L-BFGS determined that 22 problems are infeasible. Of these, 9 problems: *artif*, *cresc100*, *lippert2*, *lukvle16*, *lukvli17*, *pfit2*, *pfit4*, *powellsq*, and *wachbieg*, are listed as failures because of the existence of known feasible points.

The results are summarized using performance profiles proposed by Dolan and Moré [6]. A performance profile provides an "at-a-glance" comparison of the performance of a set \mathscr{S} of n_s solvers applied to a test set \mathscr{P} of n_p problems. For each solver $s \in \mathscr{S}$ and problem $p \in \mathscr{P}$ in a profile, the number t_{ps} is the performance measure (i.e., the solve-time or number of function evaluations) for solver *s* on problem *p*. To compare the performance of a problem *p* over the different solvers, the *performance ratio* for each successfully solved problem and solver is defined as

$$r_{ps} = \frac{t_{ps}}{\min\{t_{ps} : s \in \mathscr{S}\}}$$

If r_{ms} denotes the maximum time (or function evaluations) needed over all problems that were solved successfully, then the performance ratio for problems that failed is defined as some value greater than r_{ms} . Given the set of performance ratios, a function $P_s(\sigma)$ is defined for each solver such that

$$P_s(\sigma) = \frac{1}{n_p} |\{p \in \mathscr{P} : r_{ps} \le \sigma\}|,$$

where $\sigma \in [1, r_{ms}]$. The value $P_s(\sigma)$ is the fraction of problems for solver *s* that were solved within σ of the best time. $P_s(1)$ is the fraction of problems for which *s* was the fastest solver. The value $P_s(r_{ms})$ gives the fraction of problems solved successfully by solver *s*. The presented performance profiles are log-scaled, with $\tau = \log_2(\sigma)$ on the *x*-axis and the function

On the Performance of SQP Methods for Nonlinear Optimization

$$P_s(\tau) = \frac{1}{n_p} |\{p \in \mathscr{P} : \log_2(r_{ps}) \le \tau\}|,$$

on the y-axis for each solver. The y-axis can be interpreted as the fraction of problems that were solved within 2^{τ} of the best time. Because the y-axis is the fraction of problems solved, and the x-axis is the factor of time needed to solve a problem, the "best" solver should have a function $P_s(\tau)$ that lies towards the upper-left of the graph. Recorded solve times of less than 0.001 seconds are replaced by 0.001 to prevent division by zero in the calculation of the performance ratios.

Figure 2 gives the performance profiles for the solve times (in seconds) and total number function evaluations required by SNOPT7 and IPOPT on all 1153 problems. The left figure profiles the solve times, the right figure profiles function evaluations. In these profiles, an algorithm is considered to have solved a problem successfully if one of the first five outcomes listed in Table 2 occurs.

Fig. 2 Performance profiles for SNOPT7 and IPOPT on 1153 CUTEst test problems using first derivatives. The IPOPT results were obtained using an L-BFGS approximate Hessian. The left figure profiles solve times (in seconds); the right figure profiles function evaluations.

3.5 Comparisons with IPOPT using second-derivatives

In this section we consider results obtained by running SNOPT7 with first derivatives (the only option) and IPOPT with the second derivatives (the default option). The results are summarized in Table 3.

The second-derivative version of IPOPT solved all of the 19 nonsmooth problems except *britgas*, *net2* and *net4*. IPOPT identified 26 problems as being in-

SNOPT7		IPOPT (second derivative	IPOPT (second derivatives)	
Optimal Optimal, but low accuracy Unbounded Infeasible constraints Locally infeasible constraints	1006 8 11 16 16	Optimal Optimal, but low accuracy Unbounded Infeasible constraints Locally infeasible constraints	1013 18 2 9 6	
Total successes	1057	Total successes	1048	
False infeasibility Iteration limit Time limit Numerical problems Final point cannot be improved	25 4 45 13 9	False infeasibility Iteration limit Time limit Too few degrees of freedom Diverges	11 3 28 33 5	
Total failures	96	Restoration failed Regularization too large Invalid derivative entry Search direction too small	19 2 2 2	
		Total failures	105	

 Table 3
 SNOPT7 and second-derivative IPOPT on 1153 CUTEst problems.

feasible. Of these, the 11 problems *artif*, *brainpc2*, *cresc100*, *cresc132*, *cresc50*, *lukvle16*, *net4*, *pfit1*, *pfit2*, *powellsq*, and *wachbieg*, have known feasible points and are included in the list of failures. Of the 7 problems that IPOPT identified as being unbounded, only *mesh* and *static3* were feasible with an unbounded objective. The other 5 problems are listed as "diverging" in Table 3.

Fig. 3 Performance profiles for SNOPT7 (first derivatives only) and second-derivative IPOPT on 1153 CUTEst test problems. The left figure profiles the solve times (in seconds), the right figure profiles function evaluations.

Figure 3 gives the performance profiles for the solve times and function evaluations required by SNOPT7 (first derivatives only) and second-derivative IPOPT on all 1153 problems. As above, an algorithm is considered to have solved a problem successfully if one of the first five outcomes listed in Table 3 occurs.

Two conclusions may be drawn from these results. First, IPOPT with the secondderivative option is significantly more robust than IPOPT with first derivatives only, which is why the IPOPT documentation strongly recommends the secondderivative option. Second, software based on a first-derivative SQP method can be competitive with software based on an IP method using second derivatives. The remaining discussion focuses upon the source of this competitiveness and how it may be exploited for the development of second-derivative SQP methods.

An important quantity that influences the efficiency of an optimization method is the number of degrees of freedom $n_{\rm df}$ at a solution. The 1153 problems in the CUTEst test collection include 1016 problems with $n_{\rm df} \leq 3000$ and 1095 problems with $n_{\rm df} \leq 4000^1$. Generally speaking, methods that maintain an explicit reduced Hessian when solving the OP subproblem (such as the OP solver SOOPT used in SNOPT7) become less efficient as the number of degrees of freedom increases. Figure 4 illustrates how the efficiency of SNOPT7 is influenced by the number of degrees of freedom. Figure 4 profiles the solve times for SNOPT7 and IPOPT on the 1016 CUTEst test problems with $n_{\rm df} \leq 3000$. A comparison of the solution-time profiles of Figures 3 and 4 indicates that overall, SNOPT7 is more competitive on problems with few degrees of freedom at the solution. The IPOPT package uses a direct factorization of the KKT matrix, which implies that the efficiency is relatively unrelated to the number of degrees of freedom. It follows that as the number of degrees of freedom increases, the number of problems for which IPOPT has a faster solution time increases. For example, on the 68 problems with $n_{\rm df} > 4000$ only 24 problems are solved faster with SNOPT7. These 68 problems provide a substantial test of the conjugate-gradient linear system solver in SQOPT.

This inefficiency may be removed by using a QP solver that maintains an explicit reduced Hessian when the number of degrees of freedom is small, and uses direct factorization when the number of degrees of freedom is large. The QP-package SQIC [24] implements a method based on this strategy.

Given an efficient QP solver, once the QP working set settles down, the efficiency of SNOPT7 depends largely on whether or not the limited-memory method is able to adequately represent the Lagrangian Hessian. For example, many of the 68 large problems have no constraints or only simple bounds, and in these cases, the large number of major iterations is consistent with results obtained by other limited-memory quasi-Newton methods (see, e.g., [4, 14]). This is one situation in which the use of second derivatives, when available, can have a significant impact on the rate of convergence of the SQP method. Figure 5, which profiles the solve times for SNOPT7 and IPOPT on all 296 CUTEst test problems with either no constraints or only simple bounds, indicates that, overall, second derivatives provide a significant edge on this class of problem.

¹ Here, the value of n_{df} is taken as the the number of degrees of freedom at a solution found by SNOPT7.

Fig. 4 Performance profiles of solve times for SNOPT7 (first derivatives only) and second-derivative IPOPT on 1016 CUTEst test problems with no greater that 3000 degrees of freedom.

Fig. 5 Performance profiles of solve times for SNOPT7 (first derivatives only) and secondderivative IPOPT on all 296 CUTEst test problems with either no constraints or only simple bounds.

4 Second-derivative SQP methods

The numerical results of the previous section confirm the widely-held view that quasi-Newton SQP methods are effective at providing a good estimate of the indices of the active constraints at a solution of (NP). Once the QP working set settles down, the efficiency of a quasi-Newton SQP method then depends largely on whether or not the limited-memory method is able to adequately represent the Lagrangian Hessian. It is in this situation that the use of second derivatives, when available, can have a significant impact on the rate of convergence of the SQP method.

In this section we outline an SQP method that incorporates both approximate and exact Hessian information. First, the method uses the solution of a convex QP based on a quasi-Newton Hessian to identify an estimate of the working set at a solution. This estimate is used to initiate a sequence of QP subproblems defined by the Hessian of the Lagrangian. The approach is to proceed to solve the nonconvex QP subproblem as in a conventional SQP method. However, as the QP iterations proceed, the QP Hessian is modified implicitly in such a way that the sequence of QP iterates is equivalent to that associated with a related *convex* QP subproblem. This "convexification" process is related to some well-known methods for unconstrained optimization that modify a subproblem "on-the-fly".

Other methods that identify the active set using a convex QP based on a BFGS approximation of the Hessian have been proposed by Byrd et al. [1] and Gould and Robinson [28, 29, 30].

4.1 Difficulties associated with using second derivatives in SQP

If the Hessian of the Lagrangian $H(x_k, y_k)$ at (x_k, y_k) is positive definite and the QP subproblem Hessian is $\hat{H}_k = H(x_k, y_k)$, then the SQP search direction p_k satisfies the inequality $g_L(x_k, \hat{y}_k)^T p_k < 0$, and p_k is a descent direction for the Lagrangian defined with multipliers $y = \hat{y}_k$ (see. (8)). The curvature condition $p_k^T H(x_k, y_k) p_k > 0$ is sufficient for the existence of a step length that provides a sufficient decrease for several merit functions that have been proposed in the literature; e.g., the ℓ_1 penalty function (Han [35] and Powell [39]) and various forms of the augmented Lagrangian merit function (Han [35], Schittkowski [40], and Gill, Murray, Saunders and Wright [20]).

If problem (NP) is not convex, the Hessian of the Lagrangian may be indefinite, even in the neighborhood of a solution. This situation creates a number of difficulties in the formulation and analysis of a conventional SQP method.

(i) The QP subproblem (2) may be nonconvex, which implies that the objective of (2) may be unbounded below in the feasible region, and that there may be many local solutions. In addition, nonconvex QP is NP-hard—even for the calculation of a local minimizer [5, 12]. The complexity of the QP subproblem has been a major impediment to the formulation of second-derivative SQP methods (although methods based on indefinite QP subproblems have been proposed [7, 8]).

(ii) If $H(x_k, y_k)$ is not positive definite, then p_k may not be a descent direction for the merit function. This implies that an alternative direction must be found or the line search must allow the merit function to increase on some iterations (see, e.g., Grippo, Lampariello and Lucidi [32, 33, 34], Toint [44], and Zhang and Hager [49]).

Over the years, algorithm developers have avoided these difficulties by solving a convex QP subproblem defined with a positive semidefinite quasi-Newton approximate Hessian. Some methods follow the convex QP solve with an EQP phase that uses exact second derivatives (see, e.g., [9, 2, 3, 28, 29, 30, 37]). However, the common feature of all these approaches is to rely on the convex QP to identify the active constraints at a solution of (NP). In this form, SQP methods have proved reliable and efficient for many problems. For example, under mild conditions the general-purpose solvers NLPQL [41], NPSOL [18, 20], DONLP [43], and SNOPT7 [16] typically find a (local) optimum from an arbitrary starting point, and they require relatively few evaluations of the problem functions and gradients.

In the next three sections we outline the basic components of an SQP method that incorporates exact second derivatives but avoids the difficulties discussed above.

4.2 Overview of convexification methods

Convexification is a process for defining a local convex approximation of a nonconvex problem. This approximation may be defined on the full space of variables or just on some subset. Many model-based optimization methods use some form of convexification. For example, line-search methods for unconstrained and linearly-constrained optimization define a convex local quadratic model in which the Hessian $H(x_k, y_k)$ is replaced by a positive-definite matrix $H(x_k, y_k) + E_k$ (see, e.g., Greenstadt [31], Gill and Murray [15], Schnabel and Eskow [42], and Forsgren and Murray [13]). All of these methods are based on convexifying an unconstrained or equality-constrained local model. Here we consider a method that convexifies the inequality-constrained subproblem directly. The method extends some approaches proposed by Gill and Robinson [21, Section 4] and Kungurtsev [36].

In the context of SQP methods, the purpose of the convexification is to find a matrix ΔH_k such that

$$p_k^T \left(H(x_k, y_k) + \Delta H_k \right) p_k \ge \bar{\gamma} p_k^T p_k,$$

for a given primal-dual pair (x_k, y_k) , where $\bar{\gamma}$ is a fixed positive scalar that defines a minimum acceptable value of the curvature of the Lagrangian. Ideally, any algorithm for computing ΔH_k should satisfy two requirements. First, the convexification should be minimal, i.e., if $H(x_k, y_k)$ is positive definite or $p_k^T H(x_k, y_k) p_k \geq \bar{\gamma} p_k^T p_k$, then ΔH_k should be zero. Second, it must be possible to store the modification ΔH_k implicitly, without the need to modify the elements of $H(x_k, y_k)$.

The proposed convexification scheme can take three forms: preconvexification, concurrent convexification, and post-convexification. We emphasize that not all of these modifications are necessary at a given iteration.

4.3 Concurrent QP convexification

Concurrent convexification is based on a specific method for solving a general (i.e., potentially nonconvex) QP (see Gill and Wong [25]). We start by giving a brief description of this method applied to a generic QP of the form

$$\min_{x \in \mathbb{R}^n} \qquad \varphi(x) = g^T (x - x_I) + \frac{1}{2} (x - x_I)^T H(x - x_I)$$
subject to $Ax \ge Ax_I - b,$

$$(12)$$

where x_I , b, A, g, and H are constant. In the SQP context, $x_I = x_k$, $g = g(x_k)$, $b = c(x_k)$, $A = J(x_k)$, and H is the exact or approximate Hessian of the Lagrangian. Thus, the objective is not necessarily convex and the QP subproblem may be indefinite.

The method described by Gill and Wong in [25] and implemented in the software package SQIC [24] is a two-phase method for general QP. In the first phase, the objective function is ignored while a conventional phase-one linear program is used to find a feasible point x_0 for the constraints $Ax \ge Ax_1 - b$. On completion of the first phase, a working set \mathcal{W}_0 is available that contains the indices of a linearly independent subset of the gradients of the active constraints at x_0 . If A_0 and b_0 denote the $m_0 \times n$ matrix of rows of A and the vector of m_0 components of b with indices in \mathcal{W}_0 , then

$$A_0 x_0 = A_0 x_I - b_0.$$

In the second phase, a sequence of primal-dual iterates $\{(x_j, y_j)\}_{j\geq 0}$ and working sets $\{\mathscr{W}_j\}$ is generated such that: (i) $\{x_j\}_{j\geq 0}$ is feasible; (ii) $\varphi(x_j) \leq \varphi(x_{j-1})$; and (iii) for every $j \geq 1$, (x_j, y_j) is the primal and dual solution of the equality constrained problem defined by minimizing $\varphi(x)$ subject to the constraints in the working set \mathscr{W}_j . The vector x_j associated with the primal-dual pair (x_j, y_j) is known as a *subspace minimizer* with respect to \mathscr{W}_j . If A_j denotes the $m_j \times n$ matrix of rows of A with indices in \mathscr{W}_j , then a subspace minimizer is formally defined as the point x_j such that $g(x_j) = A_j^T y_j$, and the KKT matrix

$$K_j = \begin{pmatrix} H & A_j^T \\ A_j & 0 \end{pmatrix}$$
(13)

has exactly m_j negative eigenvalues. Equivalently, the associated reduced Hessian $Z_j^T H Z_j$, where the columns of Z_j form a basis for the null-space of A_j , is positive

definite. Thus, for any K_j satisfying this property, the working set \mathcal{W}_j is second-order consistent with respect to H.

In general, the first iterate x_0 will not minimize $\varphi(x)$ on \mathcal{W}_0 , and one or more preliminary iterations are needed to find the first subspace minimizer x_1 . An estimate of x_1 is defined by solving the equality-constrained QP subproblem

minimize
$$\varphi(x)$$
 subject to $A_0(x-x_I) + b_0 = 0.$ (14)

If the KKT matrix K_0 is second-order consistent, then the solution of this subproblem is given by $x_0 + p_0$, where p_0 satisfies the nonsingular system

$$\begin{pmatrix} H & A_0^T \\ A_0 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ -\hat{y}_0 \end{pmatrix} = -\begin{pmatrix} g(x_0) \\ b_0 + A_0(x_0 - x_l) \end{pmatrix} = -\begin{pmatrix} g(x_0) \\ 0 \end{pmatrix}.$$
 (15)

If $x_0 + p_0$ is feasible for (14), then $(x_1, y_1) = (x_0 + p_0, \hat{y}_0)$ is a subspace minimizer; otherwise one of the constraints violated at $x_0 + p_0$ is added to the working set and (15) is solved again with the new working set. Eventually, the working set will include enough constraints to define a primal-dual pair (x_1, y_1) at a subspace minimizer.

If the first subspace minimizer x_1 is not optimal for (12), then the method proceeds to find the sequence of subspace minimizers x_2, x_3, \ldots , described above. At any given iteration, not all the constraints in \mathcal{W}_i are necessarily active at x_i . If every working-set constraint *is* active, then $\mathcal{W}_j \subseteq \mathscr{A}(x_j)$, and x_j is called a *standard* subspace minimizer; otherwise x_i is a nonstandard subspace minimizer. The method is formulated so that there is a subsequence of "standard" iterates intermixed with a finite number of consecutive "nonstandard" iterates. If the multipliers y_i are nonnegative at a standard iterate, then x_i is optimal for (12) and the algorithm is terminated. Otherwise, a working set constraint with a negative multiplier is identified and designated as the *nonbinding working-set constraint* associated with the subsequent consecutive sequence of nonstandard iterates. If the index of the nonbinding constraint corresponds to row s of A, then $[y_i]_s < 0$. There follows a sequence of "intermediate" iterations in which the constraint $a_s^T x \ge a_s^T x_l - b_s$ remains in the working set, though it is no longer active, while its multiplier is driven to zero. At each of these iterations, a search direction is defined by solving the equality-constrained subproblem

$$\underset{p \in \mathbb{R}^n}{\text{minimize}} \varphi(x_j + p) \quad \text{subject to} \quad a_i^T p = \begin{cases} 0 & \text{if } i \neq s, \, i \in \mathcal{W}_j, \\ 1 & \text{if } i = s. \end{cases}$$
(16)

In matrix form, the optimality conditions for subproblem (16) are

$$\begin{pmatrix} H & A_j^T \\ A_j & 0 \end{pmatrix} \begin{pmatrix} p_j \\ -q_j \end{pmatrix} = \begin{pmatrix} 0 \\ e_s \end{pmatrix},$$
(17)

where $y_j + q_j$ are the multipliers at the minimizer $x_j + p_j$, and e_s denotes the *s*th column of the identity matrix. (To simplify the notation, it is assumed that the non-

binding constraint corresponds to the *s*th row of *A*, which implies that a_s^T is the *s*th row of both *A* and *A_j*.) Any nonzero step along *p_j* increases the residual of the nonbinding constraint while maintaining the residuals of the other working-set constraints at zero (i.e., the nonbinding constraint becomes inactive while the other working-set constraints remain active).

Once the direction (p_j, q_j) has been computed, the computation of the next iterate x_{j+1} depends on the value of $p_j^T H p_j$, the curvature of φ along p_j . There are two cases to consider.

Case 1: $p_j^T H p_j > 0$. In this case the curvature is positive along p_j . This will always be the outcome when φ is convex. In this case, the step to the minimizer of φ along the search direction p_j is given by

$$\alpha_{j}^{*} = -g(x_{j})^{T} p_{j} / p_{j}^{T} H p_{j} = -[y_{j}]_{s} / p_{j}^{T} H p_{j}.$$
(18)

The definition of α_i^* implies that the multiplier $[y_i + \alpha_i^* q_i]_s$ associated with the nonbinding constraint at $x_i + \alpha_i^* p_i$ is zero. This implies that if $x_i + \alpha_i^* p_i$ is feasible with respect to the constraints that are not in the working set, then the nonbinding constraint index can be removed from \mathcal{W}_j as the conditions for a subspace minimizer continue to hold. This gives a new standard iterate $x_{i+1} = x_i + \alpha_i^* p_i$, with working set $\mathcal{W}_{i+1} = \mathcal{W}_i \setminus \{s\}$. Either x_{i+1} is optimal for the QP or a new nonbinding constraint is identified and the process is repeated by computing a search direction from the system (17) defined at x_{j+1} . If $x_i + \alpha_i^* p_j$ is not feasible, then x_{j+1} is defined as $x_j + \alpha_j p_j$, where α_j is the largest step that gives a feasible $x_j + \alpha_j p_j$. The point x_{i+1} must have at least one constraint that is active but not in \mathcal{W}_i . If t is the index of this constraint, and a_t and the vectors $\{a_i\}_{i \in \mathcal{W}_i}$ are linearly independent, then t is added to the working set to give \mathscr{W}_{j+1} . At the next iteration, a new value of (p_i, q_i) is computed using system (17) defined with A_{i+1} . If a_i and $\{a_i\}_{i \in \mathcal{W}_i}$ are linearly dependent, then it is shown in [25] that the working set $\mathscr{W}_{j+1} = \{\mathscr{W}_j \setminus \{s\}\} \cup$ $\{t\}$ defined by replacing the index t with index s defines a linearly-independent set of constraint gradients. Moreover, $x_{i+1} = x_i + \alpha_i p_i$ is a subspace minimizer with respect to \mathcal{W}_{i+1} .

Case 2: $p_j^T H p_j \leq 0$. In this case *H* is not positive definite and $\varphi(x_j + \alpha p_j)$ is unbounded below for positive values of α . Either the QP is unbounded, or there exists a constraint index *t* and a nonnegative step $\hat{\alpha}_j$ such that the constraint residuals satisfy $r_t(x_j + \hat{\alpha}_j p_j) = 0$, $r(x_j + \hat{\alpha}_j p_j) \geq 0$, and $\hat{\alpha}_j$ minimizes $\varphi(x_j + \alpha p_j)$ for all feasible $x_j + \alpha p_j$. In this case, $x_{j+1} = x_j + \hat{\alpha}_j p_j$ and, as above, either a_t and $\{a_i\}_{i \in \mathscr{W}_j}$ are linearly independent, in which case $\mathscr{W}_{j+1} = \mathscr{W}_j \cup \{t\}$, or the constraint gradients associated with the working set defined by replacing the index *t* with index *s*, are linearly independent. Moreover, $x_{j+1} = x_j + \alpha_j p_j$ is a subspace minimizer with respect to \mathscr{W}_{j+1} .

To determine whether a_t and the vectors $\{a_i\}_{i \in \mathscr{W}_j}$ are linearly independent, a second KKT system of the form

$$\begin{pmatrix} H & A_j^T \\ A_j & 0 \end{pmatrix} \begin{pmatrix} u_j \\ -v_j \end{pmatrix} = \begin{pmatrix} a_t \\ 0 \end{pmatrix}$$

is solved. It is shown in [25] that $u_j \neq 0$ if and only if a_t and $\{a_i\}_{i \in \mathscr{W}_j}$ are linearly independent. Furthermore, if $u_j \neq 0$, then $u_j^T a_t > 0$ so that linear independence can be determined by checking the sign of the inner product of u_i and a_t .

In both cases, the process is repeated at the next subspace minimizer defined by an appropriate working set until an optimal solution is found or the problem is declared to be unbounded.

The proposed concurrent convexification scheme is based on defining an implicit modification of H when negative curvature is detected following the identification of the nonbinding constraint. Assume that a QP search direction p_j with zero or negative curvature is detected after the selection of $a_s^T x \ge b_s$ as the nonbinding constraint (i.e., $[y_j]_s < 0$). In this case, H is not positive definite and the QP Hessian is modified so that it has sufficiently large positive curvature along p_j . As $p_j^T H p_j \le 0$, the objective $\varphi(x_j + \alpha p_j)$ is unbounded below for positive values of α . In this case, either the unmodified QP is unbounded, or there exists a constraint index t and a nonnegative step $\hat{\alpha}_j$ such that the constraint residuals satisfy $r_t(x_j + \hat{\alpha}_j p_j) = 0$, $r(x_j + \hat{\alpha}_j p_j) \ge 0$, and $\hat{\alpha}_j$ minimizes $\varphi(x_j + \alpha p_j)$ for all feasible $x_j + \alpha p_j$.

If $p_j^T H p_j < 0$, the positive semidefinite rank-one matrix $\sigma a_s a_s^T$ is added to H implicitly. This modifies the quadratic program being solved, but the current iterate x_j remains a subspace minimizer for the modified problem. The only computed quantities altered by the modification are the curvature and the multiplier y_s associated with the nonbinding working-set constraint. The modified Hessian is defined as $H(\bar{\sigma}) = H + \bar{\sigma} a_s a_s^T$ for some $\bar{\sigma} > 0$. Gill and Wong [25] show that the curvature $p^T H p$ is nondecreasing during a sequence of nonstandard iterations associated with a nonbinding index *s*. This implies that a modification of the Hessian will occur only at the first nonstandard iterate.

For an arbitrary σ , the gradient of the modified objective at x_i is

$$g + H(\sigma)(x_j - x_l) = g + (H + \sigma a_s a_s^T)(x_j - x_l)$$

As (x_j, y_j) is a standard subspace minimizer for the unmodified problem, the identities $g(x_j) = g + H(x_j - x_l) = A_j^T y_j$ and $a_s^T(x_j - x_l) = -b_s$ hold, and the gradient of the modified objective is given by

$$g + H(\sigma)(x_j - x_l) = g + H(x_j - x_l) + \sigma a_s a_s^T (x_j - x_l)$$

= $g(x_j) + \sigma a_s^T (x_j - x_l) a_s$
= $A_j^T (y_j - \sigma b_s e_s) = A_j^T y(\sigma)$, with $y(\sigma) = y_j - \sigma b_s e_s$.

This implies that x_j is a subspace minimizer of the modified problem for all $\sigma \ge 0$. Moreover, the multipliers of the modified problem are the same as those of the unmodified problem except for the multiplier y_s associated with the nonbinding constraint, which is shifted by $-\sigma b_s$.

Once the Hessian is modified, the system (17) for the primal-dual direction becomes

On the Performance of SQP Methods for Nonlinear Optimization

$$\begin{pmatrix} H + \bar{\boldsymbol{\sigma}} a_s a_s^T & A_j^T \\ A_j & 0 \end{pmatrix} \begin{pmatrix} \bar{p}_j \\ -\bar{q}_j \end{pmatrix} = \begin{pmatrix} 0 \\ e_s \end{pmatrix},$$

which is equivalent to

$$\begin{pmatrix} H & A_j^T \\ A_j & 0 \end{pmatrix} \begin{pmatrix} p_j \\ -(\bar{q}_j - \bar{\sigma} e_s) \end{pmatrix} = \begin{pmatrix} 0 \\ e_s \end{pmatrix}$$

A comparison with (17) yields

$$\bar{p}_j = p_j$$
 and $\bar{q}_j = q_j + \bar{\sigma} e_s$,

which implies that the QP direction is not changed by the modification.

For any $\sigma \ge 0$, let $\alpha_j(\sigma)$ denote the step associated with the search direction for the modified QP. The identities $a_s^T p_j = 1$. $a_s^T (x_j - x_l) = -b_s$ and $y_s = g(x_j)^T p_j$ imply that

$$\alpha_{j}(\sigma) = -\frac{\left(g + (H + \sigma a_{s}a_{s}^{T})(x_{j} - x_{l})\right)^{T}p_{j}}{p_{j}^{T}(H + \sigma a_{s}a_{s}^{T})p_{j}}$$

$$= -\frac{g(x_{j})^{T}p_{j} + \sigma a_{s}^{T}(x_{j} - x_{l})}{p_{j}^{T}Hp_{j} + \sigma}$$

$$= -\frac{g(x_{j})^{T}p_{j} - \sigma b_{s}}{p_{j}^{T}Hp_{j} + \sigma} = -\frac{y_{s} - \sigma b_{s}}{p_{j}^{T}Hp_{j} + \sigma} = -\frac{y_{s}(\sigma)}{p_{j}^{T}Hp_{j} + \sigma}.$$
(19)

This implies that $\bar{\sigma}$ must be chosen large enough to satisfy

$$\bar{\sigma} > \sigma_{\min} = -p_i^T H p_i.$$

The derivative of $\alpha_i(\sigma)$ with respect to σ is given by

$$\alpha_j'(\sigma) = \frac{1}{(p_j^T H p_j + \sigma)^2} \left(y_s + b_s p_j^T H p_j \right) = \frac{y_s(\sigma_{\min})}{(p_j^T H p_j + \sigma)^2}.$$
 (20)

The choice of $\bar{\sigma}$ that we propose depends on two parameters y_{tol} and d_{max} . The scalar d_{max} defines the maximum change in *x* at each QP iteration. The scalar y_{tol} is the dual optimality tolerance and is used to define what is meant by a "nonoptimal" multiplier. In particular, the multiplier of the nonbinding constraint must satisfy $y_s < -y_{tol}$ in order to qualify as being nonoptimal.

There are two cases to consider for the choice of $\bar{\sigma}$.

Case (i): $b_s < 0$. In this case, $y_s(\sigma)$ is an increasing function of σ , which implies that there exists $\sigma_{opt} = (y_s - y_{tol})/b_s > 0$ such that $y_s(\sigma_{opt}) = y_{tol} > 0$. This modification changes the multiplier associated with the nonbinding constraint from nonoptimal to optimal. However, if $\sigma_{opt} < \sigma_{min}$, then the curvature is not sufficiently positive and σ must be increased so that it is larger than σ_{min} . The definition

Philip E. Gill, Michael A. Saunders and Elizabeth Wong

$$\bar{\sigma} = \begin{cases} \sigma_{\texttt{opt}} & \text{if } \sigma_{\texttt{opt}} \geq 2\sigma_{min}; \\ 2\sigma_{min} & \text{if } \sigma_{\texttt{opt}} < 2\sigma_{min}, \end{cases}$$

guarantees that the curvature along p_j is sufficiently positive with an optimal modified multiplier $y_s(\bar{\sigma})$. In either case, the QP algorithm proceeds by selecting an alternative nonbinding constraint without taking a step along p_j .

If $y_s(\sigma_{\min}) < 0$, it is possible to choose $\bar{\sigma} > \sigma_{\min}$ such that $y_s(\bar{\sigma})$ remains negative. The multiplier $y_s(\sigma)$ increases from the negative value $y_s(\sigma_{\min})$ to the value $-y_{tol}$ as σ increases from σ_{min} to the positive value $\sigma_{nonopt} = (y_s + y_{tol})/b_s$. This implies that if σ is chosen in the range $\sigma_{\min} < \sigma \leq \sigma_{\text{nonopt}}$, then the multiplier for the nonbinding constraint remains nonoptimal, and it is possible to both convexify and keep the current nonbinding constraint. However, in the SQP context it is unusual for a nonbinding constraint to have a negative value of b_s when x_k is far from a solution. For an SQP subproblem, b is the vector $c(x_k)$, and a negative value of b_s implies that the sth nonlinear constraint is violated at x_k . The linearization of a violated nonlinear constraint is likely to be retained in the working set because the SQP step is designed to reduce the nonlinear constraint violations. The picture changes when x_k is close to a solution of (NP) and the violations of the nonlinear constraints in the QP working set are small. In this case, if strict complementarity does not hold at the solution of the nonlinear problem² and x_k is converging to a point that satisfies the second-order necessary conditions, but not a second-order sufficient condition, then both b_s and y_s may be small and negative. It is for this reason that even if $y_s(\sigma_{\min})$ is negative, $\bar{\sigma}$ is chosen large enough that the multiplier changes sign and the nonbinding constraint is retained in the QP working set.

Case (ii): $b_s \ge 0$. In this case, $y_s(\sigma_{\min}) = y_s - b_s \sigma_{\min} < 0$ and $y_s(\sigma_{\min})$ decreases monotonically for all increasing $\sigma > \sigma_{\min}$. The step-length function $\alpha_j(\sigma)$ has a pole at $\sigma = -p_j^T H p_j$ and decreases monotonically, with $\alpha_j(\sigma) \to b_s \ge 0$ as $\sigma \to +\infty$. The behavior of $x(\sigma)$ is depicted in Figure 6 for a two-variable QP with constraints $a^T(x - x_I) \ge -b, x_1 \ge 0$, and $x_2 \ge 0$. The next iterate of the QP algorithm lies on the ray $x(\sigma) = x_j + \alpha_j(\sigma)p_j$. As $\sigma \to \infty$, $x(\sigma)$ moves closer to the point $x_j + b_s p_j$ on the hyperplane $a^T(x - x_I) = 0$.

A preliminary value of $\bar{\sigma}$ is chosen to give an x_{i+1} such that

$$||x_{j+1}-x_j||_2 \le d_{\max},$$

where d_{\max} is the preassigned maximum change in x at each QP iteration. If $\alpha_T = d_{\max}/||p_j||_2$, then the substitution of $\alpha_j(\bar{\sigma}) = \alpha_T$ in (19) gives $\bar{\sigma} = -(y_s + \alpha_T p_j^T H p_j)/(\alpha_T - b_s)$. However, the limit $\alpha_j(\sigma) \to b_s \ge 0$ as $\sigma \to +\infty$, implies that this value of $\bar{\sigma}$ may be large if $\alpha_j(\bar{\sigma})$ is close to b_s . In order to avoid this difficulty, the value of $\bar{\sigma}$ is used as long as the associated value of $\alpha_j(\bar{\sigma})$ is sufficiently larger than b_s , i.e.,

² i.e., $c_i(x^*)y_i^* = 0$ and $c_i(x^*) + y_i^* > 0$ at the optimal primal-dual pair (x^*, y^*) .

Fig. 6 The figure depicts the feasible region for a QP with constraints $a^T(x - x_l) \ge -b$, $x_1 \ge 0$, and $x_2 \ge 0$. The point x_j is a standard subspace minimizer with working-set constraint $a^T(x - x_l) \ge -b$. The surface of the hyperplane $a^T(x - x_l) = 0$ is marked in green. The QP base point x_l is feasible for $b \ge 0$. The QP search direction is the red dotted line. The next iterate of the QP algorithm lies on the ray $x(\sigma) = x_j + \alpha_j(\sigma)p_j$. As the modification parameter σ increases from its initial value of σ_{\min} , the new iterate $x(\sigma)$ moves closer to the point $x_j + bp_j$ on the hyperplane $a^T(x - x_l) = 0$.

$$\alpha_j(\bar{\sigma}) = \begin{cases} \alpha_T & \text{if } \alpha_T \ge 2b_s; \\ 2b_s & \text{if } \alpha_T < 2b_s, \end{cases} \text{ so that } \bar{\sigma} = \begin{cases} -\frac{y_s + \alpha_T p_j^T H p_j}{\alpha_T - b_s} & \text{if } \alpha_T \ge 2b_s, \\ -\frac{y_s + 2b_s p_j^T H p_j}{b_s} & \text{if } \alpha_T < 2b_s. \end{cases}$$

If this algorithm is applied to a nonconvex QP of the form (12), then a solution is found for the convexified QP

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \varphi(x) = g^T (x - x_I) + \frac{1}{2} (x - x_I)^T (H + E) (x - x_I)$$
subject to $Ax \ge Ax_I - b$, (21)

where *E* is a positive-semidefinite matrix of the form $E = A^T \bar{\Sigma} A$, with $\bar{\Sigma}$ a positive semidefinite diagonal matrix. In general, most of the diagonal elements of $\bar{\Sigma}$ are zero. The modification *E* may be reconstructed from *A* and a sparse representation of $\bar{\Sigma}$.

4.4 Preconvexification

The concurrent convexification method of Section 4.3 has the property that if x_0 is a subspace minimizer, then all subsequent iterates are subspace minimizers. Methods for finding an initial subspace minimizer utilize an initial estimate x_0 of the solution together with an initial working set \mathcal{W}_0 of linearly independent constraint gradients. These estimates are often available from a phase-one linear program or, in the SQP context, the solution of the previous QP subproblem.

If the KKT matrix K_0 defined by these initial estimates has too many negative or zero eigenvalues, then \mathcal{W}_0 is not a second-order consistent working set. In this case, an appropriate K_0 may be obtained by imposing temporary constraints that are deleted during the course of the subsequent QP iterations. For example, if *n* variables are temporarily fixed at their current values, then A_0 is the identity matrix and K_0 necessarily has exactly *n* negative eigenvalues regardless of the eigenvalues of $H(x_k, y_k)$. The form of the temporary constraints depends on the method used to solve the KKT equations; see, e.g., Gill and Wong [25, Section 6]. Once the temporary constraints are imposed, concurrent convexification can proceed as in Section 4.3 as the temporary constraints are removed from the working set during subsequent iterations.

A disadvantage of using temporary constraints is that it may be necessary to factor two KKT matrices if the initial working set is not second-order consistent. An alternative approach is to utilize the given working set \mathcal{W}_0 without modification and use *preconvexification*, which involves the definition of a positive-semidefinite E_0 such that the matrix

$$K_0 = \begin{pmatrix} H + E_0 & A_0^I \\ A_0 & 0 \end{pmatrix}$$
(22)

is second-order consistent. A suitable modification E_0 may be based on some variant of the symmetric indefinite or block-triangular factorizations of K_0 . Appropriate methods include: (i) the inertia controlling LBL^T factorization (Forsgren [10], Forsgren and Gill [11]); (ii) an LBL^T factorization with pivot modification (Gould [26]); and (iii) a conventional LBL^T factorization of (22) with $E_0 = \sigma I$ for some nonnegative scalar σ (Wächter and Biegler [46]). In each case, the modification E_0 is zero if \mathcal{W}_0 is already second-order consistent. On the Performance of SQP Methods for Nonlinear Optimization

4.5 Post-convexification

As concurrent convexification generates a sequence of second-order-consistent working sets, the SQP search direction $p_k = \hat{x}_k - x_k$ must satisfy the second-orderconsistent KKT system

$$\begin{pmatrix} H_k + E_k & J_w(x_k)^T \\ J_w(x_k) & 0 \end{pmatrix} \begin{pmatrix} p_k \\ -\widehat{y}_w \end{pmatrix} = - \begin{pmatrix} g(x_k) \\ c_w(x_k) \end{pmatrix},$$
(23)

where $H_k = H(x_k, y_k)$ is the exact Hessian of the Lagrangian, E_k is the matrix defined by the pre- and/or concurrent convexification, and $c_w(x_k)$ and $J_w(x_k)$ are the rows of $c(x_k)$ and $J(x_k)$ associated with indices in the final QP working set \mathcal{W} (cf. (7)). In most cases, concurrent convexification is sufficient to give $p_k^T(H_k + E_k)p_k > 0$, but it may hold that $p_k^T(H_k + E_k)p_k \le 0$. In this case, p_k is not a descent direction for $g_L(x_k, \hat{y}_k)$, and an additional *post-convexification step* is necessary. In the following discussion, there is no loss of generality in assuming that $E_k = 0$, i.e., it is assumed that H_k has not been modified during the preconvexification or concurrent convexification stages. Post-convexification is based on the following result.

Result 4.1 If J_w is a second-order-consistent working-set matrix associated with a symmetric H, then there exists a nonnegative $\bar{\sigma}$ such that the matrix $\bar{H} = H + \bar{\sigma} J_w^T J_w$ is positive definite. In addition, the solutions of the systems

$$\begin{pmatrix} H & J_w^T \\ J_w & 0 \end{pmatrix} \begin{pmatrix} p \\ -\widehat{y}_w \end{pmatrix} = -\begin{pmatrix} g \\ c_w \end{pmatrix} \quad and \quad \begin{pmatrix} \bar{H} & J_w^T \\ J_w & 0 \end{pmatrix} \begin{pmatrix} \bar{p} \\ -\bar{y}_w \end{pmatrix} = -\begin{pmatrix} g \\ c_w \end{pmatrix}$$

are related by the identities $\bar{p} = p$ and $\bar{y}_w = \hat{y}_w - \bar{\sigma}c_w$.

If the solution (\hat{x}_k, \hat{y}_k) of the QP subproblem does not satisfy the descent condition, then $p_k = \hat{x}_k - x_k$ is such that

$$p_k^T H(x_k, y_k) p_k = -g_L(x_k, \widehat{y}_k)^T p_k < \overline{\gamma} p_k^T p_k$$

for some positive $\bar{\gamma}$. The result implies that multipliers \bar{y}_k such that $[\bar{y}_k]_i = 0$, for $i \notin \mathcal{W}$, and $[\bar{y}_k]_w = \hat{y}_w - \bar{\sigma}c_w(x_k)$, provide the required curvature

$$p_k^T \bar{H}(x_k, y_k) p_k = -g_L(x_k, \bar{y}_k)^T p_k = \gamma p_k^T p_k,$$

where $\bar{\sigma} = (\gamma p_k^T p_k - p_k^T H(x_k, y_k) p_k) / ||c_w(x_k)||^2$ with γ chosen such that $\gamma \ge \bar{\gamma}$. (If $c_w(x_k) = 0$, then p_k is a descent direction for the objective function and no postconvexification is required; see, e.g., Gill, Murray, Saunders and Wright [20].) The extension of this result to the situation where (\hat{x}_k, \hat{y}_k) satisfies the modified KKT system (23) is obvious.

5 Summary

The numerical results presented in Section 3 indicate that the optimization packages SNOPT7 and IPOPT are very efficient and robust in general, solving over 85% of problems in the CUTEst test collection. However, the results also show that the performance of these codes depends greatly on the characteristics of the problem. These characteristics include the size of the problem, the availability of first and second derivatives, the types of constraints, and the availability of a good initial starting point. Ultimately, for every problem that is best solved by an SQP code, there will likely exist another that is best solved by an IP code.

To extend SQP methods so that second derivatives may be exploited reliably and efficiently, we propose convexification algorithms for the QP subproblem in an active-set SQP method for nonlinearly constrained optimization. Three forms of convexification are defined: preconvexification, concurrent convexification, and postconvexification. The methods require only minor changes to the algorithms used to solve the QP subproblem, and are designed so that modifications to the original problem are minimized and applied only when necessary.

It should be noted that the post-convexification Result 4.1 holds even if a conventional general QP method is used to solve the QP subproblem (provided that the method gives a final working set that is second-order consistent). It follows that post-convexification will define a descent direction regardless of whether concurrent convexification is used or not. The purpose of concurrent convexification is to reduce the probability of needing post-convexification, and to avoid the difficulties associated with solving an indefinite QP problem.

The methods defined here are the basis of the second-derivative solvers in the dense SQP package DNOPT of Gill, Saunders and Wong [22] and the forthcoming SNOPT9. All of the methods may be extended to problems in which the constraints are written in the form (9) (see Gill and Wong [25, Section 4]). In this case, the inequality constraints for the QP subproblem are upper and lower bounds, and all the modification matrices are diagonal.

Acknowledgments

We would like to thank Nick Gould for providing the latest version of the CUTEst test collection. We are also grateful to the referees for constructive comments that resulted in significant improvements in the final manuscript.

References

 Byrd, R., Nocedal, J., Waltz, R., Wu, Y.: On the use of piecewise linear models in nonlinear programming. Math. Program. 137, 289–324 (2013)

26

On the Performance of SQP Methods for Nonlinear Optimization

- Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program. 100(1, Ser. B), 27–48 (2004)
- Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: On the convergence of successive linearquadratic programming algorithms. SIAM J. Optim. 16(2), 471–489 (2005)
- Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)
- Contesse, L.B.: Une caractérisation complète des minima locaux en programmation quadratique. Numer. Math. 34, 315–332 (1980)
- Dolan, E.D., Moré, J.J.: Benchmarking optimization software with COPS. Technical Memorandum ANL/MCS-TM-246, Argonne National Laboratory, Argonne, IL (2000)
- Fletcher, R.: An ℓ₁ penalty method for nonlinear constraints. In: P.T. Boggs, R.H. Byrd, R.B. Schnabel (eds.) Numerical Optimization 1984, pp. 26–40. SIAM, Philadelphia (1985)
- Fletcher, R., Leyffer, S.: User manual for filterSQP. Tech. Rep. NA/181, Dept. of Mathematics, University of Dundee, Scotland (1998)
- Fletcher, R., Sainz de la Maza, E.: Nonlinear programming and nonsmooth optimization by successive linear programming. Math. Program. 43, 235–256 (1989)
- Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Num. Math. 43, 91–107 (2002)
- Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132–1152 (1998)
- Forsgren, A., Gill, P.E., Murray, W.: On the identification of local minimizers in inertiacontrolling methods for quadratic programming. SIAM J. Matrix Anal. Appl. 12, 730–746 (1991)
- Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization. SIAM J. Matrix Anal. Appl. 14, 560–587 (1993)
- Gill, P.E., Leonard, M.W.: Limited-memory reduced-Hessian methods for large-scale unconstrained optimization. SIAM J. Optim. 14, 380–401 (2003)
- Gill, P.E., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization. Math. Program. 7, 311–350 (1974)
- Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)
- Gill, P.E., Murray, W., Saunders, M.A.: User's guide for SQOPT Version 7: Software for large-scale linear and quadratic programming. Numerical Analysis Report 06-1, Department of Mathematics, University of California, San Diego, La Jolla, CA (2006)
- Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User's guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming. Report SOL 86-2, Department of Operations Research, Stanford University, Stanford, CA (1986)
- Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Maintaining *LU* factors of a general sparse matrix. Linear Algebra Appl. 88/89, 239–270 (1987). DOI 10.1016/0024-3795(87)90112-1. URL http://dx.doi.org/10.1016/0024-3795(87)90112-1
- Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Some theoretical properties of an augmented Lagrangian merit function. In: P.M. Pardalos (ed.) Advances in Optimization and Parallel Computing, pp. 101–128. North Holland, North Holland (1992)
- Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)
- 22. Gill, P.E., Saunders, M.A., Wong, E.: User's Guide for DNOPT: a Fortran package for medium-scale nonlinear programming. Center for Computational Mathematics Report CCoM 14-05, Department of Mathematics, University of California, San Diego, La Jolla, CA (2014)
- Gill, P.E., Wong, E.: Sequential quadratic programming methods. In: J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming, *The IMA Volumes in Mathematics and its Applications*, vol. 154, pp. 147–224. Springer New York (2012). URL http://dx.doi.org/10.1007/978-1-4614-1927-3_6. 10.1007/978-1-4614-1927-3_6

- Gill, P.E., Wong, E.: User's guide for SQIC: Software for large-scale quadratic programming. Center for Computational Mathematics Report CCoM 14-02, Center for Computational Mathematics, University of California, San Diego, La Jolla, CA (2014)
- Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Math. Prog. Comp. 7(1), 71–112 (2015). DOI 10.1007/s12532-014-0075-x. URL http://dx.doi.org/10.1007/s12532-014-0075-x
- Gould, N.I.M.: On modified factorizations for large-scale linearly constrained optimization. SIAM J. Optim. 9, 1041–1063 (1999)
- Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads. Technical report, Rutherford Appleton Laboratory, Chilton, England (2013). DOI 10.1007/s10589-014-9687-3. URL http://dx.doi.org/10.1007/s10589-014-9687-3
- Gould, N.I.M., Robinson, D.P.: A second derivative SQP method with imposed descent. Numerical Analysis Report 08/09, Computational Laboratory, University of Oxford, Oxford, UK (2008)
- Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: Global convergence. SIAM J. Optim. 20(4), 2023–2048 (2010)
- Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: Local convergence and practical issues. SIAM J. Optim. 20(4), 2049–2079 (2010)
- Greenstadt, J.: On the relative efficiencies of gradient methods. Math. Comp. 21, 360–367 (1967)
- Grippo, L., Lampariello, F., Lucidi, S.: Newton-type algorithms with nonmonotone line search for large-scale unconstrained optimization. In: System modelling and optimization (Tokyo, 1987), *Lecture Notes in Control and Inform. Sci.*, vol. 113, pp. 187–196. Springer, Berlin (1988). DOI 10.1007/BFb0042786. URL http://dx.doi.org/10.1007/BFb0042786
- Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989). DOI 10.1007/BF00940345. URL http://dx.doi.org/10.1007/BF00940345
- Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59(8), 779–805 (1991). DOI 10.1007/BF01385810. URL http://dx.doi.org/10.1007/BF01385810
- Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977)
- Kungurtsev, V.: Second-derivative sequential quadratic programming methods for nonlinear optimization. Ph.D. thesis, Department of Mathematics, University of California San Diego, La Jolla, CA (2013)
- Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional equality constrained phase. IMA J. Numer. Anal. 32, 553–579 (2012)
- Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)
- Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: G.A. Watson (ed.) Numerical Analysis, Dundee 1977, no. 630 in Lecture Notes in Mathematics, pp. 144–157. Springer Verlag, Heidelberg, Berlin, New York (1978)
- Schittkowski, K.: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. I. Convergence analysis. Numer. Math. 38(1), 83–114 (1981/82). DOI 10.1007/BF01395810. URL http://dx.doi.org/10.1007/BF01395810
- Schittkowski, K.: NLPQL: a Fortran subroutine for solving constrained nonlinear programming problems. Ann. Oper. Res. 11, 485–500 (1985/1986)
- Schnabel, R.B., Eskow, E.: A new modified Cholesky factorization. SIAM J. Sci. and Statist. Comput. 11, 1136–1158 (1990)
- Spellucci, P.: An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Program. 82, 413–448 (1998)

28

On the Performance of SQP Methods for Nonlinear Optimization

- Toint, P.L.: An assessment of nonmonotone linesearch techniques for unconstrained optimization. SIAM J. Sci. Comput. 17(3), 725–739 (1996). DOI 10.1137/S106482759427021X. URL http://dx.doi.org/10.1137/S106482759427021X
- Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (electronic) (2005). DOI 10.1137/S1052623403426544. URL http://dx.doi.org/10.1137/S1052623403426544
- Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (electronic) (2005). DOI 10.1137/S1052623403426556. URL http://dx.doi.org/10.1137/S1052623403426556
- Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57 (2006)
- 48. Wächter, A., Biegler, L.T., Lang, Y.D., Raghunathan, A.: IPOPT: An interior point algorithm for large-scale nonlinear optimization. https://projects.coin-or.org/Ipopt (2002)
- Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (electronic) (2004). DOI 10.1137/S1052623403428208. URL http://dx.doi.org/10.1137/S1052623403428208