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Abstract Stabilized sequential quadratic programming (sSQP) methods for nonlinear
optimization generate a sequence of iterates with fast local convergence regardless of
whether or not the active-constraint gradients are linearly dependent. This paper con-
cerns the local convergence analysis of an sSSQP method that uses a line search with a
primal-dual augmented Lagrangian merit function to enforce global convergence. The
method is provably well-defined and is based on solving a strictly convex quadratic
programming subproblem at each iteration. It is shown that the method has superlinear
local convergence under assumptions that are no stronger than those required by con-
ventional stabilized SQP methods. The fast local convergence is obtained by allowing
a small relaxation of the optimality conditions for the quadratic programming sub-
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problem in the neighborhood of a solution. In the limit, the line search selects the unit
step length, which implies that the method does not suffer from the Maratos effect.
The analysis indicates that the method has the same strong first- and second-order
global convergence properties that have been established for augmented Lagrangian
methods, yet is able to transition seamlessly to sSQP with fast local convergence in
the neighborhood of a solution. Numerical results on some degenerate problems are
reported.

Keywords Nonlinear programming - Augmented Lagrangian - Sequential quadratic
programming - SQP methods - Stabilized SQP - Primal-dual methods - Second-order
optimality

Mathematics Subject Classification 49J20 - 49J15 - 49M37 - 49D37 - 65F05 -
65KO05 - 90C30

1 Introduction

Sequential quadratic programming (SQP) methods are an important class of methods
for minimizing a smooth nonlinear function subject to both equality and inequality
constraints. This paper concerns the local convergence properties of a new stabilized
SQP method for the solution of a nonlinear optimization problem written in the form

mini%lize f(x) subjectto c(x) =0, x>0, (NP)
xeR”?

where ¢: R" — R™ and f: R" +— R are twice-continuously differentiable. For
problem (NP), the vector g(x) is used to denote Vf (x), the gradient of f at x. The
matrix J(x) denotes the m x n constraint Jacobian, which has ith row Vc; (x)7, the
gradient of the ith constraint function ¢; at x. The Lagrangian associated with (NP) is
L(x,y,z) = f(x)—c(x)Ty—z"x, where y and z are m- and n-vectors of dual variables
associated with the equality constraints and nonnegativity constraints, respectively.
The Hessian of the Lagrangian with respect to x is denoted by H (x, y) = V2f(x) —
S iV (x).

At each iteration of a conventional line-search merit-function SQP method, a suf-
ficient decrease in a merit function is obtained by performing a line search in the
direction of a solution of a quadratic programming (QP) subproblem in which a local
quadratic model of the Lagrangian is minimized subject to the linearized constraints.
The merit function is designed to provide a measure of the quality of a given point as
an estimate of a solution of the nonlinearly constrained problem. (For a recent survey
of SQP methods, see Gill and Wong [17].) Stabilized sequential quadratic program-
ming (sSQP) methods are designed to improve the poor local convergence rate that
can occur when a conventional SQP method is applied to an ill-posed or degenerate
problem. Given an estimate (xi, yx) in the neighborhood of a primal-dual solution
(x*, y*) of problem (NP), sSSQP methods compute a new solution estimate based on
the properties of a QP subproblem of the form
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minimize g0 (x — xe) + 06 = 210" H (¥, y0 0 =20 + 3y

subject to c(xx) + J () (x — xx) + pux(y —y) =0, x>0, (1)

where py is a positive scalar of the order of the distance of (xx, yx) to the set of
solutions of (NP). The QP subproblem associated with a conventional SQP method
corresponds to the value py = 0. The terms in the objective and constraints of (1)
associated with uy serve to bound the change in the dual variables and provide a
sequence of iterates with fast local convergence regardless of whether or not the
active-constraint gradients are linearly dependent. The first sSSQP method was pro-
posed by Wright [32], who established a superlinear rate of convergence of the
solutions {(xg, yx)} of (1) under the assumptions of strict complementarity and the
satisfaction of the Mangasarian-Fromovitz constraint qualification. These assump-
tions were relaxed by Hager [19], and more recently by Fernandez and Solodov [9],
and Solodov and Izmailov [24]. Independently, Fischer [10] proposed an algorithm in
which an auxiliary QP problem is solved for the multiplier estimate of the conventional
QP subproblem. This method also has superlinear convergence under appropriate
assumptions. The analysis of a conventional sSQP method concerns the sequence
{(xx, yx)} of solutions of the QP subproblem (1). Other methods related to sSQP
identify an estimate of the optimal active set and then solve an equality constrained
or inequality constrained QP defined in terms of a subset of the constraints. Con-
straints omitted from the estimated active set are allowed to be violated slightly.
Wright [33,34] includes only a subset of the linearized constraints in an inequal-
ity constrained sSQP subproblem. Wright [35], and Oberlin and Wright [31] use an
auxiliary inequality constrained subproblem to estimate the optimal active set and then
solve an sSQP subproblem with only equality constraints. Izmailov and Solodov [21]
also use an auxiliary subproblem, but solve an unstabilized equality constrained prob-
lem using a rank detection method to treat any linear dependence in the linearized
constraints.

All of these sSQP methods can be shown to exhibit fast local convergence under
suitable assumptions. It should be emphasized that, with the notable exception of
Wright [35], previous analyses of sSQP methods do not pertain to a consistent, well-
defined algorithm. They show only that if a specific local solution of a nonconvex QP
subproblem is found, then these solutions converge at a superlinear rate. Unfortunately,
in a practical method, there is no guarantee that a nonconvex QP solver will find the
specific solution required for the theory. This problem is in addition to the well-known
difficulties associated with solving a nonconvex QP, i.e., the potential for multiple
and unbounded solutions. (See Kungurtsev [27, Chapter 5] for a discussion of these
issues.)

Although sSQP methods exhibit fast local convergence, they come with little global
convergence theory, so that stabilized methods must start by solving the QP subproblem
associated with a conventional (globally convergent) SQP method and switch to the
stabilized QP strategy when it is determined that the iterates are in the proximity of
a solution. Moreover, as mentioned above, many sSQP methods require the solution
of an auxiliary inequality-constrained subproblem at each outer iteration, usually a
linear program (LP).
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In this paper we consider the local convergence properties of a globally convergent
sSQP method that does not require a switch to a conventional SQP method or the
solution of an auxiliary inequality constrained subproblem. The method is based on
using a primal-dual augmented Lagrangian merit function in conjunction with a line
search to enforce global convergence. At each iteration, an estimate of the solution
is computed by minimizing a strictly convex local quadratic model of the augmented
Lagrangian subject to simple bound constraints. This subproblem is formally equiv-
alent to a QP problem that is closely related to the QP subproblem associated with
sSQP.

The principal contributions are the following. (i) A local descent step is proposed
that is based on allowing a small relaxation of the optimality conditions for the bound-
constrained subproblem. It is shown that this step provides iterates that are equivalent
to those from a conventional sSSQP method when close to the solution. This equiv-
alence holds under conditions that are no stronger than those required to establish
the superlinear convergence of a conventional sSQP method. (ii) A local convergence
analysis is given that does not require the assumption of a constraint qualification or
strict complementarity condition. (iii) It is shown that the step length of one is selected
in the limit, which implies that the method does not suffer from the Maratos effect (see
Maratos [28]). As far as we are aware, this is the only stabilized SQP method with this
property. (iv) Although exact second-derivatives are used, the method does not require
the solution of a nonconvex QP subproblem—a problem that is known to be NP-hard.
In addition, the local convergence theory makes no assumptions about which local
solution of the QP subproblem is computed. (v) Preliminary numerical results indi-
cate that the method has good global and local convergence properties for degenerate
problems under weak regularity assumptions. Overall, the local analysis of this paper
and the global analysis of [14] imply that the proposed method has the same strong
first- and second-order global convergence properties that have been established for
augmented Lagrangian methods, yet is able to transition seamlessly to sSQP with fast
local convergence in the neighborhood of a solution.

The remainder of the paper is organized as follows. This section concludes with a
summary of the notation. Section 2 contains a description of the second-order primal-
dual sSQP method. The local convergence properties of the method are established
in Sect. 3. In Sect. 4, methods are discussed for solving the sSQP subproblems, and
numerical results are provided. Although this paper describes the method in its entirety,
the reader is referred to [14] for a complete analysis of the global convergence, as well
as additional details of the method that are not related to the local analysis.

Unless explicitly indicated otherwise, || - || denotes the vector two-norm or its
induced matrix norm. Given vectors a and b with the same dimension, the vector
with ith component a;b; is denoted by a-b. Similarly, min(a, b) is the vector with
components min(a;, b;). The vectors e and ¢; denote, respectively, the column vector
of ones and the jth column of the identity matrix /. The dimensions of e, e; and /
are defined by the context. The set of integers {1, 2, ..., n} is denoted by 1 : n. Given
vectors x and y, the vector consisting of the elements of x augmented by elements
of y is denoted by (x, y). The value of a scalar-, vector- or matrix-valued function F
with arguments x and y will be written as either F (x, y) or F'(v), where v is the vector
(x, ). The ith component of a vector labeled with a subscript will be denoted by [ - ];,
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e.g., [v]; is the ith component of the vector v. For a given £-vector u and index set
S, the quantity [ u | s denotes the subvector of components u; such that j € {1, 2, ...,
£}NS. Similarly, if M is a symmetric £ x £ matrix, then [ M ]s denotes the symmetric
matrix with elements m;; for i, j € {1, 2, ..., £} NS. Let {«}} ;>0 be a sequence
of scalars, vectors or matrices and let {8;};>0 be a sequence of positive scalars. If
there exists a positive constant y such that ||| < yB;, we write o; = O(B;). If
there exists a sequence {y;} — 0 such that ||| < y;B;, we say that a; = 0o(8;).
If there exist positive constants y; and y; such that y18; < |la;|| < y28;, we write

aj = O(B;).

2 The primal-dual stabilized SQP algorithm

The proposed algorithm is designed to find first- and second-order KKT pairs associ-
ated with problem (NP). A vector x* is a first-order KKT point for problem (NP) if
there exists a dual vector y* such that » (x*, y*) = 0, where

re, ) = | (e, min (x. g0) = 7 00)"y)) | @

Any (x* y*) satisfying r (x* y*) = 0, is called a first-order KKT pair. For arbitrary
vectors x and y of appropriate dimension, the scalar r(x, y) provides a practical esti-
mate of the distance of (x, y) to a first-order KKT pair of problem (NP). If, in addition,
(x* y*) satisfies the condition p”H (x* y*)p > 0 for all p such that J(x*)p = 0,
with p; > 0 for all i such that x = 0, then (x*, y*) is referred to as a second-order
KKT pair. In general, the Lagrange multiplier associated with a first-order KKT point
is not unique, and the set of Lagrange multiplier vectors is given by

V&x*) ={y e R": (x¥* y) satisfies r(x* y) = 0}.
The algorithm is based on replacing problem (NP) by a sequence of problems

minimize M (x,y; y;, u;) subjectto x >0, 3)
xeR™ yeRm

where M (x, y: y, ;) is the primal-dual function

M . WE _ _ T.E 1 2 1 _ LEy12
(Y i )= () =)y + 5= llc@)I1" + 5—llc () + i (v = yO 7,
2k 2 g

“)
with 1 a positive penalty parameter and y; an estimate of a Lagrange multiplier
vector for problem (NP). The method has an inner/outer iteration structure in which
each outer iteration involves the minimization of a quadratic model of M subject to the
nonnegativity constraints. The inner iterations are then those of the active-set method
used to find an approximate bound-constrained minimizer of the quadratic model. If
the Hessian of M is not positive definite, a direction of negative curvature for M is
computed. A direction obtained by solving the QP subproblem is combined with the
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direction of negative curvature (if one is computed) to give a search direction for a
line search designed to find a step of sufficient decrease in M (x, y; y,f , uk).

Each outer iteration involves the definition of two related QP subproblems associ-
ated with the primal-dual function (4). The objective function in both subproblems is
defined in terms of the gradient VM and a matrix that approximates the Hessian VM.
For values of y* and p, the gradient VM (x, y ; y%, 1) and Hessian V2M (x, y ; y%, 1)
at (x, y) may be written in the form

(g(X) —J @) (s y5, )+ (r(xs; ¥, ) — y)))
n(y —m(x; y5, w) ’

and

(H(x, sy W)+ (s 5 ) — ) + 2 (0T (x) J(x)T)
J(x) ul )’

where 7 is the vector-valued function 7 (x ; y*, ) = y* — c(x) /.

Let (xk, yx) be the kth estimate of a primal-dual solution of (NP). Let v and v denote
the (n+m)-vectors of primal-dual variables (x, y) and (xx, yx). Given a second penalty
parameter . such that 0 < uf < u,, the change in M at v; may be approximated by
the quadratic function Q, (v ; y¢, ), where

Qs y*, ) = VM (v 1y, 1w — vp) + 50 = v) " Bug: 1w — 1), (5)

and the matrix B(v, ; u}) is obtained by replacing 7 (x, ; i, 43) by yx in the leading
block of the Hessian matrix V2M(xk, Ve Ve mp)s e,

H (xi, vi) + lf_fJ(xk)TJ(xk) J(xkﬂ) ©

Ry —
B(xkv yk ) /’l/k) _( J(_xk) 'u/[]i]

The matrix B(x, y; ; ,uﬁ) is independent of 7 and therefore does not involve y,f If
(x* y*) satisfies certain second-order sufficient conditions for an optimal solution of
problem (NP), then, for the values vy = (x*, y*) and y,’f =y, there exists a positive
f such that for all 0 < pf < i, the point (x*, y*) satisfies the second-order sufficient
optimality conditions for the QP subproblem

minimize Q,(v; y;, 1) subjectto [v]; >0, i=1:n (7
v
(see Gill, Kungurtsev and Robinson [14]). The benefit of using B(x, y, ; /Li) and
not VM (Xps Vi s y,f, ,uﬁ) in the definition of the quadratic function (5) is that the QP
subproblem (7) is formally equivalent to the QP subproblem
P T 1 T 1L Ry p2
minimize gOx) " (x — xp) + 5 (x — xk)" H (X, yi) (x — xi) + 511yl

subject to ¢(xx) + J (xp)(x — xk) + uf(y —y) =0, x>0
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(see Gill and Robinson [16]). A comparison of this subproblem and (1) indicates that
setting y; = y, in the definition of (5) and forcing 1 — 0 as (xx, yx) converges to a
primal-dual solution (x*, y*) will induce the method to behave like an sSQP method
and thereby inherit the same fast local convergence rate.

At the outermost level, the method may be regarded as a primal-dual augmented
Lagrangian method for which the parameters {y; } and {1t; } are adjusted to give global
convergence. However, the sequence of penalty parameters {x} is chosen in such a
way that, in the neighborhood of a solution, the search direction is equivalent to that
defined by an sSQP method. In this context, uf plays the role of a regularization or
stabilization parameter rather than a penalty parameter, thereby providing an O (i)
estimate of the conventional SQP direction (see Gill and Robinson [16]).

The next four sections provide some additional details of the algorithm, with an
emphasis on those aspects related to the local convergence analysis. More details of
the computation, including a step-by-step description of the main algorithms, may be
found in Gill, Kungurtsev and Robinson [14]. In Sect. 2.1 we provide details of how
the parameters y¢, 11, and juf are defined. In Sect. 2.2 we consider the definition of the
QP subproblem and show that although the QP (7) cannot be used directly as a local
quadratic model of M, it forms the basis for two approximate convex QP subproblems,
one with inequality constraints, and the other with only equality constraints. In Sect. 2.3
we give a brief outline of the flexible line search. Finally, Sect. 2.4 provides a brief
summary of the algorithm.

2.1 Definition of the penalty parameters and multiplier estimate

At the start of the kth outer iteration, (xx, yx) is known, as well as the regularization
parameter 4 _, and penalty parameter 11 1. The first step is to compute y; and juf for
the new iteration. These parameters are defined in terms of an estimate of the optimal
active set of problem (NP). This estimate involves a positive scalar € that reflects the
distance of (x, y) to a first-order optimal pair for problem (NP). The e-active set is
defined as

Ac(x, y, ) = {i :x; <€, with € = min (ea, max (,u, r(x, y)y) )}, 9)
where y and €, are fixed scalars satisfying0) <y < 1land0 < ¢, < 1, and r(x, y) is

the nonnegative scalar of (2). Similarly, the e-free set is the complement of A in {1,
2,...,n+m},ie.,

Fex,y, ) ={1,2,....n4+m}\ Ac(x, y, n). (10)

The calculation of y; and p also requires the scalar & (£§ > 0), which is an
estimate of the magnitude of the “most negative” eigenvalue of B,_(v; ; uj_,). The

scalar & is computed as part of the scalar-vector pair (&, s,ﬁl)) such that

nT 1 1
stV B st = =g llulV)?, (11)
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1
k

where u; ’ is the vector of first n components of s,E”. If & = 0, then s,il) = 0.

If By, (v;; /‘2—1) is positive definite then (&, s,il)) = 0. (The calculation of & is
discussed further in [14, Algorithm 1] and Sect. 2.2.) The values of y; and 1} depend
on scalars ‘r/“‘,‘(x_ 1> ?f}("_ | and 7;_1 defined below. The magnitudes of ﬁ"‘,‘("_ 1> g’“,‘("_ |
and t_ reflect the distance of (xk, vg) to an optimal point.

The multiplier estimate y is set to yy if (x, yx) gives an improvement in a measure
of the distance to a second-order solution (x*, y*). The algorithm uses the feasibility

and optimality measures 1 (x;) and  (xg, vk, &) such that

n(xx) = |le(xx)|l, and

o s ks &0 = max ([ mine, g0 =S| &) (2

Given n(xg) and o (xk, Yk, &), weighted combinations of the feasibility and optimality
measures are defined as

Oy (X, yi) = n(xi) + Bo(xk, Yk, &), and
b0 Xk, Yi» k) = Bn(xk) + o Xk, Yk, &k),

where B is a fixed scalar such that 0 < f < 1. (With this notation, “V” indicates
a measure of the constraint violations and “O” denotes a measure of the distance to
optimality.) The assignment y; = y, is done if

by < SOPR or  do(ur. E) < SO0T ). (13)

The point (xx, yx) is called a “V-iterate” if it satisfies the bound on ¢ (vx), and an “O-
iterate” if it satisfies the bound on ¢ (v, &). A “V-O iterate” is a point at which one or
both of these conditions holds, and the associated iteration is called a “V-O iteration.”
For a V-O iteration, new values are given by 1 = %rk_ 1, and qb&‘j‘(x = % 3}?{"71 or

ok = % o 11> depending on which of the inequalities in (13) holds. Also, the new
regularization parameter is

(14)

X [min (ng, max (r,,&)7) ifmax(r, &) > 0;
MKy = 1,r .
M otherwise,

where ry = r(xg, yr) is defined in (2).
If the conditions for a V-O iteration do not hold, a test is made to determine if
(xk, yx) 1s an approximate second-order solution of the problem

minimize M(x,y; y;_;, 4{_;) subjectto x > 0. (15)
X,y
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In particular, (xk, yx) is tested using the conditions:

| min (Xk, Ve M (Xg, Yis Yi—1» ng))” = T_1s (162)
IVy M (xys yis Vet gDl < Te_ymg—y» and (16b)

where t;_1 is a positive tolerance. If these conditions are satisfied, then (xg, yx) is
called an “M-iterate” and the parameters are updated as in a typical conventional
augmented Lagrangian method, with the multiplier estimate y;_, replaced by the
safeguarded value

yi = max ( — Ymax€, min( yg, ymaxe)) a7

for some large positive scalar constant ynm,x, and the new regularization parameter is
given by
. 1 .
- mln(j;ﬂ;fl, max (rk,sk)y), itmax(r, &) > 0; (18)
k % Uy otherwise.

In addition, a new tolerance tj is computed such that 7 = %‘Ck_l.
Finally, if neither (13) nor (16) are satisfied, then y; = y¢_,, iy = ui_;, 0% =

max max __ jmax _ s 1: . . .
Vi1 Pox = %o k—1>and T = Tk—1. As the multiplier estimates and regularization

parameter are fixed at their current values in this case, (xx, yx) is called an “F-iterate”.

2.2 Definition of the quadratic model and line-search direction

The bound-constrained problem (7) is not suitable for the calculation of a search
direction because B(v, ; 14}) is not positive definite in general. A nonconvex QP can
have many local minima and may be unbounded. In addition, the certification of a
second-order solution of a nonconvex QP is computationally intractable in certain

situations. These difficulties are avoided by approximating subproblem (7) by the
convex QP

mini;nize @k(v ; Ve 4p) subjectto [v]; >0, i=1:n, (19)
where @k(v ; Yi» y) is the strictly convex quadratic model
Qw3 i, ) = VM (v s v, ) (0 = v0) + 50— v) " By s i) (v — v, (20)
with B (v 5 y) a positive-definite approximation of B(v, ; i) of the form

_ H(xy, 2 700TT ) T T
B(vk;ui)z( Ok ) + 55 )T () J (k) ) on

k
J () ufl
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where H (xk, yr) is defined so that the matrix B (x> ¥y 3 1uy) is positive definite, and
3}6 (s Vi 3 ) is equal to B (xp, yg 3 i) if By (xy, y, 3 i) is positive definite.
The matrix B is computed by a process known as “convexification” (see [16, Sect. 4]
for details). If the unique solution of the subproblem (19) is denoted by vy, then the
associated direction vector starting from vy is given by d; = Uy — vi. The vector dy
found by solving (19) is known as the global descent direction because of its crucial
role in the proof of global convergence.

An important property of the proposed method is the ability to compute a direction
dy from an alternative QP subproblem that has only equality constraints. The optimality
conditions for the QP subproblem (7) at an optimal point vy = vi + dj are given by

[VO, (v + 5 i, k) 17 =0, [VOQu(vp +di s yio g)1a >0, and
[vi +di]i =0 for i =1:n, (22)

where [ -] 4 and [ - ].» denote vectors with components from the active/free sets
Ax)={i:[x]; =0} and Fx)={l:n+m}\ Ax), (23)

at vy = vy + dy. If strict complementarity does not hold for (NP), then some of the
components of y* associated with variables on their bounds may be zero, in which
case some QPs defined at x; near x* may have multipliers that are close to zero. In this
situation the QP algorithm may remove active-set indices associated small negative
multipliers at one outer iteration, only to add them again at the next. This inefficiency
is prevented using an approximate QP solution in which small negative multipliers are
regarded as being optimal.

If Bf, is positive definite and vi is a V-O iterate (in which case y,f = y;), the
solution of the equality-constraint QP subproblem

minimize Q,(v; y;, 1) subjectto [v]4 =0, (24)
v

is unique. As in the case of a global descent direction, the solution v may be defined
in terms of a step dj from the point vx using the optimality conditions

[Uk+dk]Ae =0, [VQk(Uk‘de;y;f,M[/E)]]:e =0, (25)

with no nonnegativity restriction on the components of the gradient vector [ VQ, (v, +
dy s yi . 1) 14, - The unique direction satisfying these equations is referred to as the
local descent direction. When computed, it is used as the vector dy in the line search
only if certain conditions hold. Let

tr = r(xg, yk))‘, where 0 < A <min{y, 1 —y} <1, (26)
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and y is the parameter used in the definition (9) of the e-active set. The local descent
direction dy, satisfying (25) is used in the line search when

[vk +di]i 20, i=1:n, [VQu(v, +dy:yi, )1 = —fre, and
wMld, <0. (27)

These conditions may be satisfied at any iterate, but are most likely to be satisfied
in the neighborhood of a solution. If the local descent direction does not satisfy the
conditions (27) and is therefore not selected for the line search, it is used to initialize the
active-set method for solving (19). In this sense, the equality-constrained subproblem
(24) is not an auxiliary subproblem, but one that must be solved anyway as part of the
solution of the QP subproblem (19) (for more details, see Sect. 4).

The line-search direction Avy is the sum of two vectors dj and s;. The vector dj
is either the global descent direction or local descent direction as computed above.
The vector sy, if nonzero, is a direction of negative curvature for the quadratic model
Q, (v yi_. x_1)- The vector s has the form s; = (uy, wi) and is a scalar multiple

of the vector s,gl) of (11) defined such that

st B u)s; <0, VM (v yi, u) s, <0, and
[vi+dr+s¢]i =0, i=1:n. (28)
The direction sy is zero if no negative curvature is detected, but s must be nonzero if
& > 0and dy = 0 (see [14, Lemma 2.2]), which ensures that the line-search direction
is nonzero at a first-order stationary point v at which B (x, y, ; u{_,) is not positive
semidefinite.

2.3 Computation of the line-search step

Once the directions di and s; have been computed, a flexible line search is performed
based on the search direction Avy = di + sk. (The idea of a flexible line search was
proposed by Curtis and Nocedal [4] in the context of minimizing an /1 penalty function,
and extended to the augmented Lagrangian function by Gill and Robinson [16].)

For a given line-search penalty parameter p, an Armijo condition is used to define
a reduction in the function W (o ; u) = M (v, + aAv, ; y,f, W) that is at least as good
as the reduction in the line-search model function

Vi (ors e, €g) = Wi (05 ) + (0 w)
+1 — Do min (0, Av] B(xy, vy s 1k D Av), (29)

where lIJk’ denotes the derivative with respect to «. The scalar ¢ is either 1 or 2,
depending on the order of the line-search model function. The value £; = 1 implies
that ¥ is an affine function, which gives a first-order line-search model. The value
£x = 2 defines a quadratic ¥ and gives a second-order line-search model. The first-
order line-search model is used when dy # 0, s = 0, and (xg, yx) is a V-O iterate.
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This is crucial for the proof that the line-search algorithm returns the step length of
one in the neighborhood of a second-order solution (see Theorem 2 below).

Given a fixed parameter y; € (0, %), the flexible line search attempts to compute
an oy that satisfies the modified Armijo condition

05 ) — Wieley s 1) = v (V05 g, £) — Weloye s g, ) (30)

for some ) € [uf, i, ]. The required step is found by repeatedly reducing oy by a
constant factor until oy (g 5 i, €x) > ¥s or pr(ey ; ,u’,i, L) > ys, where

oo, €) = (W05 ) — Wios ) /(¥ 05 g, ) — Yrlaes g, ©)).

(Just prior to the line search, the line-search penalty parameter uy is increased if
necessary to ensure that i, > uf, i.e., p, = max(ug, p;).)

The Armijo procedure is not executed in two situations. First, if dy = s = 0,
then the step length is set at o = 1. Second, oy is set to zero if dy = O,
VM (v, ; y,f, Mf )Tsk = 0, and the magnitude of the curvature of the merit function in
the direction of sy is not sufficiently large compared to &, the magnitude of the cur-
vature of the quadratic model. The magnitude of the negative curvature is considered
to be insufficient if —skTVZM(vk Ve S/ Ny I < yséx, where uy, is the vector of
first n components of si. In either case, vr4+1 = vk and it must hold that a ug such that
/,Li < /inl is used in the next iteration (see Lemmas 2.3(2) and 2.4(3) of [14]).

Once oy, has been found, the next penalty parameter is set as

M if pp (ot 5 pks k) = ¥s, ordy = s =0, or ag = 0;

Hk+1 = .
max (%,uk, ,u’,:), otherwise.

€1y
The aim is to decrease the penalty parameter only when the merit function computed
with p is not sufficiently reduced by the trial step.

2.4 Algorithm summary

The computation associated with the kth iteration of the main algorithm may be
arranged into seven principal steps.

1. Given (xx, yx) and the regularization parameter uf_, from the previous iteration,
compute F,(x;, v, u3_;) and B(v, ; uf_;). Compute the nonnegative scalar &,
and vector s,ﬁl) such that s,EDTB(vk ; Mﬁ_l)sél) = —§k||u,({1)||2, where & > 0 and
u,(cl) is the vector of first n components of S/El). If § > 0, then &, approximates
the magnitude of the “most negative” or “least” eigenvalue of B, (v : uf_). If
g =0, then s{ = 0.1f B,_(v, ; u¥_,) is positive definite then (&, s\ ) = 0.
(See [14, Algorithm 1].)

2. Terminate if the following conditions hold:

r(xXg, yr) < Tstop» & < Tstop» and Mifl = Tstops (32)
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where 7y0p is a preassigned stopping criterion. If these conditions are satisfied, x
is an approximate second-order KKT point.
3. Compute yi and pf for the kth iteration based on the values &, r(xx, yk), yi_»

,uk 1s 3“,‘(" 1 3“}(" | and 7,_,. Compute new values for ¢max g’e}(", 7. (See
Steps 13-24 of Algorithm 5 [14].)
4. Terminate if x; is an M-iterate such that
min (e, Tsop) > 15, and || min (xg, J () e())ll < Top.  (33)

If these conditions are satisfied, xj is an approximate infeasible stationary point
of the problem min ||¢(x)||? subject to X = 0.

5. Compute a positive-definite matrix B(vk u k) such that B (X Vi ,uk) =

Bz (X, Vi wy) if the matrix B r (X Vs uy) is positive deﬁnlte Compute dy =

V) — vk, Where Ty is the solution of either the equality-constraint QP subproblem
(24) or the strictly convex QP subproblem (19). In either case, di has the form
dr = (pk, qk), where the primal components py satisfy x; + pr > 0. (See [14,
Algorithm 2].)

6. Rescale the direction s( ) to give a feasible direction of negative curvature s =
(ug, wy) satisfying (28) (See [14, Algorithm 3].)

7. Perform aflexible line search along the vector Avy = sy +dr = (ur+ pr, Wk +qk)-
(See [14, Algorithm 4].) Update the line-search penalty parameter w; using (31).

3 Local convergence

The analysis involves second-order sufficient conditions defined in terms of the sets
of strongly-active variables A, and weakly-active variables Ay:

Ai(x,y) =1{i € A) 1 [gx) = J(x) y 1 > 0},
Ag(x, y) =i € Ax) : [g(x) = J () y]; =0} (34)

Definition 1 (Second-order sufficient conditions (SOSC)) A primal-dual pair (x* y*)
satisfies the second-order sufficient optimality conditions for problem (NP) if it is a
first-order KKT pair (i.e., r(x* y*) = 0) and

pTH(* y*)p >0 forall p e C(x* y*)\ {0}, (35)

where C(x* y*) = null(J(x*)) N{p:pi=0 for i € A, (x* y*), pi >0 for i €
Ao (x* y*) } is the critical cone.

The analysis of Gill, Kungurtsev and Robinson [14] establishes that the global con-
vergence behavior of the method falls into one of two cases, depending on whether
the set of V-O iterates is infinite or finite. If there are infinitely many V-O iterates,
there exists a subsequence with limit point x* that is either a first-order KKT point,
or fails to satisfy the constant positive generator constraint qualification (CPGCQ)!.

I Andreani et al. [1, Definition 3.1].
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Moreover, if the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x*,
then the associated subsequence of dual estimates is bounded with limit point y* such
that (x* y*) is a first-order KKT pair for problem (NP). If the weak constant rank
condition (WCRC)? holds in addition to the MFCQ (in which case, the CPGCQ holds
automatically), then (x* y*) is a second-order KKT point. In the case that the set of
V-0 iterates is finite, there are infinitely many M-iterates, and every limit point x* of
this sequence is an infeasible stationary point.

The local convergence analysis given here focuses on sequences that converge to
first- or second-order KKT pair. (An analysis of the rate of convergence associated
with sequences converging to locally infeasible points is beyond the scope of this
paper).

The results established in this section require three standing assumptions.

Assumption 1 f and c are twice Lipschitz-continuously differentiable.

Assumption 2 The index set S of V-O iterates, i.e.,
S ={k: (xx, y) isa V-0 iterate },

is infinite, and there exists a subsequence S, C S, such that limges, (xx, yx) =
(x* y*), with (x* y*) a first-order KKT pair for problem (NP). (This assumption
requires that the finite termination conditions (32) and (33) are omitted.)

Assumption 3 If (x* y*) is the first-order KKT pair in Assumption 2, then

(i) there exists a compact set A(x*) € Y (x*) such that y* belongs to the (nonempty)
interior of A(x™*) relative to )(x*); and
(i1) (x* y) satisfies the SOSC of Definition 1 for every y € A(x¥).

The key part of Assumption 3 is the existence of the compact set A(x™), which guar-
antees that the closest point in Y (x*) to every element y; of the subsequence {yy }
satisfying limy_, oo yx = y* is also in A(x™) for k sufficiently large. This is equivalent
to there being a set /C, open relative to Y (x*), such that y* € K C A(x*). This, in turn,
is equivalent to the assumption that the affine hulls of A(x*) and Y (x*) are identical,
with y* in the relative interior of A(x™). (For example, if m = 3, and ) (x™) is a ray
of the form y = a + bt fora, b € R3,t ¢ (—00, 00), then A(x™*) could be a closed
interval relative to the ray, e.g., A(x*) = {y : y = a + bt, for t € [t1, t2].) Note
that the set of multipliers ))(x*) need not be bounded. The second-order sufficient
conditions need hold only for multipliers in a compact subset of ) (x*).

For any y, compactness of A(x*) in Assumption 3 implies the existence of a vector
yp(y) € A(x*) that minimizes the distance from y to A(x*), i.e.,

yp(y) € Argmin ||y — j]. (36)
yeA(x*)

The existence of a vector yj(y) implies that the distance 6(x, y) of any primal-dual
point (x, y) to the primal-dual solution set V(x*) = {x*} x A(x*) associated with x*,

2 Andreani et al. [2, page 532].
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may be written in the form

S(e,y)= _—min [(x =%,y =P =lx—x"y—=y;0)I. (37)
(F. eV

The pair (x*, yh (y)) satisfies the second-order sufficient conditions as a result of
Assumption 3(ii). The following result shows that the proximity measure r (x, y) may
be used as a surrogate for §(x, y) near (x*, y*).

Lemma 1 ([35, Theorem 3.2]) There exists a positive scalar k = k (A(x*)) such that
r(xk, k) € [S(xk, Yi) /K, 8(Xk, Yi)K ]for all k € S, sufficiently large.

Proof Under the assumptions used here, the result follows from Theorem 3.2 of
Wright [35], where Lemmas 2.1 and 2.2 of Gill, Kungurtsev and Robinson [13] are
used to establish that the exact and estimated distance of (xg, yx) to the primal-dual
solution set used in [35] are equivalent (up to a scalar multiple) to the values & (xi, yx)
and r(xx, yr) given here. O

The principal steps of the local convergence analysis are summarized as follows.
First, the properties of iterates with indices k € S, C S are considered. It is shown
that for some k € S, sufficiently large, the following results hold.

(a) The active set at x* is identified correctly by the e-active set, and the direction sy
of negative curvature is zero.

(b) Alocal descent direction dy. is computed, and the conditions [ vy +d ]; > 0, i =
1:n, VMdek <0, VO, (v +dy; yi. )4, = —tye aresatisfied, i.e., the local
descent direction is selected for the line search.

(c) The unit step is accepted by the flexible line-search, and the variables active at x*
are the same as those active at xj1.

Once (a)—(c) are established, the next step is to show that (xx41, yx+1) is a V-iterate.
This implies that the arguments may be repeated at xzy, and all iterates must be
in S, for k sufficiently large. The final step is to show that the iterates are identical
to those generated by an sSQP method for which superlinear convergence has been
established.

The first result shows that fork € S, sufficiently large, the set A, correctly estimates
the active set at x*. Moreover, for these iterations, the search direction does not include
a contribution from the direction of negative curvature.

Lemma 2 The following results hold for all k € S, C S sufficiently large.

(1) The measure r(xi, y) of the distance to a first-order KKT point converges to zero,
i.e, limges r(xg, yr) = 0.

(ii) The e-active sets satisfy A, (x;, i, ig_) = A (X, Yo 1) = Ax™).

(iii) The e-free sets satisfy F (X, . g_y) = Fo (X, Yo 1) = F(x™).

(iv) If the suffix “F” denotes the components corresponding to the set F(x*), then

B (v, ; ug_,y) is positive definite, with s,il) =0and&, =0.
(V) Br (v ; uy) is positive definite and a local descent direction is computed.
(vi) The feasible direction of negative curvature sy is zero.
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Proof A point (xi, yr) is designated as a V-O iterate if the optimality and feasi-
bility measures satisfy condition (13). In this case yi is set to y;, and the values
for g3 or ¢giY* are decreased by a fixed factor. If follows that on the infinite set
S of V-0 iterates, the condition (13) must hold infinitely often and at least one of
the functions ¢y (vr) or ¢o (v, &) must go to zero. The definitions of ¢y (vr) and
b0 (vk, &) in terms of the feasibility and optimality measures n(xx) and o (xk, vk, &)
imply that limgcs n(xx) = 0 and limgcs o (xk, Yk, &) = 0. The definition (2) of
r(xg, yr) implies that limycs r(xx, yk) = 0, which proves part (i). As r(xk, yr)
goes to zero, Theorem 3.6(2) of [14] implies limycs max (/Lﬁ_],r(xk, yk)V) =
limges max (uf, r(x;, y,)?) = 0. If these limits are combined with (9), we obtain
the inclusions A, (x;, y,, u{_y) S AGX*) and A, (x, y,, up) S AQx*) fork € S
sufficiently large.

For the reverse inclusion, (9) together with max (“271’ r(xg, yk)”) > r(xg, yr)V
and max (uf, r(x,. y,)?) = r(x, y)?, imply that for k € S sufficiently large,
Ay G, yi) = {i 1 x; < r(w, yo)" ) satisfies A, (o, ve) S A (g, vy, 1) and
Ay (s k) S A(xgs v 1f). The set Ay (xi, yk) is an active-set estimator that
is equivalent (in the sense of Gill, Kungurtsev and Robinson [13, Lemma 2.2])
to the active-set estimator used by Wright [35], and Facchinei, Fischer, and Kan-
zow [8]. This equivalence allows the application of Theorem 3.3 of [35] to obtain
the inclusions A(x*) € A, (xx, yk) € A, (x;, v, i) and A(x*) € A, (xg, yi) S
A, (Xps Vir Mﬁ), which completes the proof of part (ii). Part (iii) follows directly from
(ii) and the definition of the e¢-free set in (10).

For the proof of (iv) it is assumed that k € S, € § is sufficiently large that (ii)
and (iii) hold. From Assumption 3, (x*, y*) satisfies the SOSC and consequently,
dTH(x* y*)d > 0 for all d # 0 such that J(x*)d = 0 and d; = 0 for every
i € A(x™), ie., dJZ_HF(x*, y)d, > 0 for all dr # O satisfying J=(x*)dr = 0,
where the suffix “#” denotes quantities associated with indices in F(x*). Under this
assumption, together with the results of part (iii), Lemma 2.2 of [16], Lemma 3 of
[19], and [14, part (2) of Theorem 3.6] imply that B (v, ; Mﬁ_l) is positive definite
for all k € S, sufficiently large. If this matrix is positive definite, then s,E]) = 0 and
§, = 0, as required.

As {/L’,f } — 0 (see [14, Theorem 3.6, part (2)]), an argument similar to that used
to establish (iv) shows that Br, (v, ; uy) is positive definite for the same values of
k (see Gill and Robinson [16, Lemma 2.2]). As Br, (v, ; uf) is positive definite for
every k € S, C S, and k is a V-O iterate by definition, the conditions that initiate the
solution of the equality constraint QP (24) are satisfied, and a local descent direction
is computed. This proves part (v). Finally, part (iv) implies that s,El) and its scaled
counterpart s; are zero, which proves part (vi). O

The next result shows that dy, is nonzero for certain types of iteration.

Lemma 3 Forall k € S, C S sufficiently large, it must hold that either dy # 0 or
(Xks k) = (x5 y%).

Proof The result holds trivially if dy # O for all k € S, sufficiently large. Assume
without loss of generality that there exists an infinite sequence Sy € S, such that d, =
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0 forevery k € Sp. Parts (ii) and (vi) of Lemma 2 imply that A, (x;, ., ug) = A(x*)
and sy = 0 for all k € S, sufficiently large. Every k € S; is a V-O iterate and there
must exist an index k» € S sufficiently large that

diy = 8k, = 00 (K15 Vg 1) = (Ko Vi)
Vi = Vip» and A (xp,, vi,» 17,) = AY). (38)

As di, = 0, parts (ia) and (ib) of Lemma 2.3 in [14] give r(xk,, yx,) = 0, which
implies that (x,, yk,) is a first-order KKT point for both problem (NP) and the
problem of minimizing M (x, y; y;,, ug,) subject to x > 0. From (38) it must
hold that r(xg,+1, yr,+1) = 0, and parts (iii) and (iv) of Lemma 2 imply that
Bf(xkz—H’ Vig 415 '“22) is positive definite, with &,11 = 0 and S]E;l_l = 0. It fol-
lows that ¢y (Xg,41, Yko+1) = 0, and kp + 1 is a V-iterate from condition (13). As
aresult, yo, .y =y, and ug | = %/Lﬁz, which implies that the primal-dual pair
(Xky+1,> Yky+1) = (Xky, Yk,) is not only a first-order KKT point for problem (NP), but
also a first-order solution of the problem of minimizing M (x, y ; y,fz Iy uﬁz 1) subject
to x > 0. In particular, it must hold that d,+1 = 0, and sg,+1 = 0 because &,+1 = 0.
Similarly, it must hold that A, (i 10 Vit 10 ,uiﬁl) = A(x%).

This argument may be repeated at every (xx, yx) such that k > k> + 1, and it must
hold that (x, yx) = (x, y) for some (x, y), and that A, (x, , y,, 1) = A(x*) forevery
k > ky. It then follows from Assumption 3 that (x, ) = (x* y*), which completes
the proof. O

For alocal convergence analysis, Lemma 3 implies that there is no loss of generality
in making the following additional standing assumption.

Assumption 4 The vector dj is nonzero for all k € S, C S sufficiently large.

Lemma 4 It must hold that Mfg = r(xg, yr)¥ > 0 forall k € S, € S sufficiently
large.

Proof Part (iv) of Lemma 2 gives & = 0 for all k € S, € S sufficiently large. In
addition, r (xg, yx) must be nonzero, otherwise the definition of r (xx, yx) would imply
thatc(xg) = 0, y; = y; (becausek € S), 7w (x;, yi. 1) = Vi VyM (X, vy 5 vi - 1) =
0, and min (xk, VM (X, vy 5 Ve s ui)) = 0. In other words, if r(x, yi) is zero, then
(xk, yr) satisfies the first-order conditions for a minimizer of M (x, y ; y,f , Mﬁ) subject
to x > 0. This implies that there is no nonzero descent direction at (xg, yx), which
contradicts Assumption 4. It follows that r(xx, yx) is nonzero. The values & = 0
and r(xg, yx) > 0 in the definition of ;L’,i in (14), and part (i) of Lemma 2 imply that
ug =r(x,, y)" fory € (0,1) and k € S, € S sufficiently large. O

Much of the local convergence analysis involves establishing that, in the limit, the
algorithm computes and accepts the local descent direction at every iteration. The
next result concerns the properties of the equality-constrained subproblem for the
local descent direction.

Lemma 5 If vy = (x, yx) is a point at which the conditions for the calculation of a
local descent direction are satisfied, then the following results hold.

@ Springer



386 P.E. Gill et al.

(i) The bound-constrained problem (24) for the local descent direction is equivalent
to the stabilized QP subproblem

minimize g(x)”(x = xi) + 3 — 20 H (e yi) (xr = i) + a1yl
subjectto c(xy) + J(x)(x — x;) + ;Li(y - ) =0, Eix =0,

where E 4, is the matrix of columns of the identity matrix with indices in the
e-active set Ae.

(1) If di = (pk, qi) is the local descent direction, and z; = g(xx) — J(xk)Tyk, then
the optimal solution to (39) may be written as (xx + pr, Yk + qr, [ 2k 1a. + wi),
where (pi, gk, W) satisfy the nonsingular equations

H(xx, yo) J ()" Ea, Pk gCx) — J () Tyk — 22
JO) =il 0 —qr | =— c(x) ,
Eig 0 0 —wg [xk Ja.

with z,‘? = EAeEi 7 Le., z,‘? is the projection of zj onto range (E 4,).

Proof Part (i) follows from the specialization of Result 2.1 of Gill and Robinson [15] to
the equality-constraint case. The equations of part (ii) are then the optimality conditions
associated with (39). It remains to show that the equations are nonsingular. The vector
(pk, qr) is the unique solution of (39) if the primal-dual Hessian of problem (39)
is positive definite on the null-space of the constraints, which in this case is the set
of vectors satisfying J(x,)p + ufq = 0 and Ef‘e p = 0. This corresponds to the
requirement that

(p]-'g)T (Hfg (xk, y0) 0 ) (Pfe)
q 0 wil) \ q

1
= pr Hr (x¢. yOP5 + Fpa Ty, ) T () pr, > 0.
k

Gill and Robinson [15, Lemma 2.2] show Hy_(x;, y,) + (1/,u£)Jf€ (xk)TJfE (xp) is
positive definite if Bz, is positive definite, which is one of the conditions that must be
satisfied for a local descent direction to be computed. O

The next result shows that two of the three conditions in (27) for acceptance of the
local descent direction hold for all k € S, sufficiently large.

Lemma 6 For all k € S, C S sufficiently large, a local descent direction dy =
(pk, qx) is computed that satisfies the following conditions:

(i) max{||pxll, llgxll} = O (8(xk, yi)); and

(i) xx+pr = 0, [VQ, (vp+d; 5 yi» ) 14, = —tye, wherety is the positive feasibility
parameter (26), and [ - ] 4, denotes the vector of components with indices in the
e-active set A (x;, Y., 1L})-
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Proof Lemma 5 implies that the local descent direction (py, gx) satisfies

H(xg, yi) J ()T E g, Pk gGxx) — J o) Ty — 2,
Jxx)  —uf1 0 —qx | =— c(xr) ., (40)
EL. 0 o0 —wy [ Xk Lac

where [ zx ] 4, + wy is the vector of multipliers for Eix = 0 of problem (39). Let [tk

denote the scalar [Z(xk, yk, z) = I(g(xk) — J (i) Tye — 2, c(x), [xk 1a) 1. The
Eq. (40) constitute a perturbation of the linear system

H (X, yi) J()flc)T E 4, Ek gOxr) — J ) Ty — 2,
JOx)  —md 0 Gk | = - c(xk) , (41)
El, 0 —l) \~wg [ Xk Jac

which characterize the optimality conditions for the sSQP subproblem associated with
the equality constrained problem

minimize f(x) subjectto c(x) =0, and [x], = Eix =0. 42)
X

The matrix of (41) is nonsingular and the equations have a unique solution (see
Izmailov and Solodov [24, Lemma 2]). In addition, it follows from Wright [35,
Lemma 4.1], Gill, Kungurtsev and Robinson [13, Lemma 2.3], and Lemma 1 that
the unique solution of (41) satisfies

I(Pr @) < 1Pk G, WOl = O () = O (8Cxx, yr)) = O (r(xx, y)).  (43)
The underlying quadratic program associated with (40) satisfies the second-order suf-

ficient conditions for optimality. Under this condition, Izmailov [20, Theorem 2.3])
establishes the Lipschitz error bound for the perturbed solutions as

I (px — Pi> ax — @)l < 1Pk — Pi> Gk — Gres Wi — wi) ||
= O(ll@rwk + (g — ) (qx — G-

Lemma 4 gives ,uﬁ = r(xg, yx)? for y € (0, 1). It then follows from Lemma 2.3 of
Gill, Kungurtsev and Robinson [13], the bound (43) and Lemma 1 that

I(px — Pr» gk — @1l = O (8Gxx, yi) + r (e, yi)¥ llgx — all)- (44)

The triangle inequality, (44), and (43) imply the existence of constants x| and «» that
satisty

lpell + gl < ek — Pell + llgx — gl + 1 pell + gkl (45)
< k18 (x, i) + r2r (o, YV llgr — Grell. (46)
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Part (i) of Lemma 2 implies that 1 — xor (xg, yx)? > % for k € S, sufficiently large.
This inequality may be used to derive the bound

Il px — Bell + 3lax — Gicll + 1 5xll + 1k |
< llpx — Prll + (1 = w2r G, Y7 ) llgre — el + 1 2xll + 1 |1-

This upper bound may be simplified using the bound on || px — prll + llgx — gkl +
I Pxll + gk |l from (45)-(46), giving

Ik = Prll + 3llge — Gell + 1Pkl + 1gk ]l < r18 (ee, o).

The quantity %(H pill + llgk ||) may be bounded using similar arguments used for (45).
In this case,

S el + llgel) < ok — Pell + 3llar — Gill + 15kl + 1@kl < w18 G, i),

which implies that max{|| pll, llgkll} = O(S(xk, yk)), and proves part (i).

The second inequality to be established for part (ii) may be written equivalently as
[ VM + Brdy )4, = —tre, where VM = VM (v, ; yi, ) and By = B(vy, if). The
proof requires estimates of the components of [ VM + Bidy ] 4, . After simplification,
the substitution of the quantities By, VM and dy = (pk, qk ), together with the identity

J(x ) py + 1igq, = —c(x,) from (40) give

1 1
(VM o+ Budi L, = [ak 0 e+ H o yopi - I 0TI @]
k k

47)
where z; = g(xg) — J (x)T vi. The first part of the proof involves the estimation of a
lower bound on the vector zx + (1/ u’,ﬁ)] (xx) T c(xy). The definition of v5(-) and the
fact that (x* y*) is a first-order KKT pair for problem (NP) implies that the vector
gx™) — J(x*)Tyﬁ (y,) is nonnegative, with

[z li = —l[gCw) — T )y li

—[8G0) = @)y — (g — TG yr )]s

—[gC) — J ) Ty + T ) Ty () — T ) Ty ()
— g™ + 7y ;-

IA

IA

From Assumptions 1-3, ||J (x¢)|| is bounded independently of k and the functions g
and J are Lipschitz continuous. It follows that there exist positive constants «3, x4,
and «5 such that

— Lz )i < wsllxk = x*| 4+ kallye = yr Il < k58 (ke yi)s (48)
where the last inequality follows from the definition (37) of § (xx, yk). As the sequence

of iterates satisfies limyegs, (xx.yx) = (x% y*) and limges, yi(y,) = y*, fork € S,
sufficiently large, the assumptions of Lemma 1 apply, and
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— [z li < .58k, yi) < ker (Xk, Yi)s (49)

for some positive constant k¢. The combination of the inequality (49), the definition
of r(xx, yr), and the result Mi = r(xg, yr)¥ of Lemma 4 imply that there exists a
positive constant k7 such that

I e llr (e i)

1 T
[Zk + —J(xx) C(Xk)] > —Kker (Xk, Yk) —
H

i r(xk, yk)”
= —ker (xx, yi) — 1T i) 17 (e, i)'
> —k7r (v, yo) 'Y = =4 o v, (50)

for all 7, and every k € S, sufficiently large, where the last inequality follows from
the assumption 0 < A < min{y, 1 —y} < 1.

The (1/uf)pl J(x,)TJ (x;) p, term of (47) may be bounded in a similar way using
the definition u = r(xx, yx)” and the bound on || pi|| from part (i). The assumption
that H (x, yx) and J(x;) are bounded, the estimate §(xx, yv) = O(r(xk, yr)) of
Lemma 1, and the definition of A, (Xgs Vio uﬁ) give

[H G yo) pe+ /) T )T T ) pr ], = O (r e, y) 7)) < 3 (e, v
for all k € S, sufficiently large. This inequality with (47) and (50) gives

[ VM. + Bidy ) 4.

> [a+ Miguxk)%(xk)]& — |[H G o+ ML’,EJ (0T ope] ..

\%

e

v

A
—r(xk, yk)" e = —1ge,

for all k € S, sufficiently large, which proves the second result of part (ii).
The first result of Lemma 2(iii) implies that 7 (x,, y,, up) = F(x*) for k € S,
sufficiently large. If the limit limges, [ Xk ]= = [x* ]+ > 0 is used in conjunction

with the definition [x; + px J4. = 0, and the estimate |[[ px 1= || = Il pk 1=l =
O (8(xx, yk)) of part (i), it follows that x; + px > O for k € S, sufficiently large, as
required. O

Part (ii) of Lemma 6 implies that two of the three conditions needed for the accep-
tance of the local descent direction are satisfied. It remains to show that the third
condition VMkT dk < 0 holds. Two technical results, Lemmas 7 and 8 below, are
required.

Lemma 7 For all k € S, C S sufficiently large, a local descent direction dy =
(pk, qr) is computed such that (X, Yx) = (xk + pr, Yk + qx) satisfies

8k, ) = X = x* [l + 15 = yp G = 0 (3G, yo)' ), (S1)

with y}(-) defined in (36).
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Proof The proof uses Izmailov [20, Theorem 2.3] to provide a bound on the change
in the solution of a problem perturbed by a quantity ¢. If the second-order sufficient
conditions hold at a primal-dual solution (x*, y*) of a problem P, then the primal-dual
solution (X, y) of a perturbed problem P (¢) satisfies

X —x*| 4+ inf [y —yll = OlelD. (52)
YeY(x*)

For the purposes of this theorem, the unperturbed problem is an equality-constrained
variant of problem (NP) for which the optimal active set has been identified. Parts (ii)
and (iii) of Lemma 2 imply that A(x*) = A, (x;, ¥, ug),and F(x*) = F_(x;, ¥, 1)
fork € S, sufficiently large. Let E 4 denote the matrix of columns of the identity matrix
with indices in A(x*). At any iteration with k € Sy, consider the perturbed problem

minimize f(x) + szl(cl) subject to c(x) + 819) =0, Ez;x =0, (53)
X

(1) (2
k k

where ¢, ’ and g, are perturbation vectors such that g = (821), 8,&2)) with

e )= (g(xw—f(xk)T?k — (g1 — J B0 F0+H (xx. ) G — m) 1)
e c(x) + J (o) Xk — xx) — (k) + g (3 — ve) '

The following argument shows that the perturbations go to zero as k — oo fork € .
Part (i) of Lemma 6 implies that limycs, (Xx — Xk, Yk — yk) = limges, (P, gx) = 0
for k € S, sufficiently large. Also, as limges, (x¢, yx) = (x* y*) and y; = y, for
k € S,, it must be the case that limycs, &x = 0.

The proof of (51) is based on applying the bound (52) for the values (x,y) =
(Xk» Yx)- In this case, under Assumption 3, it holds that

8k, YO=IXk — XX +13k — v G I=1%% — X*|I+y€i/1‘l(fx*) 19k = yllI=0lexD-

Three results must be established in order to apply this result. First, (x*, y*) must
satisfy the second-order sufficient conditions for the equality-constrained problem
(53) with g = 0. Second, (X, yx) must be an optimal solution for the perturbed
problem (53) with perturbation (54). Third, the perturbation (54) must be bounded in
terms of §(xg, V).

For the first part it must be shown that (x* y*) satisfies the second-order sufficient
conditions for problem (53) with no perturbation. The first-order KKT conditions for
(53) are

) —J) Ty 46 —Eaz4a=0, c(x)+¢ =0, and Efx=0. (55
If &y = O then (x* y™*) satisfies these conditions, which implies that the primal-dual
pair (x* y*) is a first-order KKT point. The second-order conditions for problem

(NP) imply that pTH (x* y*)p > 0 for all p such that J(x*)p = 0 and p; = O for
every i € A(x*). These conditions also apply for problem (53) when &; = 0, which
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imply that (x* y*) satisfies the second-order sufficient conditions for the unperturbed
problem.

Next, it must be shown that (X, %) is an optimal solution for the problem (53) with
perturbation (54). By definition, the point (X%, ;) satisfies the optimality conditions
for the equality-constrained problem (24). If y; = y,, then these conditions are

g(x) + H (e, yo) &k — xx) — J ) 'y — Eaza =0,
() + J () Xk — x1) + uf Gy — ) =0, and ELX, =0,  (56)

where 74 = [zx 4 with zx = g(xx) — J(xk)Tyk (cf. (40)). These identities may be
used to show that (X, yx) satisfies the optimality conditions (55) with g defined as
in (54).

It remains to bound the perturbation norm || || from (54). The Taylor-series expan-
sions of g(xx) = g(xx + pr) and J (xX;) = J (xx + pi), together with the assumption
that {V%; (x¢) }xes, is bounded, give

g(xk) — gk + pr) + H e, v px — (J (k) — J (e + i) e

m

= D> [5k — w1V G pr + O pell®) = O (I pillIFk — yelh) + Ol i),
i=1
(57)

which bounds the norm of the first block of (54).

Three properties of the iterates are needed to bound the norm of the second block.
First, a Taylor-series expansion of ¢(xx + px) gives c(xx) — c(xx + px) + J (xx) pr =
O (|| pxlI?). Second, as S contains only V-O iteration indices, the rule for updating
y; described in Sect. 2.1 gives y; = y, for all k € S,. Third, Lemma 4 gives uj =
r(x;, ¥;)¥ , which implies that |3, — v, Il = r(xk, Y&)” [k — yk|I. The combination
of these results gives [lex]| = O (Il px[1*) + Ol pellllFk — yill) + O e, ) 19k —
yel). Writing gx = Vi — Yk, using the results that r (xg, yx) = O(8(xk, yx)) (from
Lemma 1) and that max{|| pr|l, llgxll} = O (8 (xk, yk)) (from Lemma 6(i)), and the def-
inition 0 < y < 1, gives [lex|| = O (8 (xx, y)* + 8Crk, y) ') = O (8 Gk, y) 7).,
which gives the required bound (51). O

The second technical lemma concerns the properties of the vector of approximate
multipliers 7 (x, ; yg, 1)

Lemma 8 Let iy denote m(x; ; yy . iuf). For every k € S, € S it holds that

@ vk — 7l = O (llexl/uf) and
(i) IV2M (v yE, 1) — Bl = O(le(xll/ k).

Moreover, limges, llyk — k|l = 0 and limyes, ||V2M(vk $Ves M) — Bl = 0.

Proof As y, = y forall k € S, C S, the definition of 7y gives [|yx — mi| =
leCx I/ ui. This estimate in conjunction with the definitions of V?M and B imply
that part (ii) also holds.
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Lemma 4 and part (i) of Lemma 2 give limyegs, ¥ (X, yk) = 0, with u’lj =r(xg, yo)V
and 1 —y > O for all k € S, C S sufficiently large. These results may be combined
to give

c(x r (X, . r(xg, . _
0 < lim lexl ([]:)” < lim r (ck: Yi) kRyk) = lim RACIID/ R lim r(xg, yo)' 77 =0.
keS. Uy keSx Wy keS, ¥ (Xk, Yk)V keSs

It follows from (i) that limyegs, [|yx — 7|l = 0. Also, as (Vi (xk) Jkes, 1s bounded,
it must hold that limycs, [|V?M (v, ; y£, uf) — B, | = 0. O

Given Lemmas 7 and 8, we show that the last of the conditions in (27) required
for the acceptance of the local descent direction is satisfied, i.e., that the local descent
direction is a descent direction for the merit function.

Lemma 9 For any & satisfying 0 < 6 < 1, and all k € S, C S sufficiently large, a
local descent direction dy = (pk, qx) is computed that satisfies

VM (v, ; yE, ubTd, < —6dIB,d, — ¢\\d, 1> and VM (v, ; yE, if)Td, <0, (58)

for some positive constant c¢. In particular, dy is a strict descent direction for
M(v; yg, uf) at vy

Proof Throughout the proof, the gradient VM (x,,y,; y;,uf) and approximate
Hessian B(x, Vi ul’:) are denoted by VMj and By, respectively. In addition, it is
assumed that k € S, € S is sufficiently large that parts (ii) and (iii) of Lemma 2
hold; i.e., A, (x;, y, uy) = A(x™), and F_(x;, y;, uy) = F(x*). With this assump-
tion, [ Bk ]a, [ Bx 17 and [ B ] 4, = denote the rows and columns of the matrix By
associated with the index sets A(x*) and F(x*).

The definition of dy from (25) gives [ VM} + Bxdy 1= = 0, or equivalently

[Bi 1eldi 1+ [ B 1l 2 ld 1, = —[ VM 1. (59)
Similarly, the scalar dkT B, d, may be written in the form
d{Bydy = [d L1 By 1ol dy 1 + QLB 1yl dy 17 + [ By lald 10" [dy 1. (60)
Combining (59) and (60) yields

~[ VML d 1 = d{ Byd, — (B 1y 2l d 1o + [ B laldi 10" [dy 1
= dkTBkdk — [ Byd, ]i[dk 145 (61)

which implies that, for any ¢ satisfying 0 < ¢ < 1, it must hold that
T =T _ (= T T T
VM d, +od; By d, = (6 — Ddy, Bid, + [ Bydy 1,1 dp 1, + VM 1,1d, 1, (62)

The proof involves constructing a bound on each of the terms of the right-hand side of
this identity. These bounds are characterized in terms of the index sets A, (x*, y*) and
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Ao (x*, y*) defined in (34), together with the set Fo (x*, y*) = Ao (x*, y*)UF (x*, y*).
In what follows, [ By ] 4, and [ By |5, denote the matrices of rows and columns of By
associated with the index sets A, and Fp, with similar definitions for [ By ] 4, and
[ B ]a,.7» €te. The index sets Fo and A, define a partition of {1, 2, ..., n + m}, and
dkT B, d, may be partitioned analogous to (60) as

A Bydy = [di 15 [ By 1 [di 1y + (LB ) o Ly 1, +20 By lasmo [y 1) T T 4, -

(63)
The second-order sufficient conditions given in Definition 1, [14, Theorem 1.3 and
part 2 of Theorem 3.6], together with a continuity argument imply that, for all k € S,
sufficiently large, By is uniformly positive definite when restricted to the set C =
{(p.q) € R™™ : p,, =0 and pu, > 0}. The relation (—d)"By(—d) = d"Bid
implies that if d satisfies d4, < 0 and d4, = 0, then d TBird > 0. For the particular
vector d = (0, [}, 14y, [d} 17) = (0, [d, 15,) for which [d 14, < 0, it follows that

[dk];O[Bk 17, ldi 15, = xsllldy ]follz, for some kg € (0, 1), (64)

and all k € S, sufficiently large. This inequality provides a bound on the first term
on the right-hand side of (63). An estimate of the second and third terms may be
determined using a bound on the magnitude of the components of [ Bxdy ] 4, where,
by definition,

2
[Brdi a, = [ (H w0+ 5 T @TT 0) et T @0ai]
k

+

For sufficiently large k € Sy, Lemma 4 gives u; = r(xg, yi)”. Also, as || J (xp)]|
and || H (xg, yx)|l are bounded on &, it follows from the bounds on || px|l and ||gx||
from Lemma 6(i), and the equivalence r (xy, yx) = @(8 (xk, yk)) of Lemma 1, that the
magnitude of the components of [ Bydy | 4, are estimated by

Il Brdi 14, Il = O (i, y)'77) = OB (i, v ' 7). (65)

A similar argument gives the bound

(0B la Ly Ta, +20B 1, 7yl dy 1m) Tdi 1ay | = O, 30 77 1Ly 1, ID-
(66)
The application of the bound (64) and estimate (66) to (63) gives

— d{ Bidy, < —gll[d; 171> + ko8 G yo) 'V 0y 1 I (67)
for some positive k9 independent of k, which serves to bound (¢ — l)dkT B, d,, the first
term of the right-hand side of (62).

The second and third terms of (62) are estimated by bounding components from

the index set A, . The estimate (65) gives

[ Bedy 1%, [di 1y, < k108Cee, y0)' 7 1Ty 1, [, for some x1p € (0,1).  (68)
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A Taylor-series expansion of VM (v, ; y*, uj) at y* = y; (= y,) gives
VM = VM (v 3 y* + (3 = ¥5), 1) = VM (v 5 y*, ) + O(llye — y* ). (69)

A Taylor-series expansion of [ VM (v ; y*, uy) ]£+[dk ]A+ at v = v* gives

[VM (s v ) 1 Ly 1,
= [d 1L [VM* + (v — v 5y ) 14,

1
= (T VM5 i L, + 0 (i e = vl

In order to bound the last term on the right-hand side, we substitute the value ,uf =
r(xk, yx)? implied by Lemma 4, and apply the estimate r(xg, yx) = ©(8(xx, yx))
from Lemma 1. If the resulting value is used with the value ||[d, ] A I=Odel) =
O (8(x, yr)) of Lemma 6(i), then it follows that [ VM (v ; v, ,uﬁ) ]£+[dk ]A+ =
[d, ]§+[ VM (v* ; y*, uf) ]A++O(8(xk, yi)' 7 vk —v*||). This estimate can be com-
bined with (69) to obtain

[VMi 1 Ly 1, = Td 1 TVM "5y, w1, + O Ooks yi) ' 7 lluk — v* ()
+O Iy 1u, e = y*ID. (70)

As v* = (x* y*) is a primal-dual KKT pair for problem (NP), it follows from the def-
inition of A, that [ VM (v*; y*, uf) 14, = [g(x*) — J(x*)Ty* ], > 0. Combining
this with [d 14, < 0 from the first equality of (25) yields

[VM(v*; y*, uﬁ)]f\Jdk]AJr < —«11l[d; 14, |l for some positive «i1.  (71)

As y < 1, the limit é(x, yx) — 0 and estimates (70)—(71) imply that the inequal-

ity [VMk]Z\+[dk]A+ < —%K11||[dk]A+|| holds for k € S, sufficiently large. The
combination of this inequality with (68) gives

[Bedi 1 Ly 1, + VML [di 14, < 1080, 30 7 10y 1
— gy Ta, I, (72)

for all k € S, sufficiently large.

Finally, consider the last two terms of (62) associated with the set Ag. Ask € S, it
holds that y; = y, and 7w, = m(x ; yi, uf) = y, —c(x,)/ 1y Let yi denote the vector
Vi = + (Tt — ) = Vi — 2c(xk)/u£. The definitions of VMj and By, together
with the definition dy = (p, gx) and the identity c(x;) + J(x,) p; + y,iqk = 0 from
(39) give
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[ VM + Bydy ] 4,

- 2
= [g(xx) — J ()T 5 + H (e, yo) pr + Ef(xk)TJm)pk + T ) gk 1y
k

T~ 2 T T
=[gx) — J(xk)" yi + H(xXk, yi) px — FJ(Xk) c(xx) — J(xk) g 14,
k
= [g(xx) — J ) vk + H (e, v pre — I (01) g 1.ag -

It follows from the previous displayed equation and a Taylor-series expansion with
respect to x of g(x) — J(x)T(yx + gx) that

[ VM + Bidi 1.4y = [k + pr) — T (e + pi) Tk + ai0) + ol (px., ‘Ik)”)]AO
= [¢@0) = J @ + ol (px. 611<)||)]A , (73)

where (Xk, Yx) = (xx + pr, Yk + qk). Part (i) of Lemma 6 then gives

r (. 1) = | min ([T 1, [0 — J@)T?k -)}
= | min(0, [ g(X%) — 3, forall i € A,. (74)

There are two possible cases for each i € Ay, depending on the sign of [ g(Xk) —
JEOTY i I [gGx) — JE)T Y1 = 0, then the property that [dy ]; < O for
every i € A implies that [ g(xx) — JET Yk]l[dk], < 0. The expression for
[ VM + Bydy 1i[ dy )i from (73), and the result that || (p. g) || = O (8 (xk, yx)) from
Lemma 6(i) gives

[ VM + Brdi 1ildic )i = [8) — T &0 9], 1d 1; + ol (pr. q) DL dy ],
= 0(8Cvk, yo)) |[di i -

Alternatively, if i € Ay and [ g(X%) — J Ty Vi li <0, then

[ VM + Bidy il di 1i
=[g@x) — J@) Vi + ol (pr, gl 1iLdx 1i

< r(&k YO |Ldi 1i| + 0(8 Gex, o)) | Ldi Ti | ((74) and Lemma 6(i))
< k8 @k, I Lk 1i| + 0 (8 e, yo)) | [ Ti| (Lemma 1)

= 0(8(x¢, )’k)1+y)|[dk]i| +0(8(xe. yo)|[de)i|  (Lemma7)
= 0(8(xk, yo)) [[ i i -

A combination of the two cases provides the estimate
[ VM + Bedi 17 [dy 14, < 0(8Gre, 310) 11y 1y, |- (75)
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It now follows from (62), (67), (72), (75), and limy¢s, di = O that there exist positive
constants k12, k13, and k14 such that

VMd, + GdlByd, < —ki2llld; 15, 1% + k138 (s yi) 7 10y 1, |
—k1allld 1l + 0 (8Cre. y0)) L L, -

As limges, 8(xg, yx) = 0, it must hold that k138 (xg, yol=v < %KM for all k € S,
sufficiently large, which gives
VM[d, + Gd] Byd, < —kiallldy 171> — 3rrallldy 1, |
+0(8(x, yi)) ILdy 1, 1l- (76)

The next step is to show that the right-hand side of (76) is bounded above by a positive
multiple of —||dj |?. Consider the sequence v,f = (x*, v (')Tk)), where y};(-) is given
by (36) and satisfies the second-order sufficient conditions for all k. The triangle
inequality and substitution of vy for vy + dy yields

log = eIl = llog +dy = v = dill = 110 = vf = dill < 110 — o7 | + lldell. (77)

By definition, ||V}, — v,f | = 8(xk, Yx), and the estimate § (X, Yx) = 0(6 (Xk, yk)) given
by Lemma 7 implies that § (X%, yx) < %S(xk, yi) for k sufficiently large. In addition,
the definition of & (x, yk) is such that § (xg, yk) < [lv, — v,f ||. If these inequalities are
used to estimate ||dx || in (77), then

— lldg Il < 110 = v I = llvg — o7 Il < —38Cxx, y)- (78)

Consider the inequality (76). Suppose that k is large enough that the bound
ki2llld, 17l < %KM holds. Standard norm inequalities applied in conjunction

with the estimates [|dkll =< [I[d} 17l + Iy lall, 10y 1apll = Il dy 15 ll, and
lld, || = 58 (xk, yi) from (78), give

—k12llldy 15y 1> = Sr1allldy 1y I+ 0(8 (e, y0)) L dy 1 |
< —k2llld 1 I1* = ferallld L, | — 3ei2llld 1l Dy 1 |
+0(8 (i, y0)) 1Ldy 14, |
< —3knlld 1z 1* = dewalldg 1a, | — Sxlldedl 10dg 17, |
+0(8Cek. o)) ILdy 1y
< —deullld 1ag |l — Srallld 1 I — doei28 e, yio) Ly 15, |
+0(8Cek yo)) ILdy 1y
< —deullld 1ag | — Srallld e I — 3128 G, yio) 1Ly 1 |
+ 0(8(xx yi)) 1Ly 1y I

— bkl d a1l = Skl dy 17 112

IA

A

1 2 1 2
= _ZK14||[dk]A+” - §K12||[dk]f0|| .
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These inequalities, when used with (76), imply that

VM[d, + ¢d Bd,

A

< —knllldy 17, I1* = Sx1allldy Ta, I+ 0(8Cxy, v0)) 10y 1, I
—¢ |ldel?, (79)

IA

with ¢ = min{z—lt/q4, %/{12}. This establishes the first part of (58).
To prove the second part of (58), the bounds on VMdek + 6dkTBkdk and dkTBkdk
given by (76) and (67) imply that

vMld, = VMld, + ¢d] B.d, — 5d]B,d,
< —ki2llldg 15 1* = Sx1allldy Ta, 1| + 0(8Cek, v0)) Ly 1, I
— ksl dy 17, 1> + Tk08 (e, yi) TV Ny T |- (80)

Aslimges, di = 0, there is an index & sufficiently large that o' k98 (xy, yk)l’V < A—ILK14,
and the bound (80) may be written in the form VMdek < —(k12 +oxg)lld; 15 ||2 —
%K14||[dk Ja ll + 0(8(xk, yk)) ILd; 14,1, which is the inequality (76) with different
positive constants. If the argument used to derive (79) is repeated for this inequality, it
follows that there is a positive ¢ such that VM/d, < —¢||dk||>. From Assumption 4,
dy. is nonzero, which implies that dj is a strict descent direction for M (v ; y;, uf) at
V. O

Lemma 9 establishes that the third condition in (27) needed for the acceptance of
the local descent direction di holds for all k € S, sufficiently large.

Theorem 1 Forall k € S, C S sufficiently large, it holds that:

(1) a local descent direction d, = (pk, qx) is computed;

(i) vx +dy is feasible, [ VO, (v, +d, ; yi, u) 14, = —t,e, and VMdek <0, ie., all
three conditions (27) are satisfied; and

(i) A (g yeo 1) = AR = AC + po).

Proof Part (i) follows from Lemma 6. Part (ii) follows from Lemmas 6(ii) and 9.
It remains to prove part (iii). The equality A, (x;, y,, 1) = A(x*) is established
in Lemma 2(ii). Suppose that i € A(x*) = A (x, y;, 1uy). The definition of the
local descent direction dy in (25) implies that [ x; + px i = 0, which gives i €
A(xr + pr). For the reverse inclusion, suppose that i ¢ A(x*), i.e., x > 0. In this
case, the assumption that limyes, xx = x* implies that [ x; |; > %xl* for all k € S,
sufficiently large. Part (i) of Lemma 6 gives max{|| px ||, lgx|l} = 0(6 (xk, yk)), and the
assumption limyes, (xk, i) = (x* y*) implies that limges, (xk, yx) = 0. It follows
that limges, px = 0, with [x, + p, |, = Sx +[p,]; = §xf > Oforall k € S,
sufficiently large, which means that i ¢ A(xg + px). O

The next result shows that the flexible line search returns the unit step length for
all k € S, sufficiently large. Lemma 2(vi) and Theorem 1 imply that s = 0 and the
line-search direction Avy = di is a nonzero local descent direction for every k € S
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sufficiently large. In this case the modified Armijo procedure is executed at every vy
with ¢; = 1, and reduces to finding an ¢ that satisfies the condition

M (s i 1) — Mo+ g 6 1) = =y VM (s g, ) dy. (81
for either 1 = g or = .
Theorem 2 The line search gives oy = 1 for all k € S, C S sufficiently large.

Proof Throughout the proof, the quantities M(v;y;, uf), VM (v: y¢, uy), and
VzM(vk ; y,f, Mf) are denoted by M (v), VM (v), and VM. Assumption 4 and part (vi)
of Lemma 2 imply that the first-order line-search model is used for all k € S, € S
sufficiently large, i.e., the quantity €, is set to one. A Taylor-series expansion of
M (vi + di) gives

T 1 372 1 3
Mo + di) = M(w) + VM (v)'dy + Laf VM, d, + O(ﬁnd,{u )
k
= M(vp) + VM () Tdy + Lal VPMyd, + 0 (8 0o, yo 7 lldI1?),

where the bound on the last term follows from the sequence of estimates (1/f) ||d, || =
(YO Y ldill = O (8 (e, yo) 77 ) dic || = O (8(x. yx)' ™) derived in Lemmas4, 1,
and 6(1).

Letthe scalar 6 of Lemma 9 be defined so that (1—yg)o = %,where ys (0 < ys < %)
is the parameter used for the modified Armijo condition (30) defined with ¢; = 1.
With this definition, o satisfies 0 < ¢ < 1, and Lemma 9 with the particular value
o= %(1 — )/S)’l gives

M (v + dio) — M () — ys VM (vp) " di
= (1 — y) VM () "d, + 3d] VM di + O (8(xe. yi) 7 lld1%)
<[5 = (1= y)G)d{ Bydy — (1 = y5)C e
+ 3 IVMy = Bill ldil* + O (8Cxi 30" 7 lldi 1)
= —(1 = y9)Clldicl* + 3 IV"My = Bill i I* + O (8 ek 3 '~ i I?),
for all k € S, sufficiently large. The global convergence property of Assumption 3(2)
implies that limges, 8(xx, yv) = 0, which gives limges, dr = 0 from part (i) of

Lemma 6. In addition, Lemma 8 implies that limycg, || V2M; — Bi|| = 0. The combi-
nation of these results gives the estimate

M (v + di) — M(v) — ysVM () die < —(1 = y5)é [ldi 1> + o(lldi 1) < 0.

forall k € S, sufficiently large. As limges, di = 0 (see Lemma 6(i)), the computation
of ay = 1 follows from the previous displayed inequality and the Armijo condition
(81). O
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Next it is shown that the properties established in Lemmas 1-9 and Theorems 1-2
hold for every k sufficiently large, not just those in the set S, € S.

Theorem 3 For any positive € sufficiently small, and any p suchthat1 < p < 1+y,
there exists a V-iteration index ky = ky(€) such that the following results hold for
everyk > ky:

@ Nk — x5y =y <€

(1) S (k415 k1) < 8(xk, Yk)P5

(iii) k is a V-iterate; and

(iv) the results of Lemmas 1-9 and Theorems 1-2 hold.

Proof Let the positive scalar € be sufficiently small that the results of Lemmas 1-9 and
Theorems 1-2 hold for every V-O iterate (xg, yx) satisfying || (xg —x* yr — y*)|| < €.
(The proof of (iv) establishes that these results hold for every k sufficiently large.)

Let (xg, yx) be a primal-dual iterate with k& € S,. Theorem 1 implies that the unit
step is accepted in the line search, in which case (xx+1, Yk+1) = (Xk + Pr, Yk + qi)-
Let « be the positive scalar defined in Lemma 1. Similarly, let ¢; (¢; > 0) and ¢
(c2 > 1) denote constants such that

max{|[xc+1 — Xkl lye+1 — Yell} < c18(xk, yk), and
8Nk 15 Yit1) < 28 (xp, yo) 7. (82)

(The existence of ¢ and c; is implied by the results of Lemmas 6(i) and 7.)
If p is any scalar satisfying 1 < p < 1+ y,letky = ky(¢) be anindexin S, C S
that is sufficiently large that (xy, , yk, ) is a V-iterate and satisfies

max { [|lxe, — x*[I, e, — ¥, 2c18v, 2¢180 /(1 —80)} < 1e, and  (83)
max{2xp+25€71/5, c28‘l,+y_p, 55} <1, (84)

where 8§, = 8(xx,, Yk, ), and B (0 < B < 1) is the weight used in the defin-
itions of ¢y (x, y) and ¢y (x, y). The following argument shows that an index «y
satisfying these conditions must exist. As limyes, (X, yv) = (x% y*), it must hold
that the optimality and feasibility measures (12) give limgcs, ¢y (xx, yx) = 0 and
limges, ¢o(xk, yi) = 0. As Assumption 3(2) implies that there are infinitely many
V-0 iterates, and the condition ¢y (vy) < %zbg}*}(" for a V-iteration is checked before the
condition for an O-iteration, then there must be infinitely many V -iterates. In addition,
as limyeg, 8(xg, yx) = 0, there must be an index k = ky such that §, = &(xx, yx) is
sufficiently small to give (83) and (84).

An inductive argument is used to prove that parts (i)—(iv) hold for all k > k. The
base case is k = k. The definition of ky implies that k = ky is a V-iteration index, and
it follows trivially that part (iii) holds. Moreover, the assumption (83) and standard
norm inequalities yield

Gy — X% Yy — YN < oy — x5+ vy —¥* I < Je+3e <€, (85)
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which establishes part (i) for k = k. It follows immediately from (85) and the choice
of € that part (iv) holds for k = ky. As part (iv) holds for k = ky, (82), and (84) may be
combined to give 8 (Xky +1, Yky+1) < 625‘1,-’_)/ = c26\1,+y_p85 < 80, which establishes
part (ii) for k = ky. This completes the base case k = ky.

The inductive hypothesis is that (i)—(iv) hold for every iterate k such that k, < k <
ky + j — 1. Under this hypothesis, it must be shown that (i)—(iv) hold for k = ky + j.
For part (i), standard norm inequalities give

ka+j - y*

= H Z(ka+z+1 = Xy 1) + Xy — X H + H Z()’kv+l+1 = Yky+1) + Yy — ¥ H
1=0

< lxky+j = X5+ Ivky+j — V7l

j—1
<> (kg1 = Xy 12l + 1yt = Yeytall) + 12y = 351+ 13y — 371
=0
j—1
1
= 2c ZS(XkVH, Yey+1) + 7€,
1=0

where the first inequality of (82) has been used to bound each of the terms in the
summation, and the term ||xg, — x*|| + ||yx, — ¥*|| is estimated by (85). It follows
from the inductive hypothesis for part (ii) and (83) that

which establishes that part (i) holds for k = ky + j.
The next stage involves establishing that part (iii) holds for £ = k, 4 j. For all
k > ky, it holds that & = 0 and the feasibility measure ¢, satisfies

Jj—1 o
Mhytj X =2c 8 + Slp]—i— € < 2c [8 4+ — i ]+le<e
(ykvﬂ_y)H [ le LT CH B

Br(xi, yk) < ¢y (xx, yi) = n(xex) + B (xXk, i, &) < 2r (g, yi) < 268 (xg, Yk),

where the last inequality follows from Lemma 1. Applying these inequalities
at (Xgy+j» Yky+j), together with Lemma 1 and the induction assumption (ii) at

(Xky+j—1> Yhy+j—1), gives

Ov(Xky+j> Yhy+j)
< 268 Xy tjis Yy +j) < 268 (Xky+j—15 Yiy+j—1)"
< 2P iy 41 Yy 1)
= 2k (kg o1 ey = 1) (Kkey =1 Yy +j—1)

< kP BYr (ky 15 iy -1 by (k- j—1s Vgt j—1)- (86)
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If d)%‘("_ | denotes the parameter used in condition (13) to test for a V-iterate, then
the assumption that (xky4;—1, Yky+j—1) 1 a V-iterate implies that the inequal-
ity @y (Xky4j—1s Vhy4j—1) < %¢{,rf;§’;+j_l holds. This allows the bound (86) to be
extended so that

+1 -1
Dy Okt js Vey+j) = WP BIF (4 j =10 Yy -1 By ey 4 j—1

2 “1 yme
< ((KPT2BYS (ky 4 j— 15 Yy +j 1) BV i

< (P20 BBV 41 < 30T -
The last of these inequalities follows from (84) and implies that ky, 4 j is a V-iterate.
This establishes that part (iii) holds for k = ky + j, as required. Part (iv) then follows
immediately from the choice of € and the fact that (i) and (iii) hold at k = ky + j.
It remains to show that (ii) holds for k = ky + j. It follows from the bound (84) and
definition of p (p > 1), that cz((Sép)H'V_p < c255(1+y_p) < czéé—w_p < 1. This
inequality, the induction hypotheses of parts (ii) and (iv), and Lemma 7, together give

1+
S(Xky+j41 Yoy +j+1) < 28 (Xky4js Yhy+j) 7
14y —
=8 Xyt js Yhy+j) 7 P8y tjs Yy +))’

< BT TS (y s Yy +)” = 8kt Ve +7)"
which shows that part (ii) holds for k = ky + j. This completes the proof. O

It remains to establish the rate of convergence of the primal-dual iterates to (x*, y*).
The proof is based on showing that the iterates are equivalent to those of an sSQP
method for which superlinear convergence has been established.

Theorem 4 The iterates satisfy limg_, oo (X, y¢) = (x*, ¥*) and the convergence rate
is superlinear:

Proof As € > 0 was arbitrary in Theorem 3, it follows that limg_, oo (Xk, Yk) =
(x* y*). It remains to show that the convergence rate is superlinear. Theorem 3(iii)
shows that the iterates generated by the algorithm are all V-iterates for k sufficiently
large. Moreover, Theorem 3(iv) implies that Lemmas 1-9 and Theorems 1-2 hold for
all &k sufficiently large (not just for k € S, € S). It follows that for all k sufficiently
large: (a) uf = r(xg, yo)¥ (from Lemma 4); (b) A(x*) = A(xx) = A (x;, . )
(from Lemma 2(ii)); and (¢) (Xk+1, Yk+1) = (Xx + Pk, Yk + qx) with every direction
(px» qx) alocal descent direction (from Theorems 2 and 1(i)—(iii)). The combination
of these results gives [x; ]4 = O for all k sufficiently large, where the suffix “A”
denotes the components with indices in the optimal active set .A(x*). It follows that
the sequence (xx, yx) is identical to the sequence generated by a conventional sSQP
method applied to the equality-constrained problem (42), i.e., the iterates correspond to
performing a conventional sSQP method on problem (NP) having correctly estimated
the active set (the associated stabilized QP subproblem is defined in the statement of
Lemma 5). The superlinear rate convergence of the iterates now follows, for example,
from [24, Theorem 1]. O
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4 Numerical experiments

This section concerns an implementation of the algorithm described in Sect. 2, and
includes the results of some numerical experiments designed to illustrate the behavior
of the algorithm on degenerate problems. Sections 4.1—4.4 evaluate the performance
of the method on problems that exhibit various forms of degeneracy. All the results
are from a variant of the method that does not test for a direction of negative curvature
until a first-order stationary point is located. Both the global and local convergence
analysis remain valid.

From a numerical stability perspective, it is important that every computation be
performed without forming the matrix B(v,, ; 1) given by (6) explicitly. All the relevant
properties of the matrix B may be determined from the matrix

H(x,y) J(x)T
Jx) —ul )’

which is said to have “regularized KKT form.” In particular, each iteration involves
the factorization of a matrix of the form

_(Hr(x,y)  Jr(x)
Kfe‘( Jr) —pl ) ®0

The (implicitly defined) positive-definite matrix B (v 5 ,ui) (21) associated with
the bound-constrained QP problem (19) is obtained by using a pre-convexification
scheme. Specifically, the positive-definite matrix H of (21) has the form H Xk, yi) =
H(xr, yx) + Er + Dy for some positive-semidefinite matrix Ej; and positive-
semidefinite diagonal matrix Dy, as described in [16, Sect. 4]. If the matrix formed
from the e-free rows and columns of B is positive definite (see (6)), then Ej is zero,
in which case, the (implicit) §fe (s Vi 3 ) is equal to By (x, y, : pf) and the
regularized KKT equations remain unmodified (see the equations (93) below). The
calculation of the matrix Ej, is based on an LBL” factorization of a matrix in the form
(87). The factorization also provides the direction of negative curvature s,ﬁl) (11) used
to compute & (see, e.g., Forsgren [11], Forsgren and Gill [12], and Kungurtsev [27,
Chapter 9]).

Solution of the QP subproblem. Let Qk(v) denote the convex QP objective (20)
defined with parameters y; and ;. Given an initial feasible point ﬁ;( ) for problem
(19) (i.e., a point such that [V} 20 1i

a feasible sequence {v }]>0 such that Qk( )) < Qk(v

>0,i=1: n) atypical actlve-set method generates
1)) and v A(j) minimizes
Qk(v) on a “working set” W; of variables fixed at their bounds. An 1terate A(] )i

optimal for (19) if the Lagrange multipliers for the bound constraints in the workmg

set are nonnegatlve, ie.,

[VO, @) Iw; = [ VM (v yE. 1) + B s D)@ — v lw; 2 0. (88)
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where the suffix “w;” denotes the vector of components with indices in the working
set W;. The initial working set WV is defined as the e-active set A, (x, y;, uﬁ). The
first step is to move the current iterate vy onto the bounds in the working set. This

gives the first feasible point ﬁ,ﬁo) such that

(5714, =0 and [ 1, =[v ]z, (89)

where the suffices “A.” and “F.” refer to the components associated with the e-active
and e-free sets at (xx, yx). In general, ﬁ;{o) will not minimize @k (v) on Wy, and an
estimate of the next QP iterate 5}(1) is found by minimizing @k (v) subjectto[ v ]y, = 0.
If the primal components of this solution are feasible for x > 0, then the solution is
used to define ﬁ,ﬁl). Otherwise one of the violated bounds is added to the working set
and the iteration is repeated. Eventually, the working set will include enough bounds
to define an appropriate minimizer ﬁf{l). It ﬁf{l) does not satisfy the gradient condition

(88) then the index of a variable with a negative gradient is selected for deletion from
Wi.

Computation of the local descent direction. Here, vy 4 dj is a solution of the
equality-constrained subproblem (24) and must satisfy the optimality conditions (25).
Let Ok (v) denote the QP objective (5) defined with parameters y,f and ui. The vector

50 ~0)

dy is computed in the form d, = ﬁ;co) +A — v, where v, ” is the feasible point

(89) and Aﬁfco) is defined uniquely by the equations
(A1, =0, and B, [ADY 1, = —[VQ@) 1. (90)

The definition of T)\,({O) from (89) together with the form of the e-free and e-active
components of dy yields

[dilr. = [ A0 1 and [dila. = —[vela. = —[x1a. <0, (O1)

where the last inequality follows from the feasibility of x; with respect to the bounds.
The benefit of computing dj in this form is that the vector T)\,({O) + AT)\,({O) is an initial

estimate of ﬁ,((l) used in the active-set method for solving the inequality constrained
QP (19). (The conditions necessary for the computation of the local descent direction
include the fact that B, must be positive definite, which implies that B}g =By )t
follows that if the local descent direction does not satisfy the conditions (27) and is
not suitable for the line search, it may be used to initialize the active-set method for
solving (19).

The system of equations for [ Aﬁf{o
form as follows. Consider the matrix Uz, = ((I) —@/ “f)ljfe o’ ), where Jx. (xx)

denotes the matrix of e-free columns of J (xx). The matrix Uz, is nonsingular and can
be applied to both sides of (90) without changing the solution. Using the definitions
(91) and performing some simplification yields

) Irs in (90) may be written in regularized KKT
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Table 1 Control parameters and initial values required by Algorithm pdSQP

Parameter Value Parameter Value Parameter Value
P B 1.0e+3 uh 1.0e-4 Tstop 1.0e-6
€ 1.0e-6 w“i 1.0 B 1.0e-5
y 0.5 Vs 1.0e-3 A 0.2
Ymax 1.0e+6 0 1.0e-5 0 1.0
(Hfg Xk, yi) I, (Xk)T) ([ Pk ].7-'6)
Jr () —pd —qk
= Tetp) + Ho v G = x) — J ) e 1 ©2)
N ) +INE —x)+ k=) )

where py and gj are the vectors of primal and dual components of di, and Hz, (xk, yk)
is the matrix of e-free rows and columns of H (x, y).

The local convergence analysis of Sect. 3 implies that for £ sufficiently large, it
must hold that A, (x,, y, ) = AX*), [xx 4, = 0, and y; = y,. It follows that
55}(0) = x; and the Eq. (92) become

(er (ks 1) I 7. (xkﬂ) ( [pk]fe) _ ([g(xk) - J(xk)Tyk]fe) ©93)
Jrc () =l —qk c(xx) ’

i.e., the dual-regularized Newton equations for minimizing M on A..

Parameter definitions. The numerical experiments were performed using pdSQP,
a preliminary implementation of the method written in MATLAB [29]. The control
parameter values and their initial values are specified in Table 1. If pdSQP did not
converge within kpy.x = 1000 iterations, it was considered to have failed. The tests
used to terminate the algorithm at an approximate solution or an infeasible stationary
point are given by (32) and (33), respectively.

4.1 Degenerate CUTESst problems

The local rate of convergence of algorithm pdSQP was investigated for a set of degen-
erate problems from the CUTEst test set [ 18]. In particular, 84 problems were identified
for which the active-constraint Jacobian is numerically rank deficient at the computed
solution. In addition, 56 problems have at least one negligible multiplier associated
with a variable on its bound. In this case, a multiplier is considered as being negligible
if it is less than 7yop in absolute value. A zero multiplier associated with an active con-
straint implies that the property of strict complementarity does not hold. A total of 26
problems were identified that fail both the linear independence constraint qualification
(LICQ) and strict complementarity.
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Table 2 Estimated order of convergence for pdSQP on the degenerate CUTEst problems

Last is global Last is local Last two are local Total

Problems not satisfying the LICQ

1.25 < EOC 20 (7) 16 (12) 333D 69 (50)

1.1 <EOC < 1.25 3(3) 1(1) 6 (6) 10 (10)

EOC < 1.1 3(2) 0(0) 2(2) 54
Problems not satisfying strict complementarity

1.25 < EOC 17 (6) 4(2) 16 (16) 37 (24)

1.1 <EOC < 1.25 4(4) 0(0) 3(3) 7

EOC < 1.1 9(7) 1 (0) 2(1) 12 (8)
Problems not satisfying strict complementarity and the LICQ

1.25 < EOC 11 (3) 4(2) 6 (6) 21 (11)

1.1<EOC < 1.25 2(2) 0(0) 2(2) 4(4)

EOC < 1.1 1(1) 0(0) 0(0) 1(1)

For these degenerate problems, the order of convergence was estimated by
EOC = log r(xkf ) )’kf)/ IOg r(-xkf—l ) ka—l)7 (94)

where ky denotes the final computed iterate. The results are given in Table 2. The
column with heading “Last is global” contains the statistics for problems for which
the final search direction is a global descent direction. The column marked “Last is
local” gives the statistics for problems for which the final direction is a local descent
direction. Column headed “Last two are local” contains the statistics for problems for
which the final two descent steps are local descent directions. The values in paren-
theses indicate the number of problems that satisfy the weak second-order sufficient
optimality conditions, i.e., the Hessian of the Lagrangian is positive definite on the null
space of the active constraint Jacobian matrix. In the implementation considered here,
this property is considered to hold if the smallest eigenvalue of Z'H, Z is greater
than tp, where the columns of Z form a basis for the null space of J, .

Table 2 shows that if the LICQ does not hold, but strict complementarity does,
then local descent steps are computed in the final stages and they contribute to a
superlinear rate of convergence. Moreover, superlinear convergence is typical even
when the local descent step is not computed. This observation is consistent with [27,
Chapter 8], which shows that the iterates generated by algorithm pdSQP of Gill and
Robinson [15] converge superlinearly when the second-order sufficient conditions for
optimality hold as well as the property of strict complementarity. The results are more
mixed on those problems for which pdSQP converges to a solution at which strict
complementarity fails.

4.2 The degenerate problems of Mostafa, Vicente, and Wright

In [30], Mostafa, Vicente and Wright analyze the performance of an sSQP algorithm
proposed by Wright [34] that estimates the weakly and strongly active multipliers.
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Table 3 Estimated order of convergence for pdSQP on the MPEC test set

Last is global Last is local Last two are local Total
1.25 < EOC 18 (9) 17 (17) 31 (31 66 (57)
1.10 < EOC < 1.25 2(2) 1(1) 3(3) 6 (6)
EOC < 1.10 3(2) 2(2) 1(1) 6(5)

The authors demonstrate that the algorithm is robust in general and converges rapidly
on a specified collection of 12 degenerate problems that includes some of the orig-
inal Hock-Schittkowski problems; several Hock-Schittkowski problems modified to
include redundant constraints; and several problems drawn from the literature (see
the reference [30] for additional details). All 12 problems have either a rank-deficient
Jacobian or at least one weakly active multiplier at the solution.

Algorithm pdSQP was tested on ten of the twelve problems that could be coded
directly or obtained from other sources. Of the ten cases, pdSQP converges superlin-
early on seven problems, converges linearly on two problems, and fails to converge on
one problem. These results appear to be similar to those obtained by Mostafa, Vicente
and Wright using their code sSQPa [30].

4.3 Degenerate MPECs

Mathematical programs with equilibium constraints (MPECs) are optimization prob-
lems that have variational inequalities as constraints. Various reformulations of MPECs
as nonlinear programs (see Baumrucker, Renfro and Biegler [3]) include comple-
mentarity constraints that do not satisfy the LICQ or the MFCQ. This is generally
recognized as the main source of difficulty for conventional nonlinear solvers. In the
case of pdSQP, the violation of the MFCQ implies that [14, Theorem 3.16] can-
not be used to ensure the existence of limit points of the sequence of dual variables.
As a consequence, the primal-dual iterates of pdSQP may never enter a region of
superlinear convergence. Nonetheless, as MPECs constitute an important and chal-
lenging class of problems, this section includes results from pdSQP on a large set of
MPECs.

We evaluated pdSQP was evaluated on 86 MPECs obtained from Sven Leyffer
at the Argonne National Laboratory. Many of these problems are included in the
MPECLib library [5], which is a varied collection of MPECs from both theoretical
and practical test models. pdSQP solved 78 of the 86 problems.

As discussed above, the theoretical results of Sect. 3 do not guarantee that the
primal-dual iterates will enter a region in which local descent steps are used. In order
to study this possibility, Table 3 gives the EOC rates defined in (94) for all of the
MPEC problems. The results indicate that, as predicted by the theory, the last search
direction is a global descent direction in 23 cases. Nonetheless, 20 of these cases
still converge at a superlinear rate. By comparison, of the 55 problems for which
the last direction is a local descent direction, superlinear convergence occurs in 52
cases.
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Table 4 Estimated order of convergence (EOC) of pdSQP on the DEGEN test set

Critical multipliers? y* critical? EOC > 1.25 1.25 > EOC > 1.1 EOC < 1.1
No - 36 9

Yes No 9 1 2

Yes Yes 6 29 11

4.4 Degenerate problems from the DEGEN test set

In a series of numerical tests, Izmailov and Solodov [22,23,25] demonstrate that
Newton-like algorithms such as SQP or inexact SQP methods tend to generate dual
iterates that converge to critical multipliers, when they exist. (Critical multipliers are
those multipliers y € Y (x™*) for which the regularized KKT matrix (87) is singular at
x*). This is significant because dual convergence to critical multipliers will result in a
linear rate of convergence [23]. However, Izmailov [23] shows that an implementation
of a conventional sSQP algorithm is less likely to exhibit this behavior, although poor
performance can still occur in a small number of cases. This has motivated the use
of sSQP subproblems as a way of accelerating local convergence in the presence of
critical multipliers. However, such algorithms have had mixed results in practice (see,
e.g., Izmailov [26]). The purpose of this section is to use a subset of the DEGEN test set
to investigate the performance of pdSQP on problems with critical multipliers. The
subset of problems consists of those considered by Izmailov [22], and Izmailov and
Solodov [23].

Table 4 gives the estimated orders of convergence for these problems. The results
are separated based on the following properties: (i) no critical multipliers exist; (ii)
critical multipliers exist but the limit point y* is not critical; and (iii) the limit point
y* is critical. The summaries indicate which optimal multipliers (if any) are critical.
If the final multiplier estimate is within 1073 of a critical multiplier, the multiplier
is designated as critical. As shown in Table 4, empirically, pdSQP converges super-
linearly on 45 of the 51 problems that do not have critical multipliers. For the 58
problems that have critical multipliers, pdSQP converges to a critical multiplier
for 46 of them, and for those 46 problems the rate of convergence was typically
slower. The slower convergence supports the theory in [23], but the results indicate
that on this test set, pdSQP often converges to critical multipliers when they are
present.

5 Conclusions

This paper considers the local convergence analysis and some aspects of the numer-
ical performance of an sSQP method for nonlinearly constrained optimization. The
method appears to constitute the first algorithm with provable convergence to second-
order points as well as a superlinear rate of convergence. The method is formulated
as a stabilized SQP method with an implicit safeguarding strategy based on minimiz-
ing a bound-constrained primal-dual augmented Lagrangian. The method involves
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a flexible line search along a direction formed from an approximate solution of a
regularized quadratic programming subproblem and, when one exists, a direction of
negative curvature for the primal-dual augmented Lagrangian. With an appropriate
choice of termination condition, the method terminates in a finite number of iterations
under weak assumptions on the problem functions. Safeguarding becomes relevant
only when the iterates are converging to an infeasible stationary point of the norm
of the constraint violations. Otherwise, the method terminates with a point that either
satisfies the second-order necessary conditions for optimality, or fails to satisfy a weak
second-order constraint qualification. In the former case, superlinear local convergence
is established by using an approximate solution of the stabilized QP subproblem that
guarantees that the optimal active set, once correctly identified, remains active regard-
less of the presence of weakly active multipliers. It is shown that the method has
superlinear local convergence under the assumption that limit points become close to
a solution set containing multipliers satisfying the second-order sufficient conditions
for optimality. This rate of convergence is obtained without the need to solve a non-
convex QP subproblem, or impose restrictions on which local minimizer of the QP
is found. For example, it is not necessary to compute the QP solution closest to the
current solution estimate.

Numerical results on a variety of problems indicate that the method performs rel-
atively well compared to a state-of-the-art SQP method. Superlinear convergence is
typical, even for problems that do not satisfy standard constraint qualifications. Results
are more mixed for problems that do not satisfy the property of strict complementarity.

The proposed method is based on the beneficial properties of dual regularization,
which makes it necessary to assume a second-order sufficient condition to rule out the
possibility of critical multipliers at the solution. Future research will focus on primal
regularization techniques that allow superlinear convergence when critical multipli-
ers are present. For a local algorithm framework based on primal regularization, see
Facchinei, Fischer and Herrich [6,7].
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