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Abstract Stabilized sequential quadratic programming (sSQP)methods for nonlinear
optimization generate a sequence of iterates with fast local convergence regardless of
whether or not the active-constraint gradients are linearly dependent. This paper con-
cerns the local convergence analysis of an sSQP method that uses a line search with a
primal-dual augmented Lagrangian merit function to enforce global convergence. The
method is provably well-defined and is based on solving a strictly convex quadratic
programming subproblem at each iteration. It is shown that the method has superlinear
local convergence under assumptions that are no stronger than those required by con-
ventional stabilized SQP methods. The fast local convergence is obtained by allowing
a small relaxation of the optimality conditions for the quadratic programming sub-
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problem in the neighborhood of a solution. In the limit, the line search selects the unit
step length, which implies that the method does not suffer from the Maratos effect.
The analysis indicates that the method has the same strong first- and second-order
global convergence properties that have been established for augmented Lagrangian
methods, yet is able to transition seamlessly to sSQP with fast local convergence in
the neighborhood of a solution. Numerical results on some degenerate problems are
reported.

Keywords Nonlinear programming · Augmented Lagrangian · Sequential quadratic
programming · SQP methods · Stabilized SQP · Primal-dual methods · Second-order
optimality

Mathematics Subject Classification 49J20 · 49J15 · 49M37 · 49D37 · 65F05 ·
65K05 · 90C30

1 Introduction

Sequential quadratic programming (SQP) methods are an important class of methods
for minimizing a smooth nonlinear function subject to both equality and inequality
constraints. This paper concerns the local convergence properties of a new stabilized
SQP method for the solution of a nonlinear optimization problem written in the form

minimize
x∈Rn

f (x) subject to c(x) = 0, x ≥ 0, (NP)

where c : Rn �→ R
m and f : Rn �→ R are twice-continuously differentiable. For

problem (NP), the vector g(x) is used to denote ∇ f (x), the gradient of f at x . The
matrix J (x) denotes the m × n constraint Jacobian, which has i th row ∇ci (x)T , the
gradient of the i th constraint function ci at x . The Lagrangian associated with (NP) is
L(x, y, z) = f (x)−c(x)Ty−zTx , where y and z arem- and n-vectors of dual variables
associated with the equality constraints and nonnegativity constraints, respectively.
The Hessian of the Lagrangian with respect to x is denoted by H(x, y) = ∇2 f (x) −∑m

i=1 yi∇2ci (x).
At each iteration of a conventional line-search merit-function SQP method, a suf-

ficient decrease in a merit function is obtained by performing a line search in the
direction of a solution of a quadratic programming (QP) subproblem in which a local
quadratic model of the Lagrangian is minimized subject to the linearized constraints.
The merit function is designed to provide a measure of the quality of a given point as
an estimate of a solution of the nonlinearly constrained problem. (For a recent survey
of SQP methods, see Gill and Wong [17].) Stabilized sequential quadratic program-
ming (sSQP) methods are designed to improve the poor local convergence rate that
can occur when a conventional SQP method is applied to an ill-posed or degenerate
problem. Given an estimate (xk, yk) in the neighborhood of a primal-dual solution
(x∗, y∗) of problem (NP), sSQP methods compute a new solution estimate based on
the properties of a QP subproblem of the form
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minimize
x,y

g(xk)
T(x − xk) + 1

2 (x − xk)
T H(xk, yk)(x − xk) + 1

2μk‖y‖2

subject to c(xk) + J (xk)(x − xk) + μk(y − yk) = 0, x ≥ 0, (1)

where μk is a positive scalar of the order of the distance of (xk, yk) to the set of
solutions of (NP). The QP subproblem associated with a conventional SQP method
corresponds to the value μk = 0. The terms in the objective and constraints of (1)
associated with μk serve to bound the change in the dual variables and provide a
sequence of iterates with fast local convergence regardless of whether or not the
active-constraint gradients are linearly dependent. The first sSQP method was pro-
posed by Wright [32], who established a superlinear rate of convergence of the
solutions {(xk, yk)} of (1) under the assumptions of strict complementarity and the
satisfaction of the Mangasarian-Fromovitz constraint qualification. These assump-
tions were relaxed by Hager [19], and more recently by Fernández and Solodov [9],
and Solodov and Izmailov [24]. Independently, Fischer [10] proposed an algorithm in
which an auxiliaryQP problem is solved for themultiplier estimate of the conventional
QP subproblem. This method also has superlinear convergence under appropriate
assumptions. The analysis of a conventional sSQP method concerns the sequence
{(xk, yk)} of solutions of the QP subproblem (1). Other methods related to sSQP
identify an estimate of the optimal active set and then solve an equality constrained
or inequality constrained QP defined in terms of a subset of the constraints. Con-
straints omitted from the estimated active set are allowed to be violated slightly.
Wright [33,34] includes only a subset of the linearized constraints in an inequal-
ity constrained sSQP subproblem. Wright [35], and Oberlin and Wright [31] use an
auxiliary inequality constrained subproblem to estimate the optimal active set and then
solve an sSQP subproblem with only equality constraints. Izmailov and Solodov [21]
also use an auxiliary subproblem, but solve an unstabilized equality constrained prob-
lem using a rank detection method to treat any linear dependence in the linearized
constraints.

All of these sSQP methods can be shown to exhibit fast local convergence under
suitable assumptions. It should be emphasized that, with the notable exception of
Wright [35], previous analyses of sSQP methods do not pertain to a consistent, well-
defined algorithm. They show only that if a specific local solution of a nonconvex QP
subproblem is found, then these solutions converge at a superlinear rate. Unfortunately,
in a practical method, there is no guarantee that a nonconvex QP solver will find the
specific solution required for the theory. This problem is in addition to the well-known
difficulties associated with solving a nonconvex QP, i.e., the potential for multiple
and unbounded solutions. (See Kungurtsev [27, Chapter 5] for a discussion of these
issues.)

Although sSQPmethods exhibit fast local convergence, they comewith little global
convergence theory, so that stabilizedmethodsmust start by solving theQPsubproblem
associated with a conventional (globally convergent) SQP method and switch to the
stabilized QP strategy when it is determined that the iterates are in the proximity of
a solution. Moreover, as mentioned above, many sSQP methods require the solution
of an auxiliary inequality-constrained subproblem at each outer iteration, usually a
linear program (LP).
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In this paper we consider the local convergence properties of a globally convergent
sSQP method that does not require a switch to a conventional SQP method or the
solution of an auxiliary inequality constrained subproblem. The method is based on
using a primal-dual augmented Lagrangian merit function in conjunction with a line
search to enforce global convergence. At each iteration, an estimate of the solution
is computed by minimizing a strictly convex local quadratic model of the augmented
Lagrangian subject to simple bound constraints. This subproblem is formally equiv-
alent to a QP problem that is closely related to the QP subproblem associated with
sSQP.

The principal contributions are the following. (i) A local descent step is proposed
that is based on allowing a small relaxation of the optimality conditions for the bound-
constrained subproblem. It is shown that this step provides iterates that are equivalent
to those from a conventional sSQP method when close to the solution. This equiv-
alence holds under conditions that are no stronger than those required to establish
the superlinear convergence of a conventional sSQP method. (ii) A local convergence
analysis is given that does not require the assumption of a constraint qualification or
strict complementarity condition. (iii) It is shown that the step length of one is selected
in the limit, which implies that the method does not suffer from theMaratos effect (see
Maratos [28]). As far as we are aware, this is the only stabilized SQP method with this
property. (iv) Although exact second-derivatives are used, the method does not require
the solution of a nonconvex QP subproblem—a problem that is known to be NP-hard.
In addition, the local convergence theory makes no assumptions about which local
solution of the QP subproblem is computed. (v) Preliminary numerical results indi-
cate that the method has good global and local convergence properties for degenerate
problems under weak regularity assumptions. Overall, the local analysis of this paper
and the global analysis of [14] imply that the proposed method has the same strong
first- and second-order global convergence properties that have been established for
augmented Lagrangian methods, yet is able to transition seamlessly to sSQP with fast
local convergence in the neighborhood of a solution.

The remainder of the paper is organized as follows. This section concludes with a
summary of the notation. Section 2 contains a description of the second-order primal-
dual sSQP method. The local convergence properties of the method are established
in Sect. 3. In Sect. 4, methods are discussed for solving the sSQP subproblems, and
numerical results are provided.Although this paper describes themethod in its entirety,
the reader is referred to [14] for a complete analysis of the global convergence, as well
as additional details of the method that are not related to the local analysis.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its
induced matrix norm. Given vectors a and b with the same dimension, the vector
with i th component aibi is denoted by a·b. Similarly, min(a, b) is the vector with
components min(ai , bi ). The vectors e and e j denote, respectively, the column vector
of ones and the j th column of the identity matrix I . The dimensions of e, ei and I
are defined by the context. The set of integers {1, 2, …, n} is denoted by 1 : n. Given
vectors x and y, the vector consisting of the elements of x augmented by elements
of y is denoted by (x, y). The value of a scalar-, vector- or matrix-valued function F
with arguments x and y will be written as either F(x, y) or F(v), where v is the vector
(x, y). The i th component of a vector labeled with a subscript will be denoted by [ · ]i ,
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e.g., [ v ]i is the i th component of the vector v. For a given �-vector u and index set
S, the quantity [ u ]S denotes the subvector of components u j such that j ∈ {1, 2, …,
� }∩S. Similarly, if M is a symmetric �×�matrix, then [ M ]S denotes the symmetric
matrix with elements mi j for i , j ∈ {1, 2, …, � } ∩ S. Let {α j } j≥0 be a sequence
of scalars, vectors or matrices and let {β j } j≥0 be a sequence of positive scalars. If
there exists a positive constant γ such that ‖α j‖ ≤ γβ j , we write α j = O(β j ). If
there exists a sequence {γ j } → 0 such that ‖α j‖ ≤ γ jβ j , we say that α j = o(β j ).
If there exist positive constants γ1 and γ2 such that γ1β j ≤ ‖α j‖ ≤ γ2β j , we write
α j = Θ

(
β j

)
.

2 The primal-dual stabilized SQP algorithm

The proposed algorithm is designed to find first- and second-order KKT pairs associ-
ated with problem (NP). A vector x∗ is a first-order KKT point for problem (NP) if
there exists a dual vector y∗ such that r(x∗, y∗) = 0, where

r(x, y) =
∥
∥
∥
(
c(x),min

(
x, g(x) − J (x)Ty

))∥∥
∥ . (2)

Any (x∗, y∗) satisfying r(x∗, y∗) = 0, is called a first-order KKT pair. For arbitrary
vectors x and y of appropriate dimension, the scalar r(x, y) provides a practical esti-
mate of the distance of (x, y) to a first-order KKT pair of problem (NP). If, in addition,
(x∗, y∗) satisfies the condition pTH(x∗, y∗)p ≥ 0 for all p such that J (x∗)p = 0,
with pi ≥ 0 for all i such that x∗

i = 0, then (x∗, y∗) is referred to as a second-order
KKT pair. In general, the Lagrange multiplier associated with a first-order KKT point
is not unique, and the set of Lagrange multiplier vectors is given by

Y(x∗) = {y ∈ R
m : (x∗, y) satisfies r(x∗, y) = 0}.

The algorithm is based on replacing problem (NP) by a sequence of problems

minimize
x∈Rn ,y∈Rm

M(x, y ; yEk , μk) subject to x ≥ 0, (3)

where M(x, y ; yEk , μk) is the primal-dual function

M(x, y ; yEk , μk)= f (x) − c(x)TyEk + 1

2μk
‖c(x)‖2 + 1

2μk
‖c(x) + μk(y − yEk )‖2,

(4)
with μk a positive penalty parameter and yEk an estimate of a Lagrange multiplier
vector for problem (NP). The method has an inner/outer iteration structure in which
each outer iteration involves the minimization of a quadratic model of M subject to the
nonnegativity constraints. The inner iterations are then those of the active-set method
used to find an approximate bound-constrained minimizer of the quadratic model. If
the Hessian of M is not positive definite, a direction of negative curvature for M is
computed. A direction obtained by solving the QP subproblem is combined with the
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direction of negative curvature (if one is computed) to give a search direction for a
line search designed to find a step of sufficient decrease in M(x, y ; yEk , μk).

Each outer iteration involves the definition of two related QP subproblems associ-
ated with the primal-dual function (4). The objective function in both subproblems is
defined in terms of the gradient ∇M and a matrix that approximates the Hessian ∇2M .
For values of yE and μ, the gradient ∇M(x, y ; yE, μ) and Hessian ∇2M(x, y ; yE, μ)

at (x, y) may be written in the form

(
g(x) − J (x)T

(
π(x ; yE, μ) + (π(x ; yE, μ) − y)

)

μ(y − π(x ; yE, μ))

)

,

and

(
H

(
x, π(x ; yE, μ) + (π(x ; yE, μ) − y)

) + 2
μ
J (x)TJ (x) J (x)T

J (x) μI

)

,

where π is the vector-valued function π(x ; yE, μ) = yE − c(x)/μ.
Let (xk, yk) be the kth estimate of a primal-dual solution of (NP). Let v and vk denote

the (n+m)-vectors of primal-dual variables (x, y) and (xk , yk). Given a second penalty
parameter μR

k such that 0 < μR
k ≤ μk , the change in M at vk may be approximated by

the quadratic function Qk(v ; yEk , μR
k), where

Qk(v ; yE, μR) = ∇M(vk ; yE, μR)T(v − vk) + 1
2 (v − vk)

T B(vk ; μR)(v − vk), (5)

and the matrix B(vk ; μR
k) is obtained by replacing π(xk ; yEk , μR

k) by yk in the leading
block of the Hessian matrix ∇2M(xk, yk ; yEk , μR

k), i.e.,

B(xk, yk ; μR
k) =

(
H(xk, yk) + 2

μR
k

J (xk)TJ (xk) J (xk)T

J (xk) μR
k I

)

. (6)

The matrix B(xk, yk ; μR
k) is independent of π and therefore does not involve yEk . If

(x∗, y∗) satisfies certain second-order sufficient conditions for an optimal solution of
problem (NP), then, for the values vk = (x∗, y∗) and yEk = yk , there exists a positive
μ̄ such that for all 0 < μR

k < μ̄, the point (x∗, y∗) satisfies the second-order sufficient
optimality conditions for the QP subproblem

minimize
v

Qk(v ; yEk , μR
k) subject to [ v ]i ≥ 0, i = 1 : n (7)

(see Gill, Kungurtsev and Robinson [14]). The benefit of using B(xk, yk ; μR
k) and

not ∇2M(xk, yk ; yEk , μR
k) in the definition of the quadratic function (5) is that the QP

subproblem (7) is formally equivalent to the QP subproblem

minimize
x,y

g(xk)
T(x − xk) + 1

2 (x − xk)
TH(xk, yk)(x − xk) + 1

2μ
R
k‖y‖2

subject to c(xk) + J (xk)(x − xk) + μR
k(y − yEk ) = 0, x ≥ 0

(8)
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(see Gill and Robinson [16]). A comparison of this subproblem and (1) indicates that
setting yEk = yk in the definition of (5) and forcing μR

k → 0 as (xk, yk) converges to a
primal-dual solution (x∗, y∗) will induce the method to behave like an sSQP method
and thereby inherit the same fast local convergence rate.

At the outermost level, the method may be regarded as a primal-dual augmented
Lagrangian method for which the parameters {yEk } and {μk} are adjusted to give global
convergence. However, the sequence of penalty parameters {μR

k} is chosen in such a
way that, in the neighborhood of a solution, the search direction is equivalent to that
defined by an sSQP method. In this context, μR

k plays the role of a regularization or
stabilization parameter rather than a penalty parameter, thereby providing an O(μR

k)

estimate of the conventional SQP direction (see Gill and Robinson [16]).
The next four sections provide some additional details of the algorithm, with an

emphasis on those aspects related to the local convergence analysis. More details of
the computation, including a step-by-step description of the main algorithms, may be
found in Gill, Kungurtsev and Robinson [14]. In Sect. 2.1 we provide details of how
the parameters yEk ,μk andμR

k are defined. In Sect. 2.2 we consider the definition of the
QP subproblem and show that although the QP (7) cannot be used directly as a local
quadratic model ofM , it forms the basis for two approximate convex QP subproblems,
onewith inequality constraints, and the otherwith only equality constraints. In Sect. 2.3
we give a brief outline of the flexible line search. Finally, Sect. 2.4 provides a brief
summary of the algorithm.

2.1 Definition of the penalty parameters and multiplier estimate

At the start of the kth outer iteration, (xk, yk) is known, as well as the regularization
parameterμR

k−1 and penalty parameterμk−1. The first step is to compute yEk andμR
k for

the new iteration. These parameters are defined in terms of an estimate of the optimal
active set of problem (NP). This estimate involves a positive scalar ε that reflects the
distance of (x, y) to a first-order optimal pair for problem (NP). The ε-active set is
defined as

Aε(x, y, μ) = {
i : xi ≤ ε, with ε ≡ min

(
εa, max

(
μ, r(x, y)γ

) )}
, (9)

where γ and εa are fixed scalars satisfying 0 < γ < 1 and 0 < εa < 1, and r(x, y) is
the nonnegative scalar of (2). Similarly, the ε-free set is the complement of Aε in {1,
2, …, n + m}, i.e.,

Fε(x, y, μ) = {1, 2, . . . , n + m} \ Aε(x, y, μ). (10)

The calculation of yEk and μR
k also requires the scalar ξk (ξk ≥ 0), which is an

estimate of the magnitude of the “most negative” eigenvalue of BFε
(vk ;μR

k−1). The

scalar ξk is computed as part of the scalar-vector pair (ξk, s
(1)
k ) such that

s(1)T
k B(vk ; μR

k−1)s
(1)
k = −ξk‖u(1)

k ‖2, (11)
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where u(1)
k is the vector of first n components of s(1)

k . If ξk = 0, then s(1)
k = 0.

If BFε
(vk ; μR

k−1) is positive definite then (ξk, s
(1)
k ) = 0. (The calculation of ξk is

discussed further in [14, Algorithm 1] and Sect. 2.2.) The values of yEk and μR
k depend

on scalars φmax
V, k−1, φ

max
O, k−1 and τk−1 defined below. The magnitudes of φmax

V, k−1, φ
max
O, k−1

and τk−1 reflect the distance of (xk, vk) to an optimal point.
The multiplier estimate yEk is set to yk if (xk, yk) gives an improvement in a measure

of the distance to a second-order solution (x∗, y∗). The algorithm uses the feasibility
and optimality measures η(xk) and ω(xk, yk, ξk) such that

η(xk) = ‖c(xk)‖, and

ω(xk, yk, ξk) = max
(∥
∥
∥min(xk, g(xk) − J (xk)

Tyk)
∥
∥
∥ , ξk

)
. (12)

Given η(xk) andω(xk, yk, ξk), weighted combinations of the feasibility and optimality
measures are defined as

φV (xk, yk) = η(xk) + βω(xk, yk, ξk), and

φO(xk, yk, ξk) = βη(xk) + ω(xk, yk, ξk),

where β is a fixed scalar such that 0 < β � 1. (With this notation, “V” indicates
a measure of the constraint violations and “O” denotes a measure of the distance to
optimality.) The assignment yEk = yk is done if

φV (vk) ≤ 1
2φ

max
V, k−1 or φO(vk, ξk) ≤ 1

2φ
max
O, k−1. (13)

The point (xk, yk) is called a “V-iterate” if it satisfies the bound on φV (vk), and an “O-
iterate” if it satisfies the bound on φO(vk, ξk). A “V-O iterate” is a point at which one or
both of these conditions holds, and the associated iteration is called a “V-O iteration.”
For a V-O iteration, new values are given by τk = 1

2τk−1, and φmax
V, k = 1

2φ
max
V, k−1 or

φmax
O, k = 1

2φ
max
O, k−1, depending on which of the inequalities in (13) holds. Also, the new

regularization parameter is

μR
k =

{
min

(
μR
0, max

(
rk, ξk

)
γ

)
if max

(
rk, ξk

)
> 0;

1
2μ

R
k−1 otherwise,

(14)

where rk = r(xk, yk) is defined in (2).
If the conditions for a V-O iteration do not hold, a test is made to determine if

(xk, yk) is an approximate second-order solution of the problem

minimize
x,y

M(x, y ; yEk−1, μ
R
k−1) subject to x ≥ 0. (15)
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In particular, (xk, yk) is tested using the conditions:

‖min
(
xk,∇x M(xk, yk ; yEk−1, μ

R
k−1)

)‖ ≤ τk−1, (16a)

‖∇yM(xk, yk ; yEk−1, μ
R
k−1)‖ ≤ τk−1μ

R
k−1, and (16b)

ξk ≤ τk−1, (16c)

where τk−1 is a positive tolerance. If these conditions are satisfied, then (xk, yk) is
called an “M-iterate” and the parameters are updated as in a typical conventional
augmented Lagrangian method, with the multiplier estimate yEk−1 replaced by the
safeguarded value

yEk = max
( − ymaxe, min( yk, ymaxe )

)
(17)

for some large positive scalar constant ymax, and the new regularization parameter is
given by

μR
k =

{
min

( 1
2μ

R
k−1, max

(
rk, ξk

)
γ

)
, if max(rk, ξk) > 0;

1
2μ

R
k−1, otherwise.

(18)

In addition, a new tolerance τk is computed such that τk = 1
2τk−1.

Finally, if neither (13) nor (16) are satisfied, then yEk = yEk−1, μ
R
k = μR

k−1, φ
max
V, k =

φmax
V, k−1, φ

max
O, k = φmax

O, k−1, and τk = τk−1. As the multiplier estimates and regularization
parameter are fixed at their current values in this case, (xk, yk) is called an “F-iterate”.

2.2 Definition of the quadratic model and line-search direction

The bound-constrained problem (7) is not suitable for the calculation of a search
direction because B(vk ;μR

k) is not positive definite in general. A nonconvex QP can
have many local minima and may be unbounded. In addition, the certification of a
second-order solution of a nonconvex QP is computationally intractable in certain
situations. These difficulties are avoided by approximating subproblem (7) by the
convex QP

minimize
v

Q̂k(v ; yEk , μR
k) subject to [ v ]i ≥ 0, i = 1 : n, (19)

where Q̂k(v ; yEk , μR
k) is the strictly convex quadratic model

Q̂k(v ; yEk , μR
k) = ∇M(vk ; yEk , μR

k)
T(v − vk) + 1

2 (v − vk)
T B̂(vk ; μR

k)(v − vk), (20)

with B̂(vk ;μR
k) a positive-definite approximation of B(vk ; μR

k) of the form

B̂(vk ;μR
k) =

(
Ĥ(xk, yk) + 2

μR
k

J (xk)TJ (xk) J (xk)T

J (xk) μR
k I

)

, (21)
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where Ĥ(xk, yk) is defined so that the matrix B̂(xk, yk ; μR
k) is positive definite, and

B̂Fε
(xk, yk ;μR

k) is equal to BFε
(xk, yk ;μR

k) if BFε
(xk, yk ; μR

k) is positive definite.
The matrix B̂ is computed by a process known as “convexification” (see [16, Sect. 4]
for details). If the unique solution of the subproblem (19) is denoted by v̂k , then the
associated direction vector starting from vk is given by dk = v̂k − vk . The vector dk
found by solving (19) is known as the global descent direction because of its crucial
role in the proof of global convergence.

An important property of the proposed method is the ability to compute a direction
dk froman alternativeQP subproblem that has only equality constraints. The optimality
conditions for the QP subproblem (7) at an optimal point v̂k = vk + dk are given by

[ ∇Qk(vk + dk ; yEk , μR
k) ]F = 0, [ ∇Qk(vk + dk ; yEk , μR

k) ]A ≥ 0, and

[ vk + dk ]i ≥ 0 for i = 1 : n, (22)

where [ · ]A and [ · ]F denote vectors with components from the active/free sets

A(x) = {i : [ x ]i = 0} and F(x) = {1 : n + m} \ A(x), (23)

at v̂k = vk + dk . If strict complementarity does not hold for (NP), then some of the
components of y∗ associated with variables on their bounds may be zero, in which
case some QPs defined at xk near x∗ may have multipliers that are close to zero. In this
situation the QP algorithm may remove active-set indices associated small negative
multipliers at one outer iteration, only to add them again at the next. This inefficiency
is prevented using an approximate QP solution in which small negative multipliers are
regarded as being optimal.

If BFε is positive definite and vk is a V-O iterate (in which case yEk = yk), the
solution of the equality-constraint QP subproblem

minimize
v

Qk(v ; yEk , μR
k) subject to [ v ]Aε = 0, (24)

is unique. As in the case of a global descent direction, the solution v̂k may be defined
in terms of a step dk from the point vk using the optimality conditions

[ vk + dk ]Aε
= 0, [ ∇Qk(vk + dk ; yEk , μR

k) ]Fε
= 0, (25)

with no nonnegativity restriction on the components of the gradient vector [ ∇Qk(vk +
dk ; yEk , μR

k) ]Aε
. The unique direction satisfying these equations is referred to as the

local descent direction. When computed, it is used as the vector dk in the line search
only if certain conditions hold. Let

tk = r(xk, yk)
λ, where 0 < λ < min{γ, 1 − γ } < 1, (26)

123



A stabilized SQP method: superlinear convergence 379

and γ is the parameter used in the definition (9) of the ε-active set. The local descent
direction dk satisfying (25) is used in the line search when

[ vk + dk ]i ≥ 0, i = 1 : n, [ ∇Qk(vk + dk ; yEk , μR
k) ]Aε

≥ −tke, and

∇MT
k dk < 0. (27)

These conditions may be satisfied at any iterate, but are most likely to be satisfied
in the neighborhood of a solution. If the local descent direction does not satisfy the
conditions (27) and is therefore not selected for the line search, it is used to initialize the
active-set method for solving (19). In this sense, the equality-constrained subproblem
(24) is not an auxiliary subproblem, but one that must be solved anyway as part of the
solution of the QP subproblem (19) (for more details, see Sect. 4).

The line-search direction Δvk is the sum of two vectors dk and sk . The vector dk
is either the global descent direction or local descent direction as computed above.
The vector sk , if nonzero, is a direction of negative curvature for the quadratic model
Qk(v ; yEk−1, μ

R
k−1). The vector sk has the form sk = (uk, wk) and is a scalar multiple

of the vector s(1)
k of (11) defined such that

sTk B(vk ; μR
k)sk ≤ 0, ∇M(vk ; yEk , μR

k)
Tsk ≤ 0, and

[ vk + dk + sk ]i ≥ 0, i = 1 : n. (28)

The direction sk is zero if no negative curvature is detected, but sk must be nonzero if
ξk > 0 and dk = 0 (see [14, Lemma 2.2]), which ensures that the line-search direction
is nonzero at a first-order stationary point vk at which BFε

(xk, yk ;μR
k−1) is not positive

semidefinite.

2.3 Computation of the line-search step

Once the directions dk and sk have been computed, a flexible line search is performed
based on the search direction Δvk = dk + sk . (The idea of a flexible line search was
proposed byCurtis andNocedal [4] in the context ofminimizing an l1 penalty function,
and extended to the augmented Lagrangian function by Gill and Robinson [16].)

For a given line-search penalty parameter μ, an Armijo condition is used to define
a reduction in the function Ψk(α ; μ) = M(vk + αΔvk ; yEk , μ) that is at least as good
as the reduction in the line-search model function

ψk(α ; μ, �k) = Ψk(0 ; μ) + αΨ ′
k(0 ; μ)

+ 1
2 (�k − 1)α2 min

(
0,ΔvTk B(xk, yk ; μR

k−1)Δvk
)
, (29)

where Ψ ′
k denotes the derivative with respect to α. The scalar �k is either 1 or 2,

depending on the order of the line-search model function. The value �k = 1 implies
that ψk is an affine function, which gives a first-order line-search model. The value
�k = 2 defines a quadratic ψk and gives a second-order line-search model. The first-
order line-search model is used when dk �= 0, sk = 0, and (xk, yk) is a V-O iterate.
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This is crucial for the proof that the line-search algorithm returns the step length of
one in the neighborhood of a second-order solution (see Theorem 2 below).

Given a fixed parameter γS ∈ (0, 1
2 ), the flexible line search attempts to compute

an αk that satisfies the modified Armijo condition

Ψk(0 ; μF
k ) − Ψk(αk ;μF

k ) ≥ γS

(
ψk(0 ; μR

k, �k) − ψk(αk ; μR
k, �k)

)
(30)

for some μF
k ∈ [μR

k, μk]. The required step is found by repeatedly reducing αk by a
constant factor until ρk(αk ;μk, �k) ≥ γS or ρk(αk ;μR

k, �k) ≥ γS , where

ρk(α ; μ, �) = (
Ψk(0 ; μ) − Ψk(α ;μ)

)
/
(
ψk(0 ; μR

k, �) − ψk(α ; μR
k, �)

)
.

(Just prior to the line search, the line-search penalty parameter μk is increased if
necessary to ensure that μk ≥ μR

k , i.e., μk = max(μR
k, μk).)

The Armijo procedure is not executed in two situations. First, if dk = sk = 0,
then the step length is set at αk = 1. Second, αk is set to zero if dk = 0,
∇M(vk ; yEk , μR

k)
T sk = 0, and the magnitude of the curvature of the merit function in

the direction of sk is not sufficiently large compared to ξk , the magnitude of the cur-
vature of the quadratic model. The magnitude of the negative curvature is considered
to be insufficient if −sTk ∇2M(vk ; yEk , μR

k)sk/‖uk‖2 ≤ γSξk , where uk is the vector of
first n components of sk . In either case, vk+1 = vk and it must hold that a μR

k such that
μR
k < μR

k−1 is used in the next iteration (see Lemmas 2.3(2) and 2.4(3) of [14]).
Once αk has been found, the next penalty parameter is set as

μk+1 =
{

μk, if ρk(αk ;μk, �k) ≥ γS, or dk = sk = 0, or αk = 0;
max

( 1
2μk, μ

R
k

)
, otherwise.

(31)
The aim is to decrease the penalty parameter only when the merit function computed
with μk is not sufficiently reduced by the trial step.

2.4 Algorithm summary

The computation associated with the kth iteration of the main algorithm may be
arranged into seven principal steps.

1. Given (xk, yk) and the regularization parameter μR
k−1 from the previous iteration,

compute Fε(xk, yk, μ
R
k−1) and B(vk ; μR

k−1). Compute the nonnegative scalar ξk

and vector s(1)
k such that s(1)T

k B(vk ; μR
k−1)s

(1)
k = −ξk‖u(1)

k ‖2, where ξk ≥ 0 and

u(1)
k is the vector of first n components of s(1)

k . If ξk > 0, then ξk approximates
the magnitude of the “most negative” or “least” eigenvalue of BFε

(vk ;μR
k−1). If

ξk = 0, then s(1)
k = 0. If BFε

(vk ; μR
k−1) is positive definite then (ξk, s

(1)
k ) = 0.

(See [14, Algorithm 1].)
2. Terminate if the following conditions hold:

r(xk, yk) ≤ τstop, ξk ≤ τstop, and μR
k−1 ≤ τstop, (32)
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where τstop is a preassigned stopping criterion. If these conditions are satisfied, xk
is an approximate second-order KKT point.

3. Compute yEk and μR
k for the kth iteration based on the values ξk , r(xk, yk), yEk−1,

μR
k−1, φmax

V, k−1, φmax
O, k−1 and τk−1. Compute new values for φmax

V, k , φmax
O, k , τk . (See

Steps 13–24 of Algorithm 5 [14].)
4. Terminate if xk is an M-iterate such that

min
(‖c(xk)‖, τstop

)
> μR

k, and ‖min
(
xk, J (xk)

Tc(xk)
)‖ ≤ τstop. (33)

If these conditions are satisfied, xk is an approximate infeasible stationary point
of the problem min ‖c(x)‖2 subject to x ≥ 0.

5. Compute a positive-definite matrix B̂(vk ;μR
k) such that B̂Fε

(xk, yk ; μR
k) =

BFε
(xk, yk ; μR

k) if the matrix BFε
(xk, yk ; μR

k) is positive definite. Compute dk =
v̂k − vk , where v̂k is the solution of either the equality-constraint QP subproblem
(24) or the strictly convex QP subproblem (19). In either case, dk has the form
dk = (pk, qk), where the primal components pk satisfy xk + pk ≥ 0. (See [14,
Algorithm 2].)

6. Rescale the direction s(1)
k to give a feasible direction of negative curvature sk =

(uk, wk) satisfying (28). (See [14, Algorithm 3].)
7. Perform a flexible line search along the vectorΔvk = sk+dk = (uk+ pk, wk+qk).

(See [14, Algorithm 4].) Update the line-search penalty parameter μk using (31).

3 Local convergence

The analysis involves second-order sufficient conditions defined in terms of the sets
of strongly-active variables A+ and weakly-active variables A0:

A+(x, y) = {i ∈ A(x) : [ g(x) − J (x)Ty ]i > 0},
A0(x, y) = {i ∈ A(x) : [ g(x) − J (x)Ty ]i = 0}. (34)

Definition 1 (Second-order sufficient conditions (SOSC)) A primal-dual pair (x∗, y∗)
satisfies the second-order sufficient optimality conditions for problem (NP) if it is a
first-order KKT pair (i.e., r(x∗, y∗) = 0) and

pTH(x∗, y∗)p > 0 for all p ∈ C(x∗, y∗) \ {0}, (35)

where C(x∗, y∗) = null
(
J (x∗)

) ∩ {p : pi = 0 for i ∈ A+(x∗, y∗), pi ≥ 0 for i ∈
A0(x∗, y∗) } is the critical cone.
The analysis of Gill, Kungurtsev and Robinson [14] establishes that the global con-
vergence behavior of the method falls into one of two cases, depending on whether
the set of V-O iterates is infinite or finite. If there are infinitely many V-O iterates,
there exists a subsequence with limit point x∗ that is either a first-order KKT point,
or fails to satisfy the constant positive generator constraint qualification (CPGCQ)1.

1 Andreani et al. [1, Definition 3.1].
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Moreover, if theMangasarian-Fromovitz constraint qualification (MFCQ) holds at x∗,
then the associated subsequence of dual estimates is bounded with limit point y∗ such
that (x∗, y∗) is a first-order KKT pair for problem (NP). If the weak constant rank
condition (WCRC)2 holds in addition to the MFCQ (in which case, the CPGCQ holds
automatically), then (x∗, y∗) is a second-order KKT point. In the case that the set of
V-O iterates is finite, there are infinitely many M-iterates, and every limit point x∗ of
this sequence is an infeasible stationary point.

The local convergence analysis given here focuses on sequences that converge to
first- or second-order KKT pair. (An analysis of the rate of convergence associated
with sequences converging to locally infeasible points is beyond the scope of this
paper).

The results established in this section require three standing assumptions.

Assumption 1 f and c are twice Lipschitz-continuously differentiable.

Assumption 2 The index set S of V-O iterates, i.e.,

S = { k : (xk, yk) is a V-O iterate },

is infinite, and there exists a subsequence S∗ ⊆ S, such that limk∈S∗(xk, yk) =
(x∗, y∗), with (x∗, y∗) a first-order KKT pair for problem (NP). (This assumption
requires that the finite termination conditions (32) and (33) are omitted.)

Assumption 3 If (x∗, y∗) is the first-order KKT pair in Assumption 2, then

(i) there exists a compact set Λ(x∗) ⊆ Y(x∗) such that y∗ belongs to the (nonempty)
interior of Λ(x∗) relative to Y(x∗); and

(ii) (x∗, y) satisfies the SOSC of Definition 1 for every y ∈ Λ(x∗).

The key part of Assumption 3 is the existence of the compact set Λ(x∗), which guar-
antees that the closest point in Y(x∗) to every element yk of the subsequence {yk }
satisfying limk→∞ yk = y∗ is also in Λ(x∗) for k sufficiently large. This is equivalent
to there being a setK, open relative toY(x∗), such that y∗ ∈ K ⊂ Λ(x∗). This, in turn,
is equivalent to the assumption that the affine hulls of Λ(x∗) and Y(x∗) are identical,
with y∗ in the relative interior of Λ(x∗). (For example, if m = 3, and Y(x∗) is a ray
of the form y = a + bt for a, b ∈ R

3, t ∈ (−∞,∞), then Λ(x∗) could be a closed
interval relative to the ray, e.g., Λ(x∗) = {y : y = a + bt, for t ∈ [t1, t2].) Note
that the set of multipliers Y(x∗) need not be bounded. The second-order sufficient
conditions need hold only for multipliers in a compact subset of Y(x∗).

For any y, compactness ofΛ(x∗) in Assumption 3 implies the existence of a vector
y∗
P(y) ∈ Λ(x∗) that minimizes the distance from y to Λ(x∗), i.e.,

y∗
P(y) ∈ Argmin

ȳ∈Λ(x∗)
‖y − ȳ‖. (36)

The existence of a vector y∗
P(y) implies that the distance δ(x, y) of any primal-dual

point (x, y) to the primal-dual solution set V(x∗) = {x∗}×Λ(x∗) associated with x∗,

2 Andreani et al. [2, page 532].
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may be written in the form

δ(x, y) = min
(x̄,ȳ)∈V(x∗)

‖(x − x̄, y − ȳ)‖ = ‖(x − x∗, y − y∗
P(y))‖. (37)

The pair
(
x∗, y∗

P(y)
)
satisfies the second-order sufficient conditions as a result of

Assumption 3(ii). The following result shows that the proximity measure r(x, y) may
be used as a surrogate for δ(x, y) near (x∗, y∗).

Lemma 1 ([35, Theorem 3.2]) There exists a positive scalar κ ≡ κ(Λ(x∗)) such that
r(xk, yk) ∈ [

δ(xk, yk)/κ, δ(xk, yk)κ
]
for all k ∈ S∗ sufficiently large.

Proof Under the assumptions used here, the result follows from Theorem 3.2 of
Wright [35], where Lemmas 2.1 and 2.2 of Gill, Kungurtsev and Robinson [13] are
used to establish that the exact and estimated distance of (xk, yk) to the primal-dual
solution set used in [35] are equivalent (up to a scalar multiple) to the values δ(xk, yk)
and r(xk, yk) given here. ��

The principal steps of the local convergence analysis are summarized as follows.
First, the properties of iterates with indices k ∈ S∗ ⊆ S are considered. It is shown
that for some k ∈ S∗ sufficiently large, the following results hold.

(a) The active set at x∗ is identified correctly by the ε-active set, and the direction sk
of negative curvature is zero.

(b) A local descent direction dk is computed, and the conditions [ vk +dk ]i ≥ 0, i =
1 : n, ∇MT

k dk < 0, ∇Qk(vk +dk ; yEk , μR
k)Aε

≥ −tke are satisfied, i.e., the local
descent direction is selected for the line search.

(c) The unit step is accepted by the flexible line-search, and the variables active at x∗
are the same as those active at xk+1.

Once (a)–(c) are established, the next step is to show that (xk+1, yk+1) is a V-iterate.
This implies that the arguments may be repeated at xk+1, and all iterates must be
in S∗ for k sufficiently large. The final step is to show that the iterates are identical
to those generated by an sSQP method for which superlinear convergence has been
established.

Thefirst result shows that for k ∈ S∗ sufficiently large, the setAε correctly estimates
the active set at x∗. Moreover, for these iterations, the search direction does not include
a contribution from the direction of negative curvature.

Lemma 2 The following results hold for all k ∈ S∗ ⊆ S sufficiently large.

(i) The measure r(xk, yk) of the distance to a first-order KKT point converges to zero,
i.e., limk∈S r(xk, yk) = 0.

(ii) The ε-active sets satisfy Aε(xk, yk, μ
R
k−1) = Aε(xk, yk, μ

R
k) = A(x∗).

(iii) The ε-free sets satisfy Fε(xk, yk, μ
R
k−1) = Fε(xk, yk, μ

R
k) = F(x∗).

(iv) If the suffix “F” denotes the components corresponding to the set F(x∗), then
BF(vk ; μR

k−1) is positive definite, with s
(1)
k = 0 and ξk = 0.

(v) BFε (vk ; μR
k) is positive definite and a local descent direction is computed.

(vi) The feasible direction of negative curvature sk is zero.
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Proof A point (xk, yk) is designated as a V-O iterate if the optimality and feasi-
bility measures satisfy condition (13). In this case yk is set to yEk , and the values
for φmax

V, k or φmax
O, k are decreased by a fixed factor. If follows that on the infinite set

S of V-O iterates, the condition (13) must hold infinitely often and at least one of
the functions φV (vk) or φO(vk, ξk) must go to zero. The definitions of φV (vk) and
φO(vk, ξk) in terms of the feasibility and optimality measures η(xk) and ω(xk, yk, ξk)
imply that limk∈S η(xk) = 0 and limk∈S ω(xk, yk, ξk) = 0. The definition (2) of
r(xk, yk) implies that limk∈S r(xk, yk) = 0, which proves part (i). As r(xk, yk)
goes to zero, Theorem 3.6(2) of [14] implies limk∈S max

(
μR
k−1, r(xk, yk)

γ
) =

limk∈S max
(
μR
k, r(xk, yk)

γ
) = 0. If these limits are combined with (9), we obtain

the inclusions Aε(xk, yk, μ
R
k−1) ⊆ A(x∗) and Aε(xk, yk, μ

R
k) ⊆ A(x∗) for k ∈ S

sufficiently large.
For the reverse inclusion, (9) together with max

(
μR
k−1, r(xk, yk)

γ
) ≥ r(xk, yk)γ

and max
(
μR
k, r(xk, yk)

γ
) ≥ r(xk, yk)γ , imply that for k ∈ S sufficiently large,

Aγ (xk, yk) = {
i : xi ≤ r(xk, yk)γ

}
satisfies Aγ (xk, yk) ⊆ Aε(xk, yk, μ

R
k−1) and

Aγ (xk, yk) ⊆ Aε(xk, yk, μ
R
k). The set Aγ (xk, yk) is an active-set estimator that

is equivalent (in the sense of Gill, Kungurtsev and Robinson [13, Lemma 2.2])
to the active-set estimator used by Wright [35], and Facchinei, Fischer, and Kan-
zow [8]. This equivalence allows the application of Theorem 3.3 of [35] to obtain
the inclusions A(x∗) ⊆ Aγ (xk, yk) ⊆ Aε(xk, yk, μ

R
k−1) and A(x∗) ⊆ Aγ (xk, yk) ⊆

Aε(xk, yk, μ
R
k), which completes the proof of part (ii). Part (iii) follows directly from

(ii) and the definition of the ε-free set in (10).
For the proof of (iv) it is assumed that k ∈ S∗ ⊆ S is sufficiently large that (ii)

and (iii) hold. From Assumption 3, (x∗, y∗) satisfies the SOSC and consequently,
dTH(x∗, y∗)d > 0 for all d �= 0 such that J (x∗)d = 0 and di = 0 for every
i ∈ A(x∗), i.e., dTF HF(x∗, y∗)dF > 0 for all dF �= 0 satisfying JF(x∗)dF = 0,
where the suffix “F” denotes quantities associated with indices in F(x∗). Under this
assumption, together with the results of part (iii), Lemma 2.2 of [16], Lemma 3 of
[19], and [14, part (2) of Theorem 3.6] imply that BF(vk ; μR

k−1) is positive definite

for all k ∈ S∗ sufficiently large. If this matrix is positive definite, then s(1)
k = 0 and

ξk = 0, as required.
As {μR

k } → 0 (see [14, Theorem 3.6, part (2)]), an argument similar to that used
to establish (iv) shows that BFε (vk ; μR

k) is positive definite for the same values of
k (see Gill and Robinson [16, Lemma 2.2]). As BFε (vk ;μR

k) is positive definite for
every k ∈ S∗ ⊆ S, and k is a V-O iterate by definition, the conditions that initiate the
solution of the equality constraint QP (24) are satisfied, and a local descent direction
is computed. This proves part (v). Finally, part (iv) implies that s(1)

k and its scaled
counterpart sk are zero, which proves part (vi). ��

The next result shows that dk is nonzero for certain types of iteration.

Lemma 3 For all k ∈ S∗ ⊆ S sufficiently large, it must hold that either dk �= 0 or
(xk, yk) = (x∗, y∗).

Proof The result holds trivially if dk �= 0 for all k ∈ S∗ sufficiently large. Assume
without loss of generality that there exists an infinite sequence S2 ⊆ S∗ such that dk =
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0 for every k ∈ S2. Parts (ii) and (vi) of Lemma 2 imply thatAε(xk, yk, μ
R
k) = A(x∗)

and sk = 0 for all k ∈ S2 sufficiently large. Every k ∈ S2 is a V-O iterate and there
must exist an index k2 ∈ S2 sufficiently large that

dk2 = sk2 = 0, (xk2+1, yk2+1) = (xk2 , yk2),

yEk2 = yk2 , and Aε(xk2 , yk2 , μ
R
k2) = A(x∗). (38)

As dk2 = 0, parts (ia) and (ib) of Lemma 2.3 in [14] give r(xk2 , yk2) = 0, which
implies that (xk2 , yk2) is a first-order KKT point for both problem (NP) and the
problem of minimizing M(x, y ; yEk2 , μR

k2
) subject to x ≥ 0. From (38) it must

hold that r(xk2+1, yk2+1) = 0, and parts (iii) and (iv) of Lemma 2 imply that
BF(xk2+1, yk2+1 ;μR

k2
) is positive definite, with ξk2+1 = 0 and s(1)

k2+1 = 0. It fol-
lows that φV (xk2+1, yk2+1) = 0, and k2 + 1 is a V-iterate from condition (13). As
a result, yEk2+1 = yEk2 and μR

k2+1 = 1
2μ

R
k2
, which implies that the primal-dual pair

(xk2+1, yk2+1) = (xk2 , yk2) is not only a first-order KKT point for problem (NP), but
also a first-order solution of the problem ofminimizingM(x, y ; yEk2+1, μ

R
k2+1) subject

to x ≥ 0. In particular, it must hold that dk2+1 = 0, and sk2+1 = 0 because ξk2+1 = 0.
Similarly, it must hold that Aε(xk2+1, yk2+1, μ

R
k2+1) = A(x∗).

This argument may be repeated at every (xk, yk) such that k ≥ k2 + 1, and it must
hold that (xk, yk) = (x̄, ȳ) for some (x̄, ȳ), and thatAε(xk, yk, μ

R
k) = A(x∗) for every

k ≥ k2. It then follows from Assumption 3 that (x̄, ȳ) = (x∗, y∗), which completes
the proof. ��

For a local convergence analysis, Lemma 3 implies that there is no loss of generality
in making the following additional standing assumption.

Assumption 4 The vector dk is nonzero for all k ∈ S∗ ⊆ S sufficiently large.

Lemma 4 It must hold that μR
k = r(xk, yk)γ > 0 for all k ∈ S∗ ⊆ S sufficiently

large.

Proof Part (iv) of Lemma 2 gives ξk = 0 for all k ∈ S∗ ⊆ S sufficiently large. In
addition, r(xk, yk)must be nonzero, otherwise the definition of r(xk, yk)would imply
that c(xk) = 0, yEk = yk (because k ∈ S),π(xk, y

E
k , μ

R
k) = yk ,∇yM(xk, yk ; yEk , μR

k) =
0, and min

(
xk,∇x M(xk, yk ; yEk , μR

k)
) = 0. In other words, if r(xk, yk) is zero, then

(xk, yk) satisfies the first-order conditions for a minimizer of M(x, y ; yEk , μR
k) subject

to x ≥ 0. This implies that there is no nonzero descent direction at (xk, yk), which
contradicts Assumption 4. It follows that r(xk, yk) is nonzero. The values ξk = 0
and r(xk, yk) > 0 in the definition of μR

k in (14), and part (i) of Lemma 2 imply that
μR
k = r(xk, yk)

γ for γ ∈ (0, 1) and k ∈ S∗ ⊆ S sufficiently large. ��
Much of the local convergence analysis involves establishing that, in the limit, the

algorithm computes and accepts the local descent direction at every iteration. The
next result concerns the properties of the equality-constrained subproblem for the
local descent direction.

Lemma 5 If vk = (xk, yk) is a point at which the conditions for the calculation of a
local descent direction are satisfied, then the following results hold.
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(i) The bound-constrained problem (24) for the local descent direction is equivalent
to the stabilized QP subproblem

minimize
x,y

g(xk)
T(x − xk) + 1

2 (x − xk)
TH(xk, yk)(x − xk) + 1

2μ
R
k‖y‖2

subject to c(xk) + J (xk)(x − xk) + μR
k(y − yk) = 0, ET

Aε
x = 0,

(39)

where EAε is the matrix of columns of the identity matrix with indices in the
ε-active set Aε .

(ii) If dk = (pk, qk) is the local descent direction, and zk = g(xk) − J (xk)Tyk , then
the optimal solution to (39) may be written as (xk + pk, yk + qk, [ zk ]Aε + wk),
where (pk, qk, wk) satisfy the nonsingular equations

⎛

⎝
H(xk, yk) J (xk)T EAε

J (xk) −μR
k I 0

ET
Aε

0 0

⎞

⎠

⎛

⎝
pk

−qk
−wk

⎞

⎠ = −
⎛

⎝
g(xk) − J (xk)Tyk − z pk

c(xk)
[ xk ]Aε

⎞

⎠ ,

with z pk = EAε
ET

Aε
zk , i.e., z

p
k is the projection of zk onto range (EAε ).

Proof Part (i) follows from the specialization ofResult 2.1 ofGill andRobinson [15] to
the equality-constraint case. The equations of part (ii) are then the optimality conditions
associated with (39). It remains to show that the equations are nonsingular. The vector
(pk, qk) is the unique solution of (39) if the primal-dual Hessian of problem (39)
is positive definite on the null-space of the constraints, which in this case is the set
of vectors satisfying J (xk)p + μR

kq = 0 and ET
Aε

p = 0. This corresponds to the
requirement that

(
pFε

q

)T (
HFε (xk, yk) 0

0 μR
k I

) (
pFε

q

)

= pTFε
HFε

(xk, yk)pFε
+ 1

μR
k
pTFε

JFε
(xk)

TJFε
(xk)pFε

> 0.

Gill and Robinson [15, Lemma 2.2] show HFε
(xk, yk) + (1/μR

k)JFε
(xk)

TJFε
(xk) is

positive definite if BFε is positive definite, which is one of the conditions that must be
satisfied for a local descent direction to be computed. ��

The next result shows that two of the three conditions in (27) for acceptance of the
local descent direction hold for all k ∈ S∗ sufficiently large.

Lemma 6 For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk =
(pk, qk) is computed that satisfies the following conditions:

(i) max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
; and

(ii) xk+pk ≥ 0, [ ∇Qk(vk+dk ; yEk , μR
k) ]Aε

≥ −tke, where tk is the positive feasibility
parameter (26), and [ · ]Aε denotes the vector of components with indices in the
ε-active set Aε(xk, yk, μ

R
k).

123



A stabilized SQP method: superlinear convergence 387

Proof Lemma 5 implies that the local descent direction (pk, qk) satisfies

⎛

⎝
H(xk, yk) J (xk)T EAε

J (xk) −μR
k I 0

ET
Aε

0 0

⎞

⎠

⎛

⎝
pk

−qk
−wk

⎞

⎠ = −
⎛

⎝
g(xk) − J (xk)Tyk − z pk

c(xk)
[ xk ]Aε

⎞

⎠ , (40)

where [ zk ]Aε + wk is the vector of multipliers for ET
Aε

x = 0 of problem (39). Let μ̃k

denote the scalar μ̃(xk, yk, zk) = ‖(g(xk) − J (xk)Tyk − z pk , c(xk), [ xk ]Aε )‖1. The
Eq. (40) constitute a perturbation of the linear system

⎛

⎝
H(xk, yk) J (xk)T EAε

J (xk) −μ̃k I 0
ET

Aε
0 −μ̃k I

⎞

⎠

⎛

⎝
p̃k

−q̃k
−w̃k

⎞

⎠ = −
⎛

⎝
g(xk) − J (xk)Tyk − z pk

c(xk)
[ xk ]Aε

⎞

⎠ , (41)

which characterize the optimality conditions for the sSQP subproblem associated with
the equality constrained problem

minimize
x

f (x) subject to c(x) = 0, and [ x ]Aε
= ET

Aε
x = 0. (42)

The matrix of (41) is nonsingular and the equations have a unique solution (see
Izmailov and Solodov [24, Lemma 2]). In addition, it follows from Wright [35,
Lemma 4.1], Gill, Kungurtsev and Robinson [13, Lemma 2.3], and Lemma 1 that
the unique solution of (41) satisfies

‖( p̃k, q̃k)‖ ≤ ‖( p̃k, q̃k, w̃k)‖ = O(μ̃k) = O
(
δ(xk, yk)

) = O
(
r(xk, yk)

)
. (43)

The underlying quadratic program associated with (40) satisfies the second-order suf-
ficient conditions for optimality. Under this condition, Izmailov [20, Theorem 2.3])
establishes the Lipschitz error bound for the perturbed solutions as

‖(pk − p̃k, qk − q̃k)‖ ≤ ‖(pk − p̃k, qk − q̃k, wk − w̃k)‖
= O(‖μ̃kw̃k + (

μR
k − μ̃k

)
(qk − q̃k)‖).

Lemma 4 gives μR
k = r(xk, yk)γ for γ ∈ (0, 1). It then follows from Lemma 2.3 of

Gill, Kungurtsev and Robinson [13], the bound (43) and Lemma 1 that

‖(pk − p̃k, qk − q̃k)‖ = O
(
δ(xk, yk) + r(xk, yk)

γ ‖qk − q̃k‖
)
. (44)

The triangle inequality, (44), and (43) imply the existence of constants κ1 and κ2 that
satisfy

‖pk‖ + ‖qk‖ ≤ ‖pk − p̃k‖ + ‖qk − q̃k‖ + ‖ p̃k‖ + ‖q̃k‖ (45)

≤ κ1δ(xk, yk) + κ2r(xk, yk)
γ ‖qk − q̃k‖. (46)
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Part (i) of Lemma 2 implies that 1 − κ2r(xk, yk)γ ≥ 1
2 for k ∈ S∗ sufficiently large.

This inequality may be used to derive the bound

‖pk − p̃k‖ + 1
2‖qk − q̃k‖ + ‖ p̃k‖ + ‖q̃k‖

≤ ‖pk − p̃k‖ + (
1 − κ2r(xk, yk)

γ
)‖qk − q̃k‖ + ‖ p̃k‖ + ‖q̃k‖.

This upper bound may be simplified using the bound on ‖pk − p̃k‖ + ‖qk − q̃k‖ +
‖ p̃k‖ + ‖q̃k‖ from (45)–(46), giving

‖pk − p̃k‖ + 1
2‖qk − q̃k‖ + ‖ p̃k‖ + ‖q̃k‖ ≤ κ1δ(xk, yk).

The quantity 1
2 (‖pk‖ + ‖qk‖) may be bounded using similar arguments used for (45).

In this case,

1
2 (‖pk‖ + ‖qk‖) ≤ ‖pk − p̃k‖ + 1

2‖qk − q̃k‖ + ‖ p̃k‖ + ‖q̃k‖ ≤ κ1δ(xk, yk),

which implies that max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, and proves part (i).

The second inequality to be established for part (ii) may be written equivalently as
[ ∇Mk + Bkdk ]Aε ≥ −tke, where ∇Mk = ∇M(vk ; yEk , μR

k) and Bk = B(vk, μ
R
k). The

proof requires estimates of the components of [ ∇Mk + Bkdk ]Aε . After simplification,
the substitution of the quantities Bk ,∇Mk and dk = (pk, qk), together with the identity
J (xk)pk + μR

kqk = −c(xk) from (40) give

[ ∇Mk + Bkdk ]Aε =
[
zk + 1

μR
k
J (xk)

Tc(xk) + H(xk, yk)pk + 1

μR
k
J (xk)

TJ (xk)pk
]

Aε

,

(47)
where zk = g(xk) − J (xk)T yk . The first part of the proof involves the estimation of a
lower bound on the vector zk + (1/μR

k)J (xk)T c(xk). The definition of y∗
P(·) and the

fact that (x∗, y∗) is a first-order KKT pair for problem (NP) implies that the vector
g(x∗) − J (x∗)Ty∗

P(yk) is nonnegative, with

−[ zk ]i = −[ g(xk) − J (xk)
Tyk ]i

≤ −[
g(xk) − J (xk)

Tyk − (
g(x∗) − J (x∗)Ty∗

P(yk)
)]

i

≤ −[ g(xk) − J (xk)
Tyk + J (xk)

Ty∗
P(yk) − J (xk)

Ty∗
P(yk)

− g(x∗) + J (x∗)Ty∗
P(yk) ]i .

From Assumptions 1–3, ‖J (xk)‖ is bounded independently of k and the functions g
and J are Lipschitz continuous. It follows that there exist positive constants κ3, κ4,
and κ5 such that

− [ zk ]i ≤ κ3‖xk − x∗‖ + κ4‖yk − y∗
P(yk)‖ ≤ κ5δ(xk, yk), (48)

where the last inequality follows from the definition (37) of δ(xk, yk). As the sequence
of iterates satisfies limk∈S∗(xk .yk) = (x∗, y∗) and limk∈S∗ y

∗
P(yk) = y∗, for k ∈ S∗

sufficiently large, the assumptions of Lemma 1 apply, and
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− [ zk ]i ≤ κ5δ(xk, yk) ≤ κ6r(xk, yk), (49)

for some positive constant κ6. The combination of the inequality (49), the definition
of r(xk, yk), and the result μR

k = r(xk, yk)γ of Lemma 4 imply that there exists a
positive constant κ7 such that

[
zk + 1

μR
k
J (xk)

Tc(xk)
]

i
≥ −κ6r(xk, yk) − ‖J (xk)‖1r(xk, yk)

r(xk, yk)γ

= −κ6r(xk, yk) − ‖J (xk)‖1r(xk, yk)1−γ

≥ −κ7r(xk, yk)
1−γ ≥ − 1

2r(xk, yk)
λ, (50)

for all i , and every k ∈ S∗ sufficiently large, where the last inequality follows from
the assumption 0 < λ < min{γ, 1 − γ } < 1.

The (1/μR
k)p

T
k J (xk)

TJ (xk)pk term of (47) may be bounded in a similar way using
the definition μR

k = r(xk, yk)γ and the bound on ‖pk‖ from part (i). The assumption
that H(xk, yk) and J (xk) are bounded, the estimate δ(xk, yk) = O(r(xk, yk)) of
Lemma 1, and the definition of Aε(xk, yk, μ

R
k) give

[
H(xk, yk)pk + (1/μR

k)J (xk)
TJ (xk)pk

]
i = O

(
r(xk, yk)

1−γ
) ≤ 1

2r(xk, yk)
λ,

for all k ∈ S∗ sufficiently large. This inequality with (47) and (50) gives

[ ∇Mk + Bkdk ]Aε

≥
[
zk + 1

μR
k
J (xk)

Tc(xk)
]

Aε

−
∥
∥
∥
[
H(xk, yk)pk + 1

μR
k
J (xk)

TJ (xk)pk
]

Aε

∥
∥
∥∞e

≥ −r(xk, yk)
λe = −tke,

for all k ∈ S∗ sufficiently large, which proves the second result of part (ii).
The first result of Lemma 2(iii) implies that F(xk, yk, μ

R
k) = F(x∗) for k ∈ S∗

sufficiently large. If the limit limk∈S∗ [ xk ]Fε = [ x∗ ]F > 0 is used in conjunction
with the definition [ xk + pk ]Aε = 0, and the estimate ‖[ pk ]Fε‖ = ‖[ pk ]F‖ =
O

(
δ(xk, yk)

)
of part (i), it follows that xk + pk ≥ 0 for k ∈ S∗ sufficiently large, as

required. ��
Part (ii) of Lemma 6 implies that two of the three conditions needed for the accep-

tance of the local descent direction are satisfied. It remains to show that the third
condition ∇MT

k dk < 0 holds. Two technical results, Lemmas 7 and 8 below, are
required.

Lemma 7 For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk =
(pk, qk) is computed such that (x̂ k, ŷk) = (xk + pk, yk + qk) satisfies

δ(x̂ k, ŷk) = ‖x̂ k − x∗‖ + ‖ŷk − y∗
P(ŷk)‖ = O

(
δ(xk, yk)

1+γ
)
, (51)

with y∗
P(·) defined in (36).
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Proof The proof uses Izmailov [20, Theorem 2.3] to provide a bound on the change
in the solution of a problem perturbed by a quantity ε. If the second-order sufficient
conditions hold at a primal-dual solution (x∗, y∗) of a problem P , then the primal-dual
solution (x̃, ỹ) of a perturbed problem P(ε) satisfies

‖x̃ − x∗‖ + inf
y∈Y(x∗)

‖ỹ − y‖ = O(‖ε‖). (52)

For the purposes of this theorem, the unperturbed problem is an equality-constrained
variant of problem (NP) for which the optimal active set has been identified. Parts (ii)
and (iii) of Lemma2 imply thatA(x∗) = Aε(xk, yk, μ

R
k), andF(x∗) = Fε(xk, yk, μ

R
k)

for k ∈ S∗ sufficiently large. Let EA denote thematrix of columns of the identitymatrix
with indices in A(x∗). At any iteration with k ∈ S∗, consider the perturbed problem

minimize
x

f (x) + xTε(1)
k subject to c(x) + ε

(2)
k = 0, ET

Ax = 0, (53)

where ε
(1)
k and ε

(2)
k are perturbation vectors such that εk = (

ε
(1)
k , ε

(2)
k

)
with

(
ε
(1)
k

ε
(2)
k

)

=
(
g(xk)−J (xk)T ŷk − (g(x̂ k) − J (x̂ k)T ŷk)+H(xk, yk)(x̂ k − xk)

c(xk) + J (xk)(x̂ k − xk) − c(x̂ k) + μR
k(ŷk − yEk )

)

. (54)

The following argument shows that the perturbations go to zero as k → ∞ for k ∈ S∗.
Part (i) of Lemma 6 implies that limk∈S∗(x̂ k − xk, ŷk − yk) = limk∈S∗(pk, qk) = 0
for k ∈ S∗ sufficiently large. Also, as limk∈S∗(xk, yk) = (x∗, y∗) and yEk = yk for
k ∈ S∗, it must be the case that limk∈S∗ εk = 0.

The proof of (51) is based on applying the bound (52) for the values (x̃, ỹ) =
(x̂ k, ŷk). In this case, under Assumption 3, it holds that

δ(x̂ k, ŷk)=‖x̂ k − x∗‖+‖ŷk − y∗
P(ŷk)‖=‖x̂ k − x∗‖+ inf

y∈Λ(x∗)
‖ŷk − y‖=O(‖εk‖).

Three results must be established in order to apply this result. First, (x∗, y∗) must
satisfy the second-order sufficient conditions for the equality-constrained problem
(53) with εk = 0. Second, (x̂ k, ŷk) must be an optimal solution for the perturbed
problem (53) with perturbation (54). Third, the perturbation (54) must be bounded in
terms of δ(xk, yk).

For the first part it must be shown that (x∗, y∗) satisfies the second-order sufficient
conditions for problem (53) with no perturbation. The first-order KKT conditions for
(53) are

g(x) − J (x)Ty + ε
(1)
k − EAzA = 0, c(x) + ε

(2)
k = 0, and ET

Ax = 0. (55)

If εk = 0 then (x∗, y∗) satisfies these conditions, which implies that the primal-dual
pair (x∗, y∗) is a first-order KKT point. The second-order conditions for problem
(NP) imply that pTH(x∗, y∗)p > 0 for all p such that J (x∗)p = 0 and pi = 0 for
every i ∈ A(x∗). These conditions also apply for problem (53) when εk = 0, which
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imply that (x∗, y∗) satisfies the second-order sufficient conditions for the unperturbed
problem.

Next, it must be shown that (x̂ k, ŷk) is an optimal solution for the problem (53) with
perturbation (54). By definition, the point (x̂ k, ŷk) satisfies the optimality conditions
for the equality-constrained problem (24). If yEk = yk , then these conditions are

g(xk) + H(xk, yk)(x̂ k − xk) − J (xk)
Tyk − EAzA = 0,

c(xk) + J (xk)(x̂ k − xk) + μR
k(ŷk − yk) = 0, and ET

A x̂ k = 0, (56)

where zA = [ zk ]A with zk = g(xk) − J (xk)T yk (cf. (40)). These identities may be
used to show that (x̂ k, ŷk) satisfies the optimality conditions (55) with εk defined as
in (54).

It remains to bound the perturbation norm ‖εk‖ from (54). The Taylor-series expan-
sions of g(x̂ k) = g(xk + pk) and J (x̂ k) = J (xk + pk), together with the assumption
that {∇2ci (xk)}k∈S∗ is bounded, give

g(xk) − g(xk + pk) + H(xk, yk)pk − (J (xk) − J (xk + pk))
T ŷk

=
m∑

i=1

[ ŷk − yk ]i∇2ci (xk)pk + O(‖pk‖2) = O
(‖pk‖‖ŷk − yk‖) + O(‖pk‖2

)
,

(57)

which bounds the norm of the first block of (54).
Three properties of the iterates are needed to bound the norm of the second block.

First, a Taylor-series expansion of c(xk + pk) gives c(xk) − c(xk + pk) + J (xk)pk =
O(‖pk‖2). Second, as S∗ contains only V-O iteration indices, the rule for updating
yEk described in Sect. 2.1 gives yEk = yk for all k ∈ S∗. Third, Lemma 4 gives μR

k =
r(xk, yk)

γ , which implies that μR
k‖ŷk − yk‖ = r(xk, yk)γ ‖ŷk − yk‖. The combination

of these results gives ‖εk‖ = O(‖pk‖2) + O(‖pk‖‖ŷk − yk‖) + O(r(xk, yk)γ ‖ŷk −
yk‖). Writing qk = ŷk − yk , using the results that r(xk, yk) = O(δ(xk, yk)) (from
Lemma 1) and that max{‖pk‖, ‖qk‖} = O

(
δ(xk, yk)

)
(from Lemma 6(i)), and the def-

inition 0 < γ < 1, gives ‖εk‖ = O
(
δ(xk, yk)2 + δ(xk, yk)1+γ

) = O
(
δ(xk, yk)1+γ

)
,

which gives the required bound (51). ��
The second technical lemma concerns the properties of the vector of approximate

multipliers π(xk ; yEk , μR
k).

Lemma 8 Let πk denote π(xk ; yEk , μR
k). For every k ∈ S∗ ⊆ S it holds that

(i) ‖yk − πk‖ = O
(‖c(xk)‖/μR

k

)
and

(ii) ‖∇2M(vk ; yEk , μR
k) − Bk‖ = O

(‖c(xk)‖/μR
k

)
.

Moreover, limk∈S∗ ‖yk − πk‖ = 0 and limk∈S∗ ‖∇2M(vk ; yEk , μR
k) − Bk‖ = 0.

Proof As yk = yEk for all k ∈ S∗ ⊆ S, the definition of πk gives ‖yk − πk‖ =
‖c(xk)‖/μR

k . This estimate in conjunction with the definitions of ∇2M and B imply
that part (ii) also holds.
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Lemma 4 and part (i) of Lemma 2 give limk∈S∗ r(xk, yk) = 0,withμR
k = r(xk, yk)γ

and 1 − γ > 0 for all k ∈ S∗ ⊆ S sufficiently large. These results may be combined
to give

0 ≤ lim
k∈S∗

‖c(xk)‖
μR
k

≤ lim
k∈S∗

r(xk, yk)

μR
k

= lim
k∈S∗

r(xk, yk)

r(xk, yk)γ
= lim

k∈S∗
r(xk, yk)

1−γ = 0.

It follows from (i) that limk∈S∗ ‖yk − πk‖ = 0. Also, as {∇2ci (xk)}k∈S∗ is bounded,
it must hold that limk∈S∗ ‖∇2M(vk ; yEk , μR

k) − Bk‖ = 0. ��
Given Lemmas 7 and 8, we show that the last of the conditions in (27) required

for the acceptance of the local descent direction is satisfied, i.e., that the local descent
direction is a descent direction for the merit function.

Lemma 9 For any σ̄ satisfying 0 < σ̄ < 1, and all k ∈ S∗ ⊆ S sufficiently large, a
local descent direction dk = (pk, qk) is computed that satisfies

∇M(vk ; yEk , μR
k)

Tdk ≤ −σ̄dTk Bkdk − c̄‖dk‖2 and ∇M(vk ; yEk , μR
k)

Tdk < 0, (58)

for some positive constant c̄. In particular, dk is a strict descent direction for
M(v ; yEk , μR

k) at vk .

Proof Throughout the proof, the gradient ∇M(xk, yk ; yEk , μR
k) and approximate

Hessian B(xk, yk ; μR
k) are denoted by ∇Mk and Bk , respectively. In addition, it is

assumed that k ∈ S∗ ⊆ S is sufficiently large that parts (ii) and (iii) of Lemma 2
hold; i.e., Aε(xk, yk, μ

R
k) = A(x∗), and Fε(xk, yk, μ

R
k) = F(x∗). With this assump-

tion, [ Bk ]A, [ Bk ]F and [ Bk ]A,F denote the rows and columns of the matrix Bk

associated with the index sets A(x∗) and F(x∗).
The definition of dk from (25) gives [ ∇Mk + Bkdk ]F = 0, or equivalently

[ Bk ]F [ dk ]F + [ Bk ]TA,F [ dk ]A = −[ ∇Mk ]F . (59)

Similarly, the scalar dTk Bkdk may be written in the form

dTk Bkdk = [ dk ]TF [ Bk ]F [ dk ]F + (2[ Bk ]A,F [ dk ]F + [ Bk ]A[ dk ]A)T [ dk ]A. (60)

Combining (59) and (60) yields

−[ ∇Mk ]TF [ dk ]F = dTk Bkdk − ([ Bk ]A,F [ dk ]F + [ Bk ]A[ dk ]A)T [ dk ]A
= dTk Bkdk − [ Bkdk ]TA[ dk ]A, (61)

which implies that, for any σ̄ satisfying 0 < σ̄ < 1, it must hold that

∇MT
k dk + σ̄dTk Bkdk = (σ̄ − 1)dTk Bkdk + [ Bkdk ]TA[ dk ]A + [ ∇Mk ]TA[ dk ]A. (62)

The proof involves constructing a bound on each of the terms of the right-hand side of
this identity. These bounds are characterized in terms of the index setsA+(x∗, y∗) and
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A0(x∗, y∗) defined in (34), togetherwith the setF0(x∗, y∗) = A0(x∗, y∗)∪F(x∗, y∗).
In what follows, [ Bk ]A+ and [ Bk ]F0 denote the matrices of rows and columns of Bk

associated with the index sets A+ and F0, with similar definitions for [ Bk ]A0 and
[ Bk ]A+,F0 , etc. The index sets F0 and A+ define a partition of {1, 2, …, n +m}, and
dTk Bkdk may be partitioned analogous to (60) as

dTk Bkdk = [ dk ]TF0
[ Bk ]F0

[ dk ]F0
+([ Bk ]A+[ dk ]A+ +2[ Bk ]A+,F0 [ dk ]F0)

T [ dk ]A+ .

(63)
The second-order sufficient conditions given in Definition 1, [14, Theorem 1.3 and
part 2 of Theorem 3.6], together with a continuity argument imply that, for all k ∈ S∗
sufficiently large, Bk is uniformly positive definite when restricted to the set C =
{(p, q) ∈ R

n+m : pA+ = 0 and pA0 ≥ 0}. The relation (−d)TBk(−d) = dTBkd
implies that if d satisfies dA0 ≤ 0 and dA+ = 0, then dTBkd > 0. For the particular
vector d = (0, [ dk ]A0 , [ dk ]F) = (0, [ dk ]F0) for which [ dk ]A0 ≤ 0, it follows that

[ dk ]TF0
[ Bk ]F0

[ dk ]F0
≥ κ8‖[ dk ]F0

‖2, for some κ8 ∈ (0, 1), (64)

and all k ∈ S∗ sufficiently large. This inequality provides a bound on the first term
on the right-hand side of (63). An estimate of the second and third terms may be
determined using a bound on the magnitude of the components of [ Bkdk ]A, where,
by definition,

[ Bkdk ]A+ =
[(

H(xk, yk) + 2

μR
k
J (xk)

TJ (xk)
)
pk + J (xk)

Tqk
]

A+
.

For sufficiently large k ∈ S∗, Lemma 4 gives μR
k = r(xk, yk)γ . Also, as ‖J (xk)‖

and ‖H(xk, yk)‖ are bounded on S, it follows from the bounds on ‖pk‖ and ‖qk‖
from Lemma 6(i), and the equivalence r(xk, yk) = Θ

(
δ(xk, yk)

)
of Lemma 1, that the

magnitude of the components of [ Bkdk ]A+ are estimated by

‖[ Bkdk ]A+‖ = O(r(xk, yk)
1−γ ) = O(δ(xk, yk)

1−γ ). (65)

A similar argument gives the bound

∣
∣
([ Bk ]A+[ dk ]A+ + 2[ Bk ]A+,F0 [ dk ]F0

)T [ dk ]A+
∣
∣ = O(δ(xk, yk)

1−γ ‖[ dk ]A+‖).
(66)

The application of the bound (64) and estimate (66) to (63) gives

− dTk Bkdk ≤ −κ8‖[ dk ]F0‖2 + κ9δ(xk, yk)
1−γ ‖[ dk ]A+‖, (67)

for some positive κ9 independent of k, which serves to bound (σ̄ −1)dTk Bkdk , the first
term of the right-hand side of (62).

The second and third terms of (62) are estimated by bounding components from
the index set A+. The estimate (65) gives

[ Bkdk ]TA+[ dk ]A+ ≤ κ10δ(xk, yk)
1−γ ‖[ dk ]A+‖, for some κ10 ∈ (0, 1). (68)
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A Taylor-series expansion of ∇M(vk ; yE, μR
k) at y

E = yEk (= yk) gives

∇Mk = ∇M(vk ; y∗ + (yk − y∗), μR
k) = ∇M(vk ; y∗, μR

k) + O(‖yk − y∗‖). (69)

A Taylor-series expansion of [ ∇M(v ; y∗, μR
k) ]TA+[ dk ]A+ at v = v∗ gives

[ ∇M(vk ; y∗, μR
k) ]TA+[ dk ]A+

= [ dk ]TA+[ ∇M(v∗ + (vk − v∗) ; y∗, μR
k) ]A+

= [ dk ]TA+[ ∇M(v∗ ; y∗, μR
k) ]A+ + O

( 1

μR
k
‖[ dk ]A+‖ ‖vk − v∗‖

)
.

In order to bound the last term on the right-hand side, we substitute the value μR
k =

r(xk, yk)γ implied by Lemma 4, and apply the estimate r(xk, yk) = Θ
(
δ(xk, yk)

)

from Lemma 1. If the resulting value is used with the value ‖[ dk ]A+‖ = O(‖dk‖) =
O(δ(xk, yk)) of Lemma 6(i), then it follows that [ ∇M(vk ; y∗, μR

k) ]TA+[ dk ]A+ =
[ dk ]TA+[ ∇M(v∗ ; y∗, μR

k) ]A+ +O
(
δ(xk, yk)1−γ ‖vk−v∗‖). This estimate can be com-

bined with (69) to obtain

[ ∇Mk ]TA+[ dk ]A+ = [ dk ]TA+[ ∇M(v∗ ; y∗, μR
k) ]A+ + O(δ(xk, yk)

1−γ ‖vk − v∗‖)
+O(‖[ dk ]A+‖ ‖yk − y∗‖). (70)

As v∗ = (x∗, y∗) is a primal-dual KKT pair for problem (NP), it follows from the def-
inition of A+ that [ ∇M(v∗ ; y∗, μR

k) ]A+ = [ g(x∗) − J (x∗)Ty∗ ]A+ > 0. Combining
this with [ dk ]A+ ≤ 0 from the first equality of (25) yields

[ ∇M(v∗ ; y∗, μR
k) ]TA+[ dk ]A+ ≤ −κ11‖[ dk ]A+‖ for some positive κ11. (71)

As γ < 1, the limit δ(xk, yk) → 0 and estimates (70)–(71) imply that the inequal-
ity [ ∇Mk ]TA+[ dk ]A+ ≤ − 1

2κ11‖[ dk ]A+‖ holds for k ∈ S∗ sufficiently large. The
combination of this inequality with (68) gives

[ Bkdk ]TA+[ dk ]A+ + [ ∇Mk ]TA+[ dk ]A+ ≤ κ10δ(xk, yk)
1−γ ‖[ dk ]A+‖

− 1
2κ11‖[ dk ]A+‖, (72)

for all k ∈ S∗ sufficiently large.
Finally, consider the last two terms of (62) associated with the setA0. As k ∈ S, it

holds that yEk = yk andπk = π(xk ; yEk , μR
k) = yk−c(xk)/μ

R
k . Let ỹk denote the vector

ỹk = πk + (πk − yk) = yk − 2c(xk)/μ
R
k . The definitions of ∇Mk and Bk , together

with the definition dk = (pk, qk) and the identity c(xk) + J (xk)pk + μR
kqk = 0 from

(39) give
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[ ∇Mk + Bkdk ]A0

= [ g(xk) − J (xk)
T ỹk + H(xk, yk)pk + 2

μR
k
J (xk)

TJ (xk)pk + J (xk)
Tqk ]A0

= [ g(xk) − J (xk)
T ỹk + H(xk, yk)pk − 2

μR
k
J (xk)

Tc(xk) − J (xk)
Tqk ]A0

= [ g(xk) − J (xk)
T yk + H(xk, yk)pk − J (xk)

Tqk ]A0 .

It follows from the previous displayed equation and a Taylor-series expansion with
respect to x of g(x) − J (x)T(yk + qk) that

[ ∇Mk + Bkdk ]A0 = [
g(xk + pk) − J (xk + pk)

T(yk + qk) + o(‖(pk, qk)‖)
]
A0

= [
g(x̂ k) − J (x̂ k)

T ŷk + o(‖(pk, qk)‖)
]
A0

, (73)

where (x̂ k, ŷk) = (xk + pk, yk + qk). Part (ii) of Lemma 6 then gives

r(x̂ k, ŷk) ≥ ∣
∣min

([ x̂ k ]i , [ g(x̂ k) − J (x̂ k)
T ŷk ]i

)∣
∣

= ∣
∣min(0, [ g(x̂ k) − J (x̂ k)

T ŷk ]i )
∣
∣, for all i ∈ A0. (74)

There are two possible cases for each i ∈ A0, depending on the sign of [ g(x̂ k) −
J (x̂ k)T ŷk ]i . If [ g(x̂ k) − J (x̂ k)T ŷk ]i ≥ 0, then the property that [ dk ]i ≤ 0 for
every i ∈ A implies that [ g(x̂ k) − J (x̂ k)T ŷk ]i [ dk ]i ≤ 0. The expression for
[ ∇Mk + Bkdk ]i [ dk ]i from (73), and the result that ‖(pk, qk)‖ = O

(
δ(xk, yk)

)
from

Lemma 6(i) gives

[ ∇Mk + Bkdk ]i [ dk ]i = [
g(x̂ k) − J (x̂ k)

T ŷk
]
i [ dk ]i + o(‖(pk, qk)‖)[ dk ]i

= o
(
δ(xk, yk)

)∣
∣[ dk ]i

∣
∣.

Alternatively, if i ∈ A0 and [ g(x̂ k) − J (x̂ k)T ŷk ]i < 0, then

[ ∇Mk + Bkdk ]i [ dk ]i
= [ g(x̂ k) − J (x̂ k)

T ŷk + o(‖(pk, qk)‖) ]i [ dk ]i
≤ r(x̂ k, ŷk)

∣
∣[ dk ]i

∣
∣ + o

(
δ(xk, yk)

)∣
∣[ dk ]i

∣
∣

(
(74) and Lemma 6(i)

)

≤ κδ(x̂ k, ŷk)
∣
∣[ dk ]i

∣
∣ + o

(
δ(xk, yk)

)∣
∣[ dk ]i

∣
∣

(
Lemma 1

)

= O
(
δ(xk, yk)

1+γ
)|[ dk ]i | + o

(
δ(xk, yk)

)∣
∣[ dk ]i

∣
∣

(
Lemma 7

)

= o
(
δ(xk, yk)

)∣
∣[ dk ]i

∣
∣.

A combination of the two cases provides the estimate

[ ∇Mk + Bkdk ]TA0
[ dk ]A0

≤ o
(
δ(xk, yk)

) ‖[ dk ]A0
‖. (75)
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It now follows from (62), (67), (72), (75), and limk∈S∗ dk = 0 that there exist positive
constants κ12, κ13, and κ14 such that

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12‖[ dk ]F0‖2 + κ13δ(xk, yk)

1−γ ‖[ dk ]A+‖
−κ14‖[ dk ]A+‖ + o

(
δ(xk, yk)

) ‖[ dk ]A0‖.

As limk∈S∗ δ(xk, yk) = 0, it must hold that κ13δ(xk, yk)1−γ ≤ 1
2κ14 for all k ∈ S∗

sufficiently large, which gives

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12‖[ dk ]F0‖2 − 1

2κ14‖[ dk ]A+‖
+o

(
δ(xk, yk)

) ‖[ dk ]A0‖. (76)

The next step is to show that the right-hand side of (76) is bounded above by a positive
multiple of −‖dk‖2. Consider the sequence v

p
k = (

x∗, y∗
P(ŷk)

)
, where y∗

P(·) is given
by (36) and satisfies the second-order sufficient conditions for all k. The triangle
inequality and substitution of v̂k for vk + dk yields

‖vk − v
p
k ‖ = ‖vk + dk − v

p
k − dk‖ = ‖v̂k − v

p
k − dk‖ ≤ ‖v̂k − v

p
k ‖ + ‖dk‖. (77)

By definition, ‖v̂k−v
p
k ‖ = δ(x̂ k, ŷk), and the estimate δ(x̂ k, ŷk) = o

(
δ(xk, yk)

)
given

by Lemma 7 implies that δ(x̂ k, ŷk) ≤ 1
2δ(xk, yk) for k sufficiently large. In addition,

the definition of δ(xk, yk) is such that δ(xk, yk) ≤ ‖vk − v
p
k ‖. If these inequalities are

used to estimate ‖dk‖ in (77), then

− ‖dk‖ ≤ ‖v̂k − v
p
k ‖ − ‖vk − v

p
k ‖ ≤ − 1

2δ(xk, yk). (78)

Consider the inequality (76). Suppose that k is large enough that the bound
κ12‖[ dk ]F0‖ ≤ 1

4κ14 holds. Standard norm inequalities applied in conjunction
with the estimates ‖dk‖ ≤ ‖[ dk ]F0‖ + ‖[ dk ]A+‖, ‖[ dk ]A0‖ ≤ ‖[ dk ]F0‖, and
‖dk‖ ≥ 1

2δ(xk, yk) from (78), give

−κ12‖[ dk ]F0‖2 − 1
2κ14‖[ dk ]A+‖ + o

(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ −κ12‖[ dk ]F0‖2 − 1

4κ14‖[ dk ]A+‖ − 1
2κ12‖[ dk ]F0‖ ‖[ dk ]A+‖

+ o
(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ − 1

2κ12‖[ dk ]F0‖2 − 1
4κ14‖[ dk ]A+‖ − 1

2κ12‖dk‖ ‖[ dk ]F0‖
+ o

(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ − 1

4κ14‖[ dk ]A+‖ − 1
2κ12‖[ dk ]F0‖2 − 1

4κ12δ(xk, yk) ‖[ dk ]F0‖
+ o

(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ − 1

4κ14‖[ dk ]A+‖ − 1
2κ12‖[ dk ]F0‖2 − 1

4κ12δ(xk, yk) ‖[ dk ]A0‖
+ o

(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ − 1

4κ14‖[ dk ]A+‖ − 1
2κ12‖[ dk ]F0‖2

≤ − 1
4κ14‖[ dk ]A+‖2 − 1

2κ12‖[ dk ]F0‖2.
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These inequalities, when used with (76), imply that

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12‖[ dk ]F0‖2 − 1

2κ14‖[ dk ]A+‖ + o
(
δ(xk, yk)

) ‖[ dk ]A0‖
≤ −c̄ ‖dk‖2, (79)

with c̄ = min{ 14κ14, 1
2κ12}. This establishes the first part of (58).

To prove the second part of (58), the bounds on ∇MT
k dk + σ̄dTk Bkdk and dTk Bkdk

given by (76) and (67) imply that

∇MT
k dk = ∇MT

k dk + σ̄dTk Bkdk − σ̄dTk Bkdk

≤ −κ12‖[ dk ]F0‖2 − 1
2κ14‖[ dk ]A+‖ + o

(
δ(xk, yk)

) ‖[ dk ]A0‖
− σ̄ κ8‖[ dk ]F0‖2 + σ̄ κ9δ(xk, yk)

1−γ ‖[ dk ]A+‖. (80)

As limk∈S∗ dk = 0, there is an index k sufficiently large that σ̄ κ9δ(xk, yk)1−γ ≤ 1
4κ14,

and the bound (80) may be written in the form ∇MT
k dk ≤ −(κ12 + σ̄ κ8)‖[ dk ]F0‖2 −

1
4κ14‖[ dk ]A+‖ + o

(
δ(xk, yk)

) ‖[ dk ]A0‖, which is the inequality (76) with different
positive constants. If the argument used to derive (79) is repeated for this inequality, it
follows that there is a positive ĉ such that ∇MT

k dk ≤ −ĉ ‖dk‖2. From Assumption 4,
dk is nonzero, which implies that dk is a strict descent direction for M(v ; yEk , μR

k) at
vk . ��

Lemma 9 establishes that the third condition in (27) needed for the acceptance of
the local descent direction dk holds for all k ∈ S∗ sufficiently large.

Theorem 1 For all k ∈ S∗ ⊆ S sufficiently large, it holds that:

(i) a local descent direction dk = (pk, qk) is computed;
(ii) vk + dk is feasible, [ ∇Qk(vk + dk ; yEk , μR

k) ]Aε
≥ −tke, and ∇MT

k dk < 0, i.e., all
three conditions (27) are satisfied; and

(iii) Aε(xk, yk, μ
R
k) = A(x∗) = A(xk + pk).

Proof Part (i) follows from Lemma 6. Part (ii) follows from Lemmas 6(ii) and 9.
It remains to prove part (iii). The equality Aε(xk, yk, μ

R
k) = A(x∗) is established

in Lemma 2(ii). Suppose that i ∈ A(x∗) = Aε(xk, yk, μ
R
k). The definition of the

local descent direction dk in (25) implies that [ xk + pk ]i = 0, which gives i ∈
A(xk + pk). For the reverse inclusion, suppose that i /∈ A(x∗), i.e., x∗

i > 0. In this
case, the assumption that limk∈S∗ xk = x∗ implies that [ xk ]i ≥ 1

2 x
∗
i for all k ∈ S∗

sufficiently large. Part (i) of Lemma 6 givesmax{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, and the

assumption limk∈S∗(xk, yk) = (x∗, y∗) implies that limk∈S∗ δ(xk, yk) = 0. It follows
that limk∈S∗ pk = 0, with [ xk + pk ]i ≥ 1

2 x
∗
i + [ pk ]i ≥ 1

3 x
∗
i > 0 for all k ∈ S∗

sufficiently large, which means that i /∈ A(xk + pk). ��
The next result shows that the flexible line search returns the unit step length for

all k ∈ S∗ sufficiently large. Lemma 2(vi) and Theorem 1 imply that sk = 0 and the
line-search direction Δvk = dk is a nonzero local descent direction for every k ∈ S∗
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sufficiently large. In this case the modified Armijo procedure is executed at every vk
with �k = 1, and reduces to finding an αk that satisfies the condition

M(vk ; yEk , μR
k) − M(vk + αkvk ; yEk , μR

k) ≥ −γSαk∇M(vk ; yEk , μR
k)

Tdk, (81)

for either μ = μk or μ = μR
k .

Theorem 2 The line search gives αk = 1 for all k ∈ S∗ ⊆ S sufficiently large.

Proof Throughout the proof, the quantities M(v ; yEk , μR
k), ∇M(v ; yEk , μR

k), and
∇2M(vk ; yEk , μR

k) are denoted byM(v),∇M(v), and∇2Mk . Assumption 4 and part (vi)
of Lemma 2 imply that the first-order line-search model is used for all k ∈ S∗ ⊆ S
sufficiently large, i.e., the quantity �k is set to one. A Taylor-series expansion of
M(vk + dk) gives

M(vk + dk) = M(vk) + ∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk + O

( 1

μR
k
‖dk‖3

)

= M(vk) + ∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk + O

(
δ(xk, yk)

1−γ ‖dk‖2
)
,

where the bound on the last term follows from the sequence of estimates (1/μR
k)‖dk‖ =

r(xk, yk)−γ ‖dk‖ = O
(
δ(xk, yk)−γ

)‖dk‖ = O
(
δ(xk, yk)1−γ

)
derived inLemmas4, 1,

and 6(i).
Let the scalar σ̄ ofLemma9bedefined so that (1−γS)σ̄ = 1

2 ,whereγS (0 < γS < 1
2 )

is the parameter used for the modified Armijo condition (30) defined with �k = 1.
With this definition, σ̄ satisfies 0 < σ̄ < 1, and Lemma 9 with the particular value
σ̄ = 1

2 (1 − γS)
−1 gives

M(vk + dk) − M(vk) − γS∇M(vk)
Tdk

= (1 − γS)∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk + O

(
δ(xk, yk)

1−γ ‖dk‖2
)

≤ [ 12 − (1 − γS)σ̄ ]dTk Bkdk − (1 − γS)c̄ ‖dk‖2
+ 1

2‖∇2Mk − Bk‖ ‖dk‖2 + O
(
δ(xk, yk)

1−γ ‖dk‖2
)

= −(1 − γS)c̄ ‖dk‖2 + 1
2‖∇2Mk − Bk‖ ‖dk‖2 + O

(
δ(xk, yk)

1−γ ‖dk‖2
)
,

for all k ∈ S∗ sufficiently large. The global convergence property of Assumption 3(2)
implies that limk∈S∗ δ(xk, yk) = 0, which gives limk∈S∗ dk = 0 from part (i) of
Lemma 6. In addition, Lemma 8 implies that limk∈S∗ ‖∇2Mk − Bk‖ = 0. The combi-
nation of these results gives the estimate

M(vk + dk) − M(vk) − γS∇M(vk)
Tdk ≤ −(1 − γS)c̄ ‖dk‖2 + o(‖dk‖2) < 0,

for all k ∈ S∗ sufficiently large. As limk∈S∗ dk = 0 (see Lemma 6(i)), the computation
of αk = 1 follows from the previous displayed inequality and the Armijo condition
(81). ��
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Next it is shown that the properties established in Lemmas 1–9 and Theorems 1–2
hold for every k sufficiently large, not just those in the set S∗ ⊆ S.

Theorem 3 For any positive ε sufficiently small, and any ρ such that 1 < ρ < 1+ γ ,
there exists a V-iteration index kV = kV (ε) such that the following results hold for
every k ≥ kV :

(i) ‖(xk − x∗, yk − y∗)‖ ≤ ε;
(ii) δ(xk+1, yk+1) ≤ δ(xk, yk)ρ;
(iii) k is a V-iterate; and
(iv) the results of Lemmas 1–9 and Theorems 1–2 hold.

Proof Let the positive scalar ε be sufficiently small that the results of Lemmas 1–9 and
Theorems 1–2 hold for every V-O iterate (xk, yk) satisfying ‖(xk − x∗, yk − y∗)‖ ≤ ε.
(The proof of (iv) establishes that these results hold for every k sufficiently large.)

Let (xk, yk) be a primal-dual iterate with k ∈ S∗. Theorem 1 implies that the unit
step is accepted in the line search, in which case (xk+1, yk+1) = (xk + pk, yk + qk).
Let κ be the positive scalar defined in Lemma 1. Similarly, let c1 (c1 > 0) and c2
(c2 ≥ 1) denote constants such that

max{‖xk+1 − xk‖, ‖yk+1 − yk‖} ≤ c1δ(xk, yk), and

δ(xk+1, yk+1) ≤ c2δ(xk, yk)
1+γ . (82)

(The existence of c1 and c2 is implied by the results of Lemmas 6(i) and 7.)
If ρ is any scalar satisfying 1 < ρ < 1 + γ , let kV = kV (ε) be an index in S∗ ⊆ S

that is sufficiently large that (xkV , ykV ) is a V-iterate and satisfies

max
{ ‖xkV − x∗‖, ‖ykV − y∗‖, 2c1δV , 2c1δ

ρ
V /(1 − δ

ρ
V )

} ≤ 1
4ε, and (83)

max
{
2κρ+2δ

ρ−1
V /β, c2δ

1+γ−ρ
V , δ

ρ
V

}
≤ 1, (84)

where δV = δ(xkV , ykV ), and β (0 < β < 1) is the weight used in the defin-
itions of φV (x, y) and φV (x, y). The following argument shows that an index κV

satisfying these conditions must exist. As limk∈S∗(xk, yk) = (x∗, y∗), it must hold
that the optimality and feasibility measures (12) give limk∈S∗ φV (xk, yk) = 0 and
limk∈S∗ φO(xk, yk) = 0. As Assumption 3(2) implies that there are infinitely many
V-O iterates, and the condition φV (vk) ≤ 1

2φ
max
V, k for a V-iteration is checked before the

condition for an O-iteration, then there must be infinitely many V -iterates. In addition,
as limk∈S∗ δ(xk, yk) = 0, there must be an index k = kV such that δV = δ(xk, yk) is
sufficiently small to give (83) and (84).

An inductive argument is used to prove that parts (i)–(iv) hold for all k ≥ kV . The
base case is k = kV . The definition of kV implies that k = kV is a V-iteration index, and
it follows trivially that part (iii) holds. Moreover, the assumption (83) and standard
norm inequalities yield

‖(xkV − x∗, ykV − y∗)‖ ≤ ‖xkV − x∗‖ + ‖ykV − y∗‖ ≤ 1
4ε + 1

4ε < ε, (85)
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which establishes part (i) for k = kV . It follows immediately from (85) and the choice
of ε that part (iv) holds for k = kV . As part (iv) holds for k = kV , (82), and (84) may be
combined to give δ(xkV +1, ykV +1) ≤ c2δ

1+γ
V = c2δ

1+γ−ρ
V δ

ρ
V ≤ δ

ρ
V , which establishes

part (ii) for k = kV . This completes the base case k = kV .
The inductive hypothesis is that (i)–(iv) hold for every iterate k such that kV ≤ k ≤

kV + j − 1. Under this hypothesis, it must be shown that (i)–(iv) hold for k = kV + j .
For part (i), standard norm inequalities give

∥
∥
∥
∥

(
xkV + j − x∗
ykV + j − y∗

)∥
∥
∥
∥ ≤ ‖xkV + j − x∗‖ + ‖ykV + j − y∗‖

=
∥
∥
∥

j−1∑

l=0

(xkV +l+1 − xkV +l) + xkV − x∗
∥
∥
∥ +

∥
∥
∥

j−1∑

l=0

(ykV +l+1 − ykV +l) + ykV − y∗
∥
∥
∥

≤
j−1∑

l=0

(‖xkV +l+1 − xkV +l‖ + ‖ykV +l+1 − ykV +l‖
) + ‖xkV − x∗‖ + ‖ykV − y∗‖

≤ 2c1

j−1∑

l=0

δ(xkV +l , ykV +l) + 1
2ε,

where the first inequality of (82) has been used to bound each of the terms in the
summation, and the term ‖xkV − x∗‖ + ‖ykV − y∗‖ is estimated by (85). It follows
from the inductive hypothesis for part (ii) and (83) that

∥
∥
∥
∥

(
xkV + j − x∗
ykV + j − y∗

)∥
∥
∥
∥ = 2c1

[
δV +

j−1∑

i=1

δ
iρ
V

]
+ 1

2ε < 2c1
[
δV + δ

ρ
V

1 − δ
ρ
V

]
+ 1

2ε ≤ ε,

which establishes that part (i) holds for k = kV + j .
The next stage involves establishing that part (iii) holds for k = kV + j . For all

k ≥ kV , it holds that ξk = 0 and the feasibility measure φV satisfies

βr(xk, yk) ≤ φV (xk, yk) = η(xk) + βω(xk, yk, ξk) ≤ 2r(xk, yk) ≤ 2κδ(xk, yk),

where the last inequality follows from Lemma 1. Applying these inequalities
at (xkV + j , ykV + j ), together with Lemma 1 and the induction assumption (ii) at
(xkV + j−1, ykV + j−1), gives

φV (xkV + j , ykV + j )

≤ 2κδ(xkV + j , ykV + j ) ≤ 2κδ(xkV + j−1, ykV + j−1)
ρ

≤ 2κρ+1r(xkV + j−1, ykV + j−1)
ρ

= 2κρ+1r(xkV + j−1, ykV + j−1)
ρ−1r(xkV + j−1, ykV + j−1)

≤ (2κρ+1/β)r(xkV + j−1, ykV + j−1)
ρ−1φV (xkV + j−1, ykV + j−1). (86)
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If φmax
V, k−1 denotes the parameter used in condition (13) to test for a V-iterate, then

the assumption that (xkV + j−1, ykV + j−1) is a V-iterate implies that the inequal-
ity φV (xkV + j−1, ykV + j−1) ≤ 1

2φ
max
V,kV + j−1 holds. This allows the bound (86) to be

extended so that

φV (xkV + j , ykV + j ) ≤ (κρ+1/β)r(xkV + j−1, ykV + j−1)
ρ−1φmax

V,kV + j−1

≤ (κρ+2/β)δ(xkV + j−1, ykV + j−1)
ρ−1φmax

V,kV + j−1

≤ (κρ+2δ
ρ−1
V /β)φmax

V,kV + j−1 ≤ 1
2φ

max
V,kV + j−1.

The last of these inequalities follows from (84) and implies that kV + j is a V-iterate.
This establishes that part (iii) holds for k = kV + j , as required. Part (iv) then follows
immediately from the choice of ε and the fact that (i) and (iii) hold at k = kV + j .

It remains to show that (ii) holds for k = kV + j . It follows from the bound (84) and
definition of ρ (ρ > 1), that c2(δ

jρ
V )1+γ−ρ ≤ c2δ

ρ(1+γ−ρ)
V ≤ c2δ

1+γ−ρ
V ≤ 1. This

inequality, the induction hypotheses of parts (ii) and (iv), and Lemma 7, together give

δ(xkV + j+1, ykV + j+1) ≤ c2δ(xkV + j , ykV + j )
1+γ

= c2δ(xkV + j , ykV + j )
1+γ−ρδ(xkV + j , ykV + j )

ρ

≤ c2(δ
jρ
V )1+γ−ρδ(xkV + j , ykV + j )

ρ ≤ δ(xkV + j , ykV + j )
ρ,

which shows that part (ii) holds for k = kV + j . This completes the proof. ��
It remains to establish the rate of convergence of the primal-dual iterates to (x∗, y∗).

The proof is based on showing that the iterates are equivalent to those of an sSQP
method for which superlinear convergence has been established.

Theorem 4 The iterates satisfy limk→∞(xk, yk) = (x∗, y∗) and the convergence rate
is superlinear.

Proof As ε > 0 was arbitrary in Theorem 3, it follows that limk→∞(xk, yk) =
(x∗, y∗). It remains to show that the convergence rate is superlinear. Theorem 3(iii)
shows that the iterates generated by the algorithm are all V-iterates for k sufficiently
large. Moreover, Theorem 3(iv) implies that Lemmas 1–9 and Theorems 1–2 hold for
all k sufficiently large (not just for k ∈ S∗ ⊆ S). It follows that for all k sufficiently
large: (a) μR

k = r(xk, yk)γ (from Lemma 4); (b) A(x∗) = A(xk) = Aε(xk, yk, μ
R
k)

(from Lemma 2(ii)); and (c) (xk+1, yk+1) = (xk + pk, yk + qk) with every direction
(pk, qk) a local descent direction (from Theorems 2 and 1(i)–(iii)). The combination
of these results gives [ xk ]A = 0 for all k sufficiently large, where the suffix “A”
denotes the components with indices in the optimal active set A(x∗). It follows that
the sequence (xk, yk) is identical to the sequence generated by a conventional sSQP
method applied to the equality-constrained problem (42), i.e., the iterates correspond to
performing a conventional sSQP method on problem (NP) having correctly estimated
the active set (the associated stabilized QP subproblem is defined in the statement of
Lemma 5). The superlinear rate convergence of the iterates now follows, for example,
from [24, Theorem 1]. ��
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4 Numerical experiments

This section concerns an implementation of the algorithm described in Sect. 2, and
includes the results of some numerical experiments designed to illustrate the behavior
of the algorithm on degenerate problems. Sections 4.1–4.4 evaluate the performance
of the method on problems that exhibit various forms of degeneracy. All the results
are from a variant of the method that does not test for a direction of negative curvature
until a first-order stationary point is located. Both the global and local convergence
analysis remain valid.

From a numerical stability perspective, it is important that every computation be
performedwithout forming thematrix B(vk ;μ) given by (6) explicitly.All the relevant
properties of the matrix B may be determined from the matrix

(
H(x, y) J (x)T

J (x) −μI

)

,

which is said to have “regularized KKT form.” In particular, each iteration involves
the factorization of a matrix of the form

KFε =
(
HFε (x, y) JFε (x)

T

JFε (x) −μR
k I

)

. (87)

The (implicitly defined) positive-definite matrix B̂(vk ;μR
k) (21) associated with

the bound-constrained QP problem (19) is obtained by using a pre-convexification
scheme. Specifically, the positive-definite matrix Ĥ of (21) has the form Ĥ(xk, yk) =
H(xk, yk) + Ek + Dk for some positive-semidefinite matrix Ek and positive-
semidefinite diagonal matrix Dk , as described in [16, Sect. 4]. If the matrix formed
from the ε-free rows and columns of B is positive definite (see (6)), then Ek is zero,
in which case, the (implicit) B̂Fε

(xk, yk ;μR
k) is equal to BFε

(xk, yk ;μR
k) and the

regularized KKT equations remain unmodified (see the equations (93) below). The
calculation of the matrix Ek is based on an LBLT factorization of a matrix in the form
(87). The factorization also provides the direction of negative curvature s(1)

k (11) used
to compute ξk (see, e.g., Forsgren [11], Forsgren and Gill [12], and Kungurtsev [27,
Chapter 9]).

Solution of the QP subproblem. Let Q̂k(v) denote the convex QP objective (20)
defined with parameters yEk and μR

k . Given an initial feasible point v̂
(0)
k for problem

(19) (i.e., a point such that [ v̂
(0)
k ]i ≥ 0, i = 1 : n), a typical active-setmethod generates

a feasible sequence {v̂( j)
k } j>0 such that Q̂k(v̂

( j)
k ) ≤ Q̂k(v̂

( j−1)
k ) and v̂

( j)
k minimizes

Q̂k(v) on a “working set” W j of variables fixed at their bounds. An iterate v̂
( j)
k is

optimal for (19) if the Lagrange multipliers for the bound constraints in the working
set are nonnegative, i.e.,

[ ∇Q̂k(v̂
( j)
k ) ]W j

= [ ∇M(vk ; yEk , μR
k) + B̂(vk ; μR

k)(v̂
( j)
k − vk) ]W j

≥ 0, (88)
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where the suffix “W j” denotes the vector of components with indices in the working
set W j . The initial working set W0 is defined as the ε-active set Aε(xk, yk, μ

R
k). The

first step is to move the current iterate vk onto the bounds in the working set. This
gives the first feasible point v̂(0)

k such that

[ v̂
(0)
k ]Aε

= 0 and [ v̂
(0)
k ]Fε

= [ vk ]Fε
, (89)

where the suffices “Aε” and “Fε” refer to the components associated with the ε-active
and ε-free sets at (xk, yk). In general, v̂

(0)
k will not minimize Q̂k(v) on W0, and an

estimate of thenextQP iterate v̂
(1)
k is foundbyminimizing Q̂k(v) subject to [ v ]W0 = 0.

If the primal components of this solution are feasible for x ≥ 0, then the solution is
used to define v̂

(1)
k . Otherwise one of the violated bounds is added to the working set

and the iteration is repeated. Eventually, the working set will include enough bounds
to define an appropriate minimizer v̂

(1)
k . If v̂

(1)
k does not satisfy the gradient condition

(88) then the index of a variable with a negative gradient is selected for deletion from
W1.

Computation of the local descent direction. Here, vk + dk is a solution of the
equality-constrained subproblem (24) and must satisfy the optimality conditions (25).
LetQk(v) denote the QP objective (5) defined with parameters yEk and μR

k . The vector

dk is computed in the form dk = v̂
(0)
k + Δv̂

(0)
k − vk , where v̂

(0)
k is the feasible point

(89) and Δv̂
(0)
k is defined uniquely by the equations

[ Δv̂
(0)
k ]Aε

= 0, and BFε
[ Δv̂

(0)
k ]Fε

= −[ ∇Qk(v̂
(0)
k ) ]Fε

. (90)

The definition of v̂
(0)
k from (89) together with the form of the ε-free and ε-active

components of dk yields

[ dk ]Fε = [Δv̂
(0)
k ]Fε and [ dk ]Aε = −[ vk ]Aε = −[ xk ]Aε ≤ 0, (91)

where the last inequality follows from the feasibility of xk with respect to the bounds.
The benefit of computing dk in this form is that the vector v̂

(0)
k + Δv̂

(0)
k is an initial

estimate of v̂
(1)
k used in the active-set method for solving the inequality constrained

QP (19). (The conditions necessary for the computation of the local descent direction
include the fact that BFε must be positive definite, which implies that B̂Fε

= BFε
.) It

follows that if the local descent direction does not satisfy the conditions (27) and is
not suitable for the line search, it may be used to initialize the active-set method for
solving (19).

The system of equations for [ Δv̂
(0)
k ]Fε

in (90) may be written in regularized KKT

form as follows. Consider the matrix UFε =
(

I −(2/μR
k )JFε (xk )T

0 I

)
, where JFε (xk)

denotes the matrix of ε-free columns of J (xk). The matrixUFε is nonsingular and can
be applied to both sides of (90) without changing the solution. Using the definitions
(91) and performing some simplification yields
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Table 1 Control parameters and initial values required by Algorithm pdSQP

Parameter Value Parameter Value Parameter Value

φmax
V,0 , φmax

O,0 1.0e+3 μR
0 1.0e-4 τstop 1.0e-6

εa 1.0e-6 μ1 1.0 β 1.0e-5

γ 0.5 γS 1.0e-3 λ 0.2

ymax 1.0e+6 θ 1.0e-5 τ0 1.0

(
HFε (xk, yk) JFε (xk)

T

JFε (xk) −μR
k I

) ([ pk ]Fε

−qk

)

= −
(

[ g(xk) + H(xk, yk)(x̂
(0)
k − xk) − J (xk)Tyk ]Fε

c(xk) + J (xk)(x̂
(0)
k − xk) + μR

k(yk − yEk )

)

, (92)

where pk and qk are the vectors of primal and dual components of dk , and HFε (xk, yk)
is the matrix of ε-free rows and columns of H(xk, yk).

The local convergence analysis of Sect. 3 implies that for k sufficiently large, it
must hold that Aε(xk, yk, μ

R
k) = A(x∗), [ xk ]Aε = 0, and yEk = yk . It follows that

x̂ (0)
k = xk and the Eq. (92) become

(
HFε (xk, yk) JFε (xk)

T

JFε (xk) −μR
k I

) ( [ pk ]Fε

−qk

)

= −
([ g(xk) − J (xk)Tyk ]Fε

c(xk)

)

, (93)

i.e., the dual-regularized Newton equations for minimizing M on Aε .

Parameter definitions. The numerical experiments were performed using pdSQP,
a preliminary implementation of the method written in MATLAB [29]. The control
parameter values and their initial values are specified in Table 1. If pdSQP did not
converge within kmax = 1000 iterations, it was considered to have failed. The tests
used to terminate the algorithm at an approximate solution or an infeasible stationary
point are given by (32) and (33), respectively.

4.1 Degenerate CUTEst problems

The local rate of convergence of algorithm pdSQPwas investigated for a set of degen-
erate problems from the CUTEst test set [18]. In particular, 84 problems were identified
for which the active-constraint Jacobian is numerically rank deficient at the computed
solution. In addition, 56 problems have at least one negligible multiplier associated
with a variable on its bound. In this case, a multiplier is considered as being negligible
if it is less than τstop in absolute value. A zero multiplier associated with an active con-
straint implies that the property of strict complementarity does not hold. A total of 26
problems were identified that fail both the linear independence constraint qualification
(LICQ) and strict complementarity.
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Table 2 Estimated order of convergence for pdSQP on the degenerate CUTEst problems

Last is global Last is local Last two are local Total

Problems not satisfying the LICQ

1.25 < EOC 20 (7) 16 (12) 33 (31) 69 (50)

1.1 < EOC ≤ 1.25 3 (3) 1 (1) 6 (6) 10 (10)

EOC ≤ 1.1 3 (2) 0 (0) 2 (2) 5 (4)

Problems not satisfying strict complementarity

1.25 < EOC 17 (6) 4 (2) 16 (16) 37 (24)

1.1 < EOC ≤ 1.25 4 (4) 0 (0) 3 (3) 7 (7)

EOC ≤ 1.1 9 (7) 1 (0) 2 (1) 12 (8)

Problems not satisfying strict complementarity and the LICQ

1.25 < EOC 11 (3) 4 (2) 6 (6) 21 (11)

1.1< EOC ≤ 1.25 2 (2) 0 (0) 2 (2) 4 (4)

EOC ≤ 1.1 1 (1) 0 (0) 0 (0) 1 (1)

For these degenerate problems, the order of convergence was estimated by

EOC = log r(xk f , yk f )/ log r(xk f −1, yk f −1), (94)

where k f denotes the final computed iterate. The results are given in Table 2. The
column with heading “Last is global” contains the statistics for problems for which
the final search direction is a global descent direction. The column marked “Last is
local” gives the statistics for problems for which the final direction is a local descent
direction. Column headed “Last two are local” contains the statistics for problems for
which the final two descent steps are local descent directions. The values in paren-
theses indicate the number of problems that satisfy the weak second-order sufficient
optimality conditions, i.e., the Hessian of the Lagrangian is positive definite on the null
space of the active constraint Jacobian matrix. In the implementation considered here,
this property is considered to hold if the smallest eigenvalue of ZTHFε Z is greater
than τstop, where the columns of Z form a basis for the null space of JFε .

Table 2 shows that if the LICQ does not hold, but strict complementarity does,
then local descent steps are computed in the final stages and they contribute to a
superlinear rate of convergence. Moreover, superlinear convergence is typical even
when the local descent step is not computed. This observation is consistent with [27,
Chapter 8], which shows that the iterates generated by algorithm pdSQP of Gill and
Robinson [15] converge superlinearly when the second-order sufficient conditions for
optimality hold as well as the property of strict complementarity. The results are more
mixed on those problems for which pdSQP converges to a solution at which strict
complementarity fails.

4.2 The degenerate problems of Mostafa, Vicente, and Wright

In [30], Mostafa, Vicente and Wright analyze the performance of an sSQP algorithm
proposed by Wright [34] that estimates the weakly and strongly active multipliers.
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Table 3 Estimated order of convergence for pdSQP on the MPEC test set

Last is global Last is local Last two are local Total

1.25 < EOC 18 (9) 17 (17) 31 (31) 66 (57)

1.10 < EOC ≤ 1.25 2 (2) 1 (1) 3 (3) 6 (6)

EOC ≤ 1.10 3 (2) 2 (2) 1 (1) 6 (5)

The authors demonstrate that the algorithm is robust in general and converges rapidly
on a specified collection of 12 degenerate problems that includes some of the orig-
inal Hock-Schittkowski problems; several Hock-Schittkowski problems modified to
include redundant constraints; and several problems drawn from the literature (see
the reference [30] for additional details). All 12 problems have either a rank-deficient
Jacobian or at least one weakly active multiplier at the solution.

Algorithm pdSQP was tested on ten of the twelve problems that could be coded
directly or obtained from other sources. Of the ten cases, pdSQP converges superlin-
early on seven problems, converges linearly on two problems, and fails to converge on
one problem. These results appear to be similar to those obtained by Mostafa, Vicente
and Wright using their code sSQPa [30].

4.3 Degenerate MPECs

Mathematical programs with equilibium constraints (MPECs) are optimization prob-
lems that have variational inequalities as constraints.Various reformulations ofMPECs
as nonlinear programs (see Baumrucker, Renfro and Biegler [3]) include comple-
mentarity constraints that do not satisfy the LICQ or the MFCQ. This is generally
recognized as the main source of difficulty for conventional nonlinear solvers. In the
case of pdSQP, the violation of the MFCQ implies that [14, Theorem 3.16] can-
not be used to ensure the existence of limit points of the sequence of dual variables.
As a consequence, the primal-dual iterates of pdSQP may never enter a region of
superlinear convergence. Nonetheless, as MPECs constitute an important and chal-
lenging class of problems, this section includes results from pdSQP on a large set of
MPECs.

We evaluated pdSQP was evaluated on 86 MPECs obtained from Sven Leyffer
at the Argonne National Laboratory. Many of these problems are included in the
MPECLib library [5], which is a varied collection of MPECs from both theoretical
and practical test models. pdSQP solved 78 of the 86 problems.

As discussed above, the theoretical results of Sect. 3 do not guarantee that the
primal-dual iterates will enter a region in which local descent steps are used. In order
to study this possibility, Table 3 gives the EOC rates defined in (94) for all of the
MPEC problems. The results indicate that, as predicted by the theory, the last search
direction is a global descent direction in 23 cases. Nonetheless, 20 of these cases
still converge at a superlinear rate. By comparison, of the 55 problems for which
the last direction is a local descent direction, superlinear convergence occurs in 52
cases.
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Table 4 Estimated order of convergence (EOC) of pdSQP on the DEGEN test set

Critical multipliers? y∗ critical? EOC > 1.25 1.25 ≥ EOC > 1.1 EOC ≤ 1.1

No – 36 9 6

Yes No 9 1 2

Yes Yes 6 29 11

4.4 Degenerate problems from the DEGEN test set

In a series of numerical tests, Izmailov and Solodov [22,23,25] demonstrate that
Newton-like algorithms such as SQP or inexact SQP methods tend to generate dual
iterates that converge to critical multipliers, when they exist. (Critical multipliers are
those multipliers y ∈ Y(x∗) for which the regularized KKT matrix (87) is singular at
x∗). This is significant because dual convergence to critical multipliers will result in a
linear rate of convergence [23]. However, Izmailov [23] shows that an implementation
of a conventional sSQP algorithm is less likely to exhibit this behavior, although poor
performance can still occur in a small number of cases. This has motivated the use
of sSQP subproblems as a way of accelerating local convergence in the presence of
critical multipliers. However, such algorithms have had mixed results in practice (see,
e.g., Izmailov [26]). The purpose of this section is to use a subset of the DEGEN test set
to investigate the performance of pdSQP on problems with critical multipliers. The
subset of problems consists of those considered by Izmailov [22], and Izmailov and
Solodov [23].

Table 4 gives the estimated orders of convergence for these problems. The results
are separated based on the following properties: (i) no critical multipliers exist; (ii)
critical multipliers exist but the limit point y∗ is not critical; and (iii) the limit point
y∗ is critical. The summaries indicate which optimal multipliers (if any) are critical.
If the final multiplier estimate is within 10−3 of a critical multiplier, the multiplier
is designated as critical. As shown in Table 4, empirically, pdSQP converges super-
linearly on 45 of the 51 problems that do not have critical multipliers. For the 58
problems that have critical multipliers, pdSQP converges to a critical multiplier
for 46 of them, and for those 46 problems the rate of convergence was typically
slower. The slower convergence supports the theory in [23], but the results indicate
that on this test set, pdSQP often converges to critical multipliers when they are
present.

5 Conclusions

This paper considers the local convergence analysis and some aspects of the numer-
ical performance of an sSQP method for nonlinearly constrained optimization. The
method appears to constitute the first algorithm with provable convergence to second-
order points as well as a superlinear rate of convergence. The method is formulated
as a stabilized SQP method with an implicit safeguarding strategy based on minimiz-
ing a bound-constrained primal-dual augmented Lagrangian. The method involves
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a flexible line search along a direction formed from an approximate solution of a
regularized quadratic programming subproblem and, when one exists, a direction of
negative curvature for the primal-dual augmented Lagrangian. With an appropriate
choice of termination condition, the method terminates in a finite number of iterations
under weak assumptions on the problem functions. Safeguarding becomes relevant
only when the iterates are converging to an infeasible stationary point of the norm
of the constraint violations. Otherwise, the method terminates with a point that either
satisfies the second-order necessary conditions for optimality, or fails to satisfy a weak
second-order constraint qualification. In the former case, superlinear local convergence
is established by using an approximate solution of the stabilized QP subproblem that
guarantees that the optimal active set, once correctly identified, remains active regard-
less of the presence of weakly active multipliers. It is shown that the method has
superlinear local convergence under the assumption that limit points become close to
a solution set containing multipliers satisfying the second-order sufficient conditions
for optimality. This rate of convergence is obtained without the need to solve a non-
convex QP subproblem, or impose restrictions on which local minimizer of the QP
is found. For example, it is not necessary to compute the QP solution closest to the
current solution estimate.

Numerical results on a variety of problems indicate that the method performs rel-
atively well compared to a state-of-the-art SQP method. Superlinear convergence is
typical, even for problems that do not satisfy standard constraint qualifications. Results
are more mixed for problems that do not satisfy the property of strict complementarity.

The proposed method is based on the beneficial properties of dual regularization,
which makes it necessary to assume a second-order sufficient condition to rule out the
possibility of critical multipliers at the solution. Future research will focus on primal
regularization techniques that allow superlinear convergence when critical multipli-
ers are present. For a local algorithm framework based on primal regularization, see
Facchinei, Fischer and Herrich [6,7].

Acknowledgements The authors would like to thank the referees for a number of suggestions that signif-
icantly improved the presentation.
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