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Abstract: In the field of earthquake engineering, the advent of the performance-based 
design philosophy, together with the highly uncertain nature of earthquake ground 
excitations to structures, has brought probabilistic performance-based design to the 
forefront of seismic design. In order to design structures that explicitly satisfy 
probabilistic performance criteria, a probabilistic performance-based optimum seismic 
design (PPBOSD) framework is proposed in this paper by extending the state-of-the-art 
performance-based earthquake engineering (PBEE) methodology. PBEE is traditionally 
used for risk evaluation of existing or newly designed structural systems, thus referred to 
herein as forward PBEE analysis. In contrast, its use for design purposes is limited 
because design is essentially a more challenging inverse problem. To address this 
challenge, a decision-making layer is wrapped around the forward PBEE analysis 
procedure for computer-aided optimum structural design/retrofit accounting for various 
sources of uncertainty. In this paper, the framework is illustrated and validated using a 
proof-of-concept problem, namely tuning a simplified nonlinear inelastic single-degree-
of-freedom (SDOF) model of a bridge to achieve a target probabilistic loss hazard curve. 
For this purpose, first the forward PBEE analysis is presented in conjunction with the 
multilayer Monte Carlo simulation method to estimate the total loss hazard curve 
efficiently, followed by a sensitivity study to investigate the effects of system (design) 
parameters on the probabilistic seismic performance of the bridge. The proposed 
PPBOSD framework is validated by successfully tuning the system parameters of the 
structure rated for a target probabilistic seismic loss hazard curve. The PPBOSD 
framework provides a tool that is essential to develop, calibrate and validate simplified 
probabilistic performance-based design procedures. 
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1 Introduction 
The seismic design philosophy has evolved from the safeguard against collapse of 
structures and loss of life to performance-based seismic design (PBSD). Aimed at 
improving and ensuring post-earthquake functionality, PBSD has been developed in 
response to the substantial economic losses due to earthquakes (e.g., a total loss of $24 
billion for the 1994 Mw 6.7 Northridge earthquake [Eguchi, Goltz, Taylor et al. (1998)]. 
However, uncertain structural performance is inevitable because of various sources of 
uncertainty, i.e., the randomness in structural loads (e.g., earthquake loads), the 
variability in demands imposed on the structural system, and the uncertainties in the 
capacity of the system to withstand those demands as well as other socio-economic 
variables (e.g., uncertainty in repair cost for damaged components). With the highly 
uncertain nature of earthquake ground motions, the advent of performance-based design 
philosophy has brought probabilistic PBSD to the forefront of seismic design. The need 
to account for these uncertainties has prompted the development of a modular 
probabilistic performance evaluation methodology, the performance-based earthquake 
engineering (PBEE) methodology, under the auspice of the Pacific Earthquake 
Engineering Research (PEER) Center [Cornell and Krawinkler (2000)]. PBEE aims to 
evaluate probabilistically the seismic performance of a structure under specific site and 
soil conditions in an uncertainty propagation framework, herein referred to as forward 
PBEE analysis. In the last two decades, significant research efforts have been devoted to 
the development of the PEER PBEE methodology [Cornell and Krawinkler (2000); 
Porter (2003); Baker (2007); Günay and Mosalam (2013); Lin, Haselton and Baker 
(2013)]. Applications of the PEER PBEE methodology for probabilistic performance 
assessment of various testbed structures can be found in the literature [Comerio (2005); 
Kunnath, Larson and Miranda (2006); Zhang (2006); Conte and Zhang (2007); Goulet,  
Haselton, Mitrani-Reiser et al. (2007); Haselton, Liel, Deierlein et al. (2011); Mosalam 
and Günay (2014); Li and Conte (2017); Romano, Faggella, Gigliotti et al. (2018); Li and 
Conte (2019)]. With its wide acceptance as a tool for probabilistic performance 
assessment, the PEER PBEE methodology has formed the basis for structural design 
codes or evaluation guidelines, e.g., FEMA P-58 [FEMA (2012)] in which PBEE is 
specialized to performance-based seismic assessment of new and existing building 
structures. 
Notwithstanding the significant progress in PBEE for probabilistic performance 
assessment, more limited research has been performed in inverse PBEE for structural 
design purposes [Jalayer and Cornell (2003); Mackie and Stojadinovic (2007); Zakeri and 
Zareian (2017)]. This is due to the probabilistic nature of the PBEE methodology, which 
hinders its application to the design process to achieve a design target explicitly described 
in probabilistic terms. The design process is essentially a decision-making process. Old-
fashioned design was performed through a manual trial-and-error approach, guided by a 
both a simple design philosophy and engineering experience. Currently, in professional 
practice, the uncertainties are accounted for by applying a subjective “factor of safety 
approach” in the allowable stress methodology or a semi-probabilistic “partial safety 
approach” in the Load and Resistance Factor Design (LRFD) [Ellingwood (2000)]. The 
application of a fully probabilistic and risk-informed approach (e.g., PBEE) in developing 
a practical performance-based design methodology requires the inversion of the available 
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probabilistic performance-based assessment methodology, herein referred to as the 
inverse PBEE analysis. In order to conquer the inverse problem of explicitly satisfying 
probabilistic performance criteria confronted in the design process, computer-aided 
structural design using mathematical optimization becomes essential because of the 
increased complexity in the probabilistic design process [Austin, Pister and Mahin (1987); 
Haukaas (2008)]. 
It is worth noting that significant research has been performed on a closely related topic, i.e., 
reliability-based seismic design optimization [Jensen, Valdebenito, Schuëller et al. (2009); 
Taflanidis and Beck (2009); Barbato and Tubaldi (2013); Tubaldi, Barbato and  Dall’Asta 
(2016)], which also addresses the inverse problem in the presence of uncertainties. In these 
studies, the seismic design problem is treated as an inverse problem considering 
uncertainties associated with the earthquake loading (intensity and time history) and in 
some cases the structural model parameters. The inverse problem was cast either as a zero-
finding problem [Barbato and Tubaldi (2013)] to achieve a target reliability, or as an 
optimization problem, in which reliability metrics (i.e., the probability of failure of the 
system) are used to define the objective/constraint functions. However, these studies 
focused on the system reliability (or probability of failure) based on a pre-defined critical 
threshold value of a response quantity, instead of the full probabilistic description of the 
structural system performance at a continuum of levels of response (demand) and loss and 
at a discrete set of damage states. It is also worth mentioning that the above studies 
represent the earthquake ground motions analytically as a random process (e.g., non-
stationary filtered white noise process) linked to a ground motion intensity measure such as 
the peak ground acceleration (PGA). In contrast, the study reported in this paper uses 
ensembles of scaled historic earthquake ground motion records to represent the record-to-
record variability in the forward PBEE analysis. These earthquake records are selected 
based on the magnitude-distance deaggregation of the site seismic hazard, the geological 
and seismological conditions and the local site conditions. This earthquake ground motion 
characterization is currently predominantly used in performance-based earthquake 
engineering, both at the level of research and engineering practice. 
The aforementioned needs calls for an innovative optimum seismic design framework in 
the presence of uncertainty by using the versatile and modular probabilistic PBEE 
methodology. Aiming at promoting the practical application of probabilistic methods for 
design purposes, this paper proposes a probabilistic performance-based optimum seismic 
design (PPBOSD) framework. This framework is an extension of the PBEE methodology 
obtained by wrapping a decision-making layer in the design process around the forward 
PBEE analysis using mathematical optimization. The PPBOSD framework is illustrated 
and validated using a simplified nonlinear inelastic single-degree-of-freedom (SDOF) 
model of a bridge structure as a proof-of-concept study, before applying it to more 
complex and realistic engineering problems in the future. In the validation example, a 
well-posed optimization problem of tuning system (design) parameters of the structure to 
achieve a target probabilistic loss hazard curve is defined and solved using the proposed 
PPBOSD framework. 
This paper is structured as follows. First, the motivation behind the proposed PPBOSD 
framework is articulated, and an illustrative example of a SDOF bridge model, which is 
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used to demonstrate conceptually the application of the PPBOSD framework, is presented. 
Second, the steps of the forward PBEE analysis, which is an indispensable component of 
PPBOSD, are described in the context of quantitatively assessing the seismic 
performance of the illustrative structure in probabilistic terms. Note that a multilayer 
Monte Carlo simulation procedure is implemented to estimate efficiently the total seismic 
loss hazard of the structure, which is needed in the PPBOSD framework. Third, a 
parametric probabilistic PBEE analysis is conducted to investigate the effects of the 
system (design) parameters on the probabilistic seismic performance of the structure. 
Finally, for illustration and validation purposes, the inelastic SDOF bridge model 
parameters are optimized (i.e., tuned), using the PPBOSD framework, to achieve a target 
seismic loss hazard curve of the bridge. The underlying assumptions and limitations of 
the presented research are critically discussed in the conclusions. 

2 PPBOSD framework and illustrative application 
The well-established PEER PBEE methodology is used primarily to sequentially quantify 
and analyze the uncertainties in the seismic intensity and earthquake records, structural 
response (demand), structural capacity, seismic damage (i.e., limit-state exceedances), 
and eventually the seismic loss (e.g., repair cost, down time) for a structure, at a given 
site, due to future earthquakes. The PBEE methodology (i.e., forward PBEE analysis) 
consists of four analytical steps: probabilistic seismic hazard analysis, probabilistic 
demand hazard analysis, probabilistic damage hazard analysis, and probabilistic loss 
hazard analysis (Fig. 1). Each step determines the probabilistic characteristics of 
intermediate (or interface) variables, respectively referred to as the earthquake ground 
motion Intensity Measure (IM), Engineering Demand Parameter (EDP), Damage 
Measure (DM), and Decision Variable (DV) such as monetary loss. 

  
Figure 1: Forward PBEE analysis and need for inverse PBEE analysis 
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For a newly designed or an existing structure, forward PBEE analysis can be used as a 
reliable tool to assess its probabilistic seismic performance, which depends on the system 
parameter vector x consisting of geometric, material and mechanical properties of the 
various structural components and seismic mitigation devices of the structure. However, 
the probabilistic performance of the structure may be unacceptable or not optimal 
according to target seismic design objectives, which are typically defined, based on the 
public’s expectations, by stakeholders, decision-makers and design code committees. 
This underlies the motivation behind an inverse PBEE analysis. For example, through the 
evaluation process using PBEE, an initial structural design is characterized by its seismic 
demand or loss hazard curve (i.e., probability of exceedance of any specified value of 
EDP or DV in 100 years) such as the hazard curve #1 in Fig. 2 expressed in terms of the 
probability of exceedance in 100 years. In contrast, the target performance can be 
characterized by hazard curve #2, #3, or #4 which would require tuning the design 
parameter vector x for this target design specification. Ideally, it is desirable to reduce the 
seismic risk (i.e., probability of exceedance) across the entire range of EDP or DV values, 
e.g., from hazard curve #1 to hazard curve #4. However, if hazard curve #4 is not feasible 
due to practical design constraints such as the initial construction cost, the decision-
makers (e.g., engineers, stakeholders, or owners) can aim at improving the design by 
targeting hazard curve # 2 or hazard curve #3 as an alternative to reducing the seismic 
risk across all EDP or DV values. Namely, the decisions are made to place more 
emphasis in the seismic performance either at the low hazard level (or short return period 
or high probability of exceedance) or at the high hazard level (or long return period or 
low probability of exceedance), respectively.  

 

Figure 2: Illustration of the motivation for proposed probabilistic performance-based 
optimum seismic design framework 
When aiming at improving the seismic performance at low hazard (or short return period 
or high probability of exceedance) levels, the performance of the initial structural design 
can be improved from hazard curve #1 to hazard curve #2. As seen from Fig. 2, this can 
be achieved by either minimizing the probability, ( )

1VP x , of exceeding a low threshold 
value v1 of the EDP or DV, or by minimizing the 86th percentile of the EDP (edp0.86) or 
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DV (dv0.86), both of which may lower the structural performance at high hazard levels (or 
long return period or low probability of exceedance). Conversely, improving the seismic 
performance at high hazard levels may reduce the performance at low hazard levels. In 
such a case, for example, the initial structural design could be altered so that its 
performance characterized by hazard curve #1 is improved to the performance 
characterized by hazard curve #3. Similarly, this can be achieved by either minimizing 
the probability, ( )

2VP x , of exceeding a high threshold value v2 of the EDP or DV or by 
minimizing the 10th percentile of the EDP (edp0.10) or DV(dv0.10) (see Fig. 2). Note that 
10% (a high hazard level) and 86% (a low hazard level) probability of exceedance in 100 
years correspond to return periods of 945 years and 50 years, respectively, based on the 
assumption of the Poisson random occurrence model. Alternatively, and more generally, 
the complete target loss hazard curve (defined by many discrete points at different hazard 
levels) can be used to express the probabilistic design objectives, as shown later in the 
illustrative example.  
The above inverse PBEE problem, which is confronted for design improvement or design 
optimization in the face of uncertainty, can be solved by the innovative optimum 
structural design framework (i.e., PPBOSD) proposed in this paper. PPBOSD extends the 
PBEE evaluation methodology, which can be viewed as an open loop, by wrapping a 
decision-making layer using optimization around the forward PBEE analysis in order to 
close the loop as shown in Fig. 3. This decision-making layer allows the use of various 
computational optimization tools, e.g., OpenSees-SNOPT [Gu, Barbato and Conte 
(2012)], to update the initial structural design to achieve the performance objectives. The 
probabilistic seismic design objectives can be defined in terms of demand hazard, 
damage hazard, and/or loss hazard characteristics (e.g., hazard curves of EDP or DV, 
probability of limit-state exceedances, or statistics of EDP, DM, and/or DV in a specified 
exposure time). These design objectives can be cast into either objective or constraint 
functions in the optimization problem formulation. Thus, the proposed PPBOSD 
framework provides a tool to search for either a feasible design that satisfies all constraint 
functions or an optimum design that minimizes the objective function while satisfying all 
constraint functions. In PPBOSD, the current design is first assessed using the forward 
PBEE analysis for its probabilistic performance, which is compared with the design 
objectives expressed in terms of target hazard levels or statistics. If the design objectives 
are not satisfied, the current design will be updated in the decision-making layer through 
optimization by tuning the structural design parameters x.  
This paper focuses on the illustration and validation of the proposed PPBOSD framework, 
rather than a practical application to a complex large-scale bridge system, which is 
considered as the next stage of this research. Accordingly, a simple nonlinear bridge 
structural model is selected herein for simplicity but without loss of generality. This 
structural model consists of an inelastic SDOF system, which is commonly used to 
represent macroscopically a bridge behavior in its longitudinal or transverse direction. A 
nonlinear FE model of the Humboldt Bay Middle Channel Bridge (HBMC, see Fig. 4(a)) 
previously developed in OpenSees [Conte and Zhang (2007)] is used to calibrate the 
nonlinear SDOF system parameters. The initial stiffness of the SDOF model obtained 
from the static pushover analysis of the bridge in the longitudinal direction is k0 = 
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137,200 kN/m, and the effective lumped mass accounted for is m=6.15×106 kg, thus 
leading to an initial fundamental period of vibration T1 = 1.33 s. The nonlinear model 
parameters associated with this inelastic SDOF model (Fig. 4(b)) are the yield strength 
Fy=10,290 kN (i.e., corresponding to a yield displacement Uy=0.075 m), and the post-
yield stiffness ratio (=ratio of the post-yield stiffness to the initial stiffness) b=0.10. The 
Menegotto-Pinto hysteretic material model is used to approximately represent the cyclic 
force-displacement response behavior and energy dissipation capabilities of an inelastic 
structural system such as a bridge. Furthermore, linear viscous damping with a damping 
ratio of 2% is incorporated in the SDOF bridge model to account for sources of energy 
dissipation beyond the hysteretic energy dissipation due to inelastic action of the 
materials during an earthquake. Note that the nonlinear SDOF bridge model is used in 
this study only for the purpose of illustrating and validating the proposed PPBOSD 
framework, these being the main objectives of this paper, without the intention to assess 
comprehensively the probabilistic seismic performance of the actual bridge. 

 

Figure 3: Probabilistic performance-based optimum seismic design (PPBOSD) 
framework 
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(a) 

  
(b) 

Figure 4: Humboldt bay middle channel (HBMC) bridge (courtesy of Caltrans): (a) 
isometric view, and (b) simplified nonlinear SDOF model to represent the longitudinal 
nonlinear response behavior of the bridge 
In engineering practice, various structural response quantities or parameters, referred to 
as engineering demand parameters (EDPs), strongly correlated with different types of 
structural or non-structural damage are of interest. This study considers three EDPs, 
namely relative displacement ductility, μ , peak absolute acceleration, , and 
normalized hysteretic energy dissipated, , as defined in Eqs. (1)-(3), respectively. 
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In the equations above, dt =earthquake duration (i.e., the total duration of the ground 
motion record downloaded from the PEER NGA database), ( )u t  displacement response 

relative to the ground, =relative acceleration response, =earthquake ground 

acceleration, g =acceleration due to gravity, ( )R t  =internal resisting force, and ( )E dE t  
=elastic strain energy stored in the system at time = dt t . The three response parameters 
defined in Eqs. (1)-(3) are selected as EDPs associated with the following damage/failure 
or limit-states: first-excursion failure, dynamic stability of vehicles traversing the bridge 
during the earthquake, and cumulative damage (e.g., low-cycle fatigue damage), 
respectively.  

3 Forward PBEE analysis 
The PEER PBEE methodology breaks down the seismic risk assessment procedure into 
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four successive steps. These probabilistic steps sequentially quantify the uncertainty in 
the earthquake ground motion intensity measure (IM), the engineering demand parameter 
(EDP), the damage measure (DM) and the decision variable (DV), as implied by the 
underlying mathematical model expressed in Eq. (4). 

( ) ( ) ( ) ( ) ( )| , , | , |ν ν= ⋅ ⋅ ⋅∫∫∫DV IMdv G dv dm edp im G dm edp im dG edp im d im           (4) 

Here, ( )X xν  denotes the mean annual rate (MAR) of occurrence of the random event 

{ },>X x namely the MAR of random variable X exceeding a given value x, 

and ( ) ( )= > =G x y P X x Y y  represents the conditional complementary cumulative 
distribution function (CCDF) of random variable X given random variable Y = y. In the 
probabilistic conditioning and deconditioning process, “one-step” forward dependence is 
assumed, i.e., ( ) ( ), =G dm edp im G dm edp and ( ) ( ), , =G dv dm edp im G dv dm . This 
process aims at propagating the uncertainty related to the seismic input and structural 
capacity, all the way to the EDPs, DMs, and DVs using the total probability theorem. The 
four steps of the PEER PBEE methodology are described below with select results to 
illustrate the process of forward PBEE analysis, as well as deaggregation results to 
increase the transparency of the hazard analysis. A multilayer Monte Carlo simulation 
method [Zhang (2006); Yang, Moehle, Stojadinovic et al. (2009)] is implemented to 
estimate efficiently the total loss hazard of the structure.  

3.1 Probabilistic seismic hazard analysis 
Pioneered by the theoretical framework developed by Cornell [Cornell (1968)], 
probabilistic seismic hazard analysis (PSHA), Step (1) of the PBEE methodology, has 
become the most accepted approach for assessing the site-specific seismic hazard in a 
probabilistic manner [Shome, Cornell, Bazzurro et al. (1998); Luco and Cornell (2007); 
Petersen, Frankel, Harmsen et al. (2008)]. The probabilistic seismic hazard, which 
consists of the uncertainty quantification of the earthquake ground motion IM, is 
characterized by the MAR of the earthquake ground motion IM exceeding a specified 
threshold value im , ( ) ( )IM IMim IM im= >ν ν . Based on the Poisson process assumption 
for the random occurrence of earthquakes in time, the MAR of exceedance can be 
converted to the probability of exceedance (PE) in a specified exposure time (e.g., annual 
PE or PE in 50 years abbreviated as PE50). The IM is selected as the 5% damped linear 
elastic pseudo-spectral acceleration at the fundamental period ( 1T ) of the structural 
system ( )1, 5%ξ =aS T , which has been shown to be a statistically efficient and sufficient 
predictor among a family of earthquake ground motion intensity measures [Shome, 
Cornell, Bazzurro et al. (1998); Luco and Cornel (2007)]. 
The PSHA for a specific site location and soil condition can be performed using the 2008 
Interactive Deaggregation tool provided by the United States Geological Survey (USGS). 
The site location in this study is assumed to be in the City of Oakland, California, at 
latitude = 37.803° N and longitude = 122.287° W. The soil condition is characterized by 
the average shear wave velocity in the top 30 meters of soil at the site location (Vs30 = 
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360 m/s). The seismic hazard curve obtained from the 2008 Interactive Deaggregation 
tool will be needed in Step (2) of the forward PBEE analysis. 
The seismic hazard can be deaggregated with respect to the seismological variables, i.e., 
magnitude (M) and source-to-site distance (R), to gain additional insight into the 
contributing earthquakes. This insight will benefit the earthquake ground motion 
selection for the ensemble time history analyses. Fig. 5 shows the M-R deaggregation of 
the seismic hazard corresponding to PE50 = 2%, and two modes are observed in the M-R 
plane. The higher mode is mainly contributed by the Hayward Fault to the east of 
Oakland, and the lower mode is mainly contributed by the San Andreas Fault to the west 
of Oakland. This deaggregation information (i.e., 5.9 < M < 7.3 corresponding to the 
primary mode, 0 < R < 40 km) guided the earthquake ground motion selection process, 
together with the geological and seismological conditions (i.e., fault mechanism as strike-
slip) and local site conditions. Accordingly, a large number (i.e., 146) of horizontal 
earthquake ground motion records are selected from the PEER NGA database of 
historical records, and are used as seismic inputs for the ensemble nonlinear time history 
analyses required for the probabilistic characterization of the seismic response (or 
demand) in the second step of the PBEE analysis. 

 
Figure 5: M-R deaggregation of the probabilistic seismic hazard corresponding to a 
probability of exceedance of 2% in 50 years (PE50=2%) 

3.2 Probabilistic demand hazard analysis 
Probabilistic demand hazard analysis (PDeHA) aims at predicting probabilistically the 
structural response (i.e., EDP) to future earthquakes. The probabilistic characterization of 
an EDP is obtained through the corresponding seismic demand hazard curve, which is 
defined as the MAR of EDP exceeding a threshold value edp , ( )EDP edpν , or 
alternatively the probability of exceedance in 50 years, 50 [ ]PE P EDP edp= >  in an 
exposure time of 50 years. Mathematically, through the total probability theorem, the 
demand hazard curve is obtained as the convolution of P EDP edp IM im> =   , the 

conditional CCDF of the EDP given IM = im , and the demand hazard curve ( )ν IM im , 
thus accounting for all seismic hazard levels, as 
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( ) ( )EDP IM
IM

edp P EDP edp IM im d im= > =  ∫ν ν              (5) 

Thus, a crucial step of probabilistic demand hazard analysis is to find the probability 
distribution of the EDP of interest given a value im of IM, P EDP edp IM im> =   , 
which is referred to as the probabilistic demand conditional on the seismic hazard level. 
The conditional probabilistic demand analysis can be performed through the commonly 
used cloud method [Baker (2005)]. In this method, an ensemble of nonlinear dynamic 
analyses of the structure of interest are performed for the selected suite of earthquake 
ground motion records, which have various IM values. The corresponding seismic 
response dataset for the selected earthquakes,  ( 1, 2, , 146i =  ), is used to 
build a statistical model of EDP given IM based on linear regression analysis. The 
conditional mean value of ln EDP given IM , ln |µ EDP IM , is estimated as 

ln |
ˆˆ ˆ  ln EDP IM a b IMµ = +                         (6) 

and the conditional variance, 2
ln |σ EDP IM , is estimated as 

( ) 2

2 1

ˆˆ  ln 
ˆ

2
=

 − + 
=

−

∑
n

i i
i

ln edp a b im
s

n
                            (7) 

where â  and b̂  are obtained through regression analysis. Accordingly, the conditional 
random variable { }| =EDP IM im  is fully characterized by the conditional probability 
density function (PDF) (see Fig. 6) or conditional CCDF, ( )| |EDP IMG edp im , which often, 
including for the example presented here, is well represented by the lognormal 
probability distribution,  

( ) [ ]
( )

|

ˆˆln  ln 
| | 1  

ˆ

 − +
 = > = = −Φ
 
 

EDP IM

edp a b im
G edp im P EDP edp IM im

s
         (8) 

where Φ  is the standard normal CDF and ln denotes the natural logarithmic function. 
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Figure 6: Conditional seismic demand hazard analysis result for EDP=relative 
displacement ductility 
The conditional probabilistic demand reflects the record-to-record variability when the 
earthquake IM is fixed. To account for the uncertainty in the earthquake IM, the 
convolution of the conditional CCDF of the EDP and the seismic hazard curve obtained 
through PSHA is performed according to Eq. (6). This leads to the (unconditional) 
probabilistic demand hazard curve, ( )EDP edpν , as shown in Fig. 7(a) for EDP=relative 
displacement ductility ( )µ . The demand hazard curve presented shows that the MAR of 
the relative displacement ductility exceeding 1, 2, 4, 6, 8µ =  is 1.84×10-2, 0.77×10-2, 
0.16×10-2, 0.04×10-2, and 0.01×10-2, respectively, as indicated by the solid circles in Fig. 
7(a). Note that the MAR of exceedance of 1.84×10-2 corresponds to a mean return period 
of 55 years (=1/1.84×10-2), i.e., the relative displacement ductility will exceed 1.0 (i.e., 
the structure will yield) at least once every 55 years on average. 
The seismic demand hazard with a given MAR of exceedance arises from a continuous 
range of seismic hazard levels (or IM values) as expressed by Eq. (6) and the contribution 
of each seismic hazard level to the demand hazard varies with the demand hazard level. 
In order to investigate the relative contribution of an IM bin ( )∆ iim  to a hazard point on 
the demand hazard curve, ( )EDP edpν , a demand hazard deaggregation analysis can be 
performed according to Eq. (9). 

( ) ( )

( )

 
ν

ν

ν

 = > 

 ≅ > ⋅∆ 

∫

∑

IM
EDP

IM

IM i
i

i

d im
edp P EDP edp IM dim

dim

d im
P EDP edp IM im

dim

                                                (9) 

The right-hand term in the above equation is referred to as the deaggregation of the 
demand hazard (at EDP = edp) with respect to the intensity measure IM, indicating the 
contribution of the IM bin, iim∆ , to ( )EDP edpν . Fig. 7(b) shows the deaggregation 
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results for the five seismic demand hazard points ( )1, 2, 4, 6, 8µ =  shown on the 
probabilistic seismic demand hazard curve in Fig. 7a. The deaggregation curves shift 
towards higher IM values (i.e., to the right) as the EDP values increase, which reflects the 
fact that earthquake ground motions of higher intensity levels contribute more to higher 
values of the EDP. Similarly, the other two EDPs defined in Eqs. (2) and (3) are 
quantified probabilistically but not presented here due to space limitation [Li (2014)]. 

 
(a) 

 
(b) 

Figure 7: (a) Probabilistic seismic demand hazard curve for the relative displacement 
ductility (solid circles denoted for the points to be deaggregated), and (b) deaggregation 
of demand hazard points shown in Fig. 7(a) with respect to the intensity measure IM 

3.3 Probabilistic damage hazard analysis 
The third step of the PBEE methodology, probabilistic damage hazard analysis (PDaHA), 
is to predict probabilistically the seismic damage to the structure of interest due to future 
earthquakes. Practically, seismic damage is associated to a damage or failure mode (or 
mechanism). This study considers three damage or failure modes for the illustrative 
bridge structure, which are associated with the three selected EDPs, respectively. For 
each damage/failure mode/mechanism, a set of discrete limit-states are considered, 
corresponding to discrete values of the damage measure, DM = k . In this study, it is 
assumed that there are three limit-states ( )limit-states 3=n  for each damage/failure mode, i.e., 
k ( )0, 1, 2, 3∈ , corresponding to slight ( )1k = , moderate ( )k = 2 , and extensive 

( )k = 3  damage, respectively. Herein, the structure of interest is said to be in damage (or 
limit-) state kDS  if { }=DM k and exceedance of the k-th damage (or limit-) state is 
denoted and defined as { }= ≥kEDS DM k . The seismic damage hazard is characterized 
by the MAR, ν

kEDS , of exceeding the k-th limit-state for each damage/failure mode. 

ν
kEDS is computed through the convolution integral in Eq. (10), 
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[ ]| ( )ν ν= ≥ =∫
k

EDPEDS
EDP

P DM k EDP edp d edp                                                       (10) 

in which the conditional probability [ ]|≥ =P DM k EDP edp is referred to in the literature 
as probabilistic capacity curve (or function) and characterizes the uncertainty in 
predicting the structural capacity against the k-th limit-state of the damage/failure 
mechanism of interest. Probabilistic capacity curves are typically obtained through 
comparing analytical or empirical capacity models with corresponding experimental data 
[Gardoni, Mosalam, Der Kiureghian (2002)]. For the purpose of this study, the 
probabilistic capacity curves for each of the three limit-states associated with each of the 
three damage/failure modes considered (first-excursion failure, dynamic stability of 
vehicles traversing the bridge, cumulative damage) are postulated (as normal CDFs) and 
defined in Table 1; they are also depicted graphically in Fig. 8(a). 
The conditional probability of exceeding a damage (or limit-) state 
(e.g., { }= ≥kEDS DM k ), for a failure mode associated with a specific EDP = edp, 
[ ]|≥ =P DM k EDP edp , can be evaluated as [ ]|

≥

= =∑
dm k

P DM dm EDP edp . The 

conditional probability of a damage state exceedance can then be convolved with the 
seismic demand hazard curve to yield the seismic damage hazard as in Eq. (10). 
Fig. 8(b) reports the probability of exceeding damage or limit-states I, II, and III in 50 
years for each of the three damage or failure modes considered, as well as the mean 
return periods (RPs) of damage/limit-state exceedances, which are commonly used to 
measure their occurrence frequency in engineering practice.   
The seismic damage hazards calculated above contain contributions from a continuous 
range of EDP bins, as well as a continuous range of IM bins of the earthquake input 
ground motions. Similar to the demand hazard deaggregation, the damage hazard can be 
deaggregated with respect to the associated EDP and the IM, respectively. Eqs. (11) and 
(12) show the contributions to the damage hazard ν

kEDS  of the EDP bins, ( )iedp∆ , and 

IM bins, ( )iim∆ , respectively. 

[ ] ( ) ( )( )| ν
ν ≅ > = ∆∑k

EDP i
EDS i i

i

d edpP DM k EDP edp edp
d edp

                                  (11) 

[ ] [ ] | ( ) ||  |

| ( ) || |

νν δ δ

νδ δ

≅ > = > =

   = > = > = ∆   

∫ ∫

∑∑

k

IM
EDS

EDP IM

IM
j j i i

i j

d imP DM k EDP dP EDP IM im dim
dim

d imP DM k EDP dP EDP IM im im
dim

               (12) 
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Table 1: Parameters of postulated probabilistic capacity curves defined in terms of the 
normalized capacity (i.e., measured-to-predicted capacity ratios) 

Associated EDP Limit-
States 

 
Predicted 
capacity 

Measured-to-predicted 
capacity ratio (Normally 

distributed) 
Mean c.o.v 

Relative 
Displacement Ductility 

[-] 

I μ=2 1.095 0.201 
II μ=6 1.124 0.208 
III μ=8 1.254 0.200 

Peak Absolute 
Acceleration 

[g] 

I AAbs=0.10 0.934 0.128 
II AAbs=0.20 0.952 0.246 
III AAbs=0.25 0.973 0.265 

Normalized Hysteretic 
Energy Dissipated [-] 

I EH=5 0.934 0.133 
II EH=20 0.965 0.140 
III EH=30 0.983 0.146 

 

 
(a) 

 
(b) 

Figure 8: (a) Illustration of the probabilistic capacity curves and definition of conditional 
probability of damage states given EDP, and (b) seismic damage hazard results for the 
damage (or limit-) states associated with the EDPs considered for the illustrative example 
The damage hazard deaggregation with respect to EDP and IM, shown in Fig. 9, reveals 
the relative contributions of different EDP or IM bins to the damage hazard. It shows that 
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exceedance of increasingly severe damage/limit-states are predominantly contributed by 
increasing higher EDP or IM values or bins. 

 

 
(a)  

(b) 
Figure 9: Damage hazard deaggregation with respect to (a) EDP and (b) IM for different 
damage/limit-state exceedances associated with EDP=relative displacement ductility 
(values of MAR of exceedance are indicated for each limit-state) 

3.4 Probabilistic loss hazard analysis 
The objective of the final step of the PBEE methodology, probabilistic loss hazard 
analysis (PLHA), is to quantify the decision variable (DV) probabilistically. The DV can 
be the direct economic loss (i.e., total repair or replacement cost, TL ) due to seismic 
damage, or the loss factor defined as the total loss normalized by the system replacement 
cost. The total loss hazard can be expressed in the form of a loss hazard curve, which 
provides the MAR or annual probability of the DV exceeding a threshold value. The total 
loss TL  is defined as the summation of all the component-wise repair costs ( jL , j =1, 2, 3 
here) associated with the three damage/failure modes considered here. In a real-world 
bridge application, which is more involved/detailed than the illustrative example 
considered here, the damage/failure modes would consist of: failure of bridge piers, 
failure of shear keys, failure of abutment, deck unseating, etc. In the present illustrative 
example, jL  is assumed to lump all the component-wise repair costs associated with the 
j-th damage/failure mechanism of the bridge. For each component, the loss hazard curve, 

( )
jL lν , is obtained according to Eq. (13), 

[ ]
[ ] [ ]

[ ]
imit-states

11
( ) | |ν ν ν ν

+=

  = > ⋅ = > ⋅ −   ∑∫
j

j jj k k

n
j

L j DM j k EDS EDS
kDM

l P L l DM d P L l DS                 (13) 

in which the integration reduces to a summation over the discrete damage states (as 
favored in practice) considered for the j-th damage/failure mode. The repair cost 
conditional CCDF, [ ]| > 

j
j kP L l DS , quantifies the uncertainty in the component repair 

cost related to the j-th damage/failure mode given a damage level between the k-th and 
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(k+1)-th limit-states (i.e., damage state [ ]j
kDS ). Due to lack of statistical data on repair 

and replacement costs, they are assumed to be normally distributed with the means and 
coefficients of variation (c.o.v.) presented in Table 2 to facilitate illustration of the 
methodology proposed in this paper. 

Table 2: Statistics of repair costs as a function of failure mode and damage states 

Failure mode 
associated 

EDP 
Limit-State 

Repair/Replacement cost 
(Normally distributed)  

Mean ($) c.o.v. 

Relative 
Displacement 
Ductility [-] 

I 146,500 0.12 
II 246,400 0.25 
III 350,000 0.32 

Peak Absolute 
Acceleration 

[g] 

I 55,000 0.11 
II 100,000 0.20 
III 500,000 0.28 

Normalized 
Hysteretic 

Energy 
Dissipated [-] 

I 55,650 0.13 
II 110,000 0.22 
III 520,000 0.28 

 
With the probabilistic characteristics of the component losses determined in terms of 
component loss hazard, the total loss hazard can be computed through a multi-fold 
integration of the joint PDF of the component losses. However, it is computationally 
prohibitive, if not impossible, to derive that joint PDF and carry out the multi-fold 
integration, especially when a large number of components and damage/failure modes 
exist in real-world applications. To address this challenge, a multilayer Monte Carlo 
Simulation (MMCS) method is implemented and used as a simple yet powerful technique 
to estimate the total loss hazard. This method can efficiently incorporate and propagate 
the uncertainties arising at all stages of the PBEE analysis (e.g., random time occurrences 
of earthquakes governed by a Poisson process, IM, EDP, and DM) all the way to the final 
random variable DV= TL . Such a treatment of uncertainty propagation in the forward 
PBEE analysis empowers the proposed PPBOSD framework, which involves a large 
number of forward PBEE analyses during the optimization process. The flowchart of the 
MMCS method developed for this study is shown in Fig. 10 and presented in detail below. 
First, the number of earthquakes in the year being simulated is randomly generated 
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according to the Poisson random occurrence model, and IM for each earthquake ground 
motion is simulated according to its probabilistic characteristics derived from PSHA. 
Second, for a given IM level, a set of EDPs is then stochastically simulated according to 
the joint PDF of the EDPs estimated through the results of an ensemble of FE seismic 
response analyses of the structure of interest. Note that the conditional joint PDF of the 
EDPs given IM can be approximated by a NATAF model [Liu and Der Kiureghian 
(1986)] defined by the marginal PDFs and correlation coefficients of the EDPs estimated 
from the results of the ensemble of nonlinear time-history analyses performed in the 
PSDeH analysis. This relaxes the more restrictive assumption, that the EDPs are jointly 
lognormal, used in FEMA P-58 and by Yang et al. [Yang, Moehle, Stojadinovic et al. 
(2009)]. Third, the damage measure for each component (or lump of components in the 
illustrative example presented here) is randomly generated from the probabilistic capacity 
curves, and the component loss is simulated according to the PDF of the corresponding 
repair cost. For each year simulated, the total loss for that year is obtained by summing 
the repair costs over all the damaged components and all the earthquakes that occurred 
during that year. By simulating the seismic activity and resulting structural damage and 
economic loss for a large number of years (e.g., 100,000), an empirical CDF and CCDF 
of the total loss can be obtained. The CCDF of the total loss is referred to as the seismic 
loss hazard curve.  

 
Figure 10: Flowchart of Multilayer Monte Carlo Simulation (MMCS) method for total 
loss hazard calculation 
The seismic loss hazard curve shown in Fig. 11 for the bridge structure considered in this 
study was obtained using the MMCS method developed. The total loss hazard curve 
indicates the annual probability of the repair or replacement costs exceeding a threshold 
value. For example, from Fig. 11, there is 0.3% probability that for a given year, the 
seismic repair cost for this bridge will exceed 20% of the total bridge replacement cost 
(i.e., loss factor of 0.2) or, alternatively, this level of loss for the bridge has a mean return 
period of exceedance of 330 years (=1/0.003).    
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Figure 11: Probabilistic seismic loss hazard curve 

4 Parametric forward PBEE analysis 
Following the forward PBEE analysis procedure presented in the previous section, a 
parametric study (i.e., one-at-a-time perturbation-based sensitivity analysis) is performed 
in order to explore the effects of parametric changes on the forward PBEE analysis 
results. For the system considered in this paper, the yield strength (i.e., Fy) and the initial 
stiffness (i.e., k0) of the nonlinear SDOF system are each perturbed by -25% and 50%. 
The effects of varying the yield strength on the demand hazard curves for the relative 
displacement ductility and peak absolute deck acceleration are shown in Figs. 12(a) and 
12(b), respectively. Note that an increase in the yield strength reduces the demand hazard 
for the relative displacement ductility, while it increases the demand hazard for the peak 
absolute deck acceleration. Consequently, varying the yield strength affects the loss 
hazard curve as well as shown in Fig. 13(a). By comparing Figs. 13(a) and 13(b), it is 
worth noting that the initial stiffness and the yield strength have opposite effects on the 
loss hazard curve. 
The sensitivity study of the forward PBEE analysis results indicates that the loss hazard 
changes as a function of the system parameters, thus giving rise to an inverse PBEE 
problem. For example, it is of interest to the various stakeholders and owner of the 
structure of interest to tune the system design (i.e., design parameters) such that an 
expected performance, expressed in terms of a target or desired probabilistic loss hazard 
curve, is achieved. 
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(a)  

(b) 
Figure 12: Probabilistic seismic demand hazard curves for: (a) relative displacement 
ductility, and (b) peak absolute acceleration of SDOF systems with different yield 
strengths 

 

 
(a) 

 
 (b) 

Figure 13: Probabilistic seismic loss hazard curves for SDOF systems with (a) 
different yield strengths, and (b) different initial stiffnesses 

5 Inverse PBEE analysis using the PPBOSD framework 
5.1 Inverse PBEE problem 
The aforementioned inverse PBEE problem, i.e., achieving a probabilistic performance 
objective, is highly challenging as the design objective is probabilistic and defined based 
on the loss hazard (i.e., result of the last step of the forward PBEE analysis). As such, this 
design or inverse PBEE problem can be solved using the PPBOSD framework newly 
proposed in this paper. 
For validation purposes, a well-posed inverse PBEE problem needs to be set up such that 
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the solution to this problem is known as a priori. Thus, the target loss hazard is defined as 
the probabilistic loss hazard, * *= 0 yk F

T T

Obj
L Lν ν ( , )  , corresponding to a set of a priori 

selected optimum design parameters (e.g., *
0 = 137,200 kN/mk , * = 10,290 kNyF ). The 

mathematical formulation for the optimization problem is defined in Eq. (14),  

{ }
( )

0

2
0 0

,

0

  , ,

 :
                 80,000 187,200  (kN/m)
                 6,290 15,290 ( )

=

≤ ≤
≤ ≤

y
y y

k F

y

Minimize f k F k F

subject to
k

F kN

T T

Obj
L L 2|| ν ( ) - ν ||

 

                                                     (14) 

where the implicit objective function ( )0 , yf k F  defines the discrepancy between the 

current loss hazard curve 0 , yk F
TLν ( ) and the target loss hazard curve 

T

Obj
Lν , e.g., measured 

by the sum square regression/error (SSR) or L-2 norm square ( )2

2
 . The objective 

function defined here is based on the total loss hazard curve, which involves a 
complicated implicit function evaluated through executing the simulator (e.g., the finite 
element model of the structure of interest subject to an ensemble of earthquake 
excitations) and evaluating performance objectives (e.g., the forward PBEE analysis). 
The proposed PPBOSD framework is expected, by using as a starting point an arbitrary 
but reasonable initial design, e.g., 0 = 100,000 kN/mk , = 14,000 kNyF ), to steer the 
design process such that the loss hazard curve gets as close as possible to the target loss 
hazard curve and, in this validation example, to recover the optimum design parameters 
which are known a priori. The validation problem for the proposed PPBOSD framework 
is illustrated in Fig. 14. Note that in this validation case, the optimum parameters are 
selected a priori with the corresponding loss hazard curve taken as the target loss hazard 
curve. However, in a regular (real-world) problem, the optimum design is not known in 
advance and instead is expected to be determined using the PPBOSD framework 
presented here. 
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Figure 14: Illustration of validation problem for the proposed PPBOSD framework 
 
5.2 Solution to the inverse PBEE problem 
In the PPBOSD framework, tuning the initial design parameters requires computer-aided 
adjustment in an iterative way through mathematical optimization. Different optimization 
algorithms can be integrated in the PPBOSD framework, but this issue is beyond the scope 
of this study. Instead, the sparse nonlinear optimization software SNOPT, which was linked 
with OpenSees into the extended framework denoted as OpenSees-SNOPT [Gu, Barbato, 
Conte et al. (2012)], is used in the current version of the PPBOSD framework. For the 
validation example considered here, gradient-based sequential-quadratic programming (SQP) 
algorithms in SNOPT are used to tune the system parameters for a SDOF structural bridge 
model optimally rated for the target loss hazard curve. 
The optimization process (which stopped when the relative reduction in the objective 
function value was less than 51.0 10−× ) and results are summarized in Fig. 15, including 
the iteration path over the plot of the objective function (both the (3D) surface plot and 
the contour plot). The optimum solution endX  obtained by the PPBOSD 
framework 0( 135,774 kN/m, 10,038 kN)= =end end

yk F  is close to the true optimum design 

point * *
0( 137,200 kN/m, 10,290 kN)= =yk F  with an error of 1.0% for the initial stiffness 

and 2.4% for the yield strength. The evolutions of the demand hazard and loss hazard 
curves during the optimization process are shown in Fig. 16. It is observed that over six 
iterations, both the loss hazard and demand hazard curves are driven closer and closer to 
their respective target hazard curves corresponding to the a priori selected optimum 
design parameters. Thus, the proof-of-concept example presented successfully illustrates 
and validates the proposed PPBOSD framework.  
The proposed PPBOSD framework is expected to be applied to more complex real-world 
problems in the field of earthquake engineering, and to support the decision-making 
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process in structural design/retrofit with probabilistic performance objectives highly 
pertinent to the various stakeholders. Note that the illustrative example considers the 
continuous range of hazard levels, while in practice, a finite (small) set of discrete hazard 
levels can be used to define practical probabilistic performance objectives, e.g., focusing 
on a low hazard level and a high hazard level. Additionally, the objective functions of the 
optimization problems solved using the PPBOSD framework can also be defined in terms 
of the conditional demand hazard, unconditional demand hazard, and damage hazard, 
instead of the loss hazard exemplified in this paper. 

 
(a) 

 
(b) 

Figure 15: Optimization path for the PPBOSD illustrative example: (a) 3D plot, and (b) 
contour plot of the objective function 

 

 
(a) 

 
(b) 

Figure 16: Evolution of the PBEE evaluation results during the optimization process: (a) 
probabilistic seismic demand hazard curves, and (b) probabilistic seismic loss hazard 
curves 
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6 Conclusions and discussion 
The well-established probabilistic performance-based earthquake engineering (PBEE) 
methodology has been mainly used for performance evaluation of existing or newly 
designed structural, geotechnical or soil-foundation-structural systems, thus referred to 
herein as forward PBEE analysis. In contrast, the use of the PBEE methodology for 
design purposes in the presence of uncertainty is more limited, because design is strictly a 
more challenging inverse PBEE analysis problem. To address the performance-based 
design issue, this paper proposes a probabilistic performance-based optimum seismic 
design (PPBOSD) framework as an extension to the existing PBEE assessment 
methodology. In the PPBOSD framework, a decision layer supported by computational 
optimization is wrapped around the forward PBEE analysis methodology, which is aimed 
to tune the design parameters of the civil infrastructure system of interest to achieve 
seismic performance objectives expressed in probabilistic terms. As a first step of 
promoting the proposed PPBOSD framework, this paper focuses on illustrating and 
validating the framework using a simple proof-of-concept example, i.e., a nonlinear 
inelastic SDOF model representing macroscopically the longitudinal or transverse 
behavior of a bridge structure with a priori selected optimum design parameters. The 
PPBOSD framework in conjunction with the combined structural modeling and 
optimization software OpenSees-SNOPT successfully recovered the a priori selected 
optimum design parameters from a set of initial parameter values purposely taken away 
from the optimum values. It shows that a complicated and implicit probabilistic 
performance objective (e.g., defined in terms of a targeted probabilistic loss hazard curve) 
can be achieved using the PPBOSD framework. Note that the illustrative example used in 
this paper is based on a simple macroscopic structural model with two primary design 
variables for the purpose of clearly demonstrating the concepts and procedure. However, 
the design of complex real-world civil infrastructure systems (with more design variables) 
can also utilize the proposed PPBOSD framework, with the computational cost issue 
appropriately addressed (e.g., by using cloud and/or high-performance computing).  
However, when applying the proposed PPBOSD framework to real-world structures, the 
following potential difficulties or limitations will need to be addressed in future research. 
(1) A numerically robust nonlinear model of the real-world structure is required. Non-
collapse related non-convergence issues during the seismic response analysis need to be 
resolved using, for example, adaptive switching between nonlinear solution algorithms, 
integration methods, convergence criteria, etc., or explicit integration. If a physical 
collapse related convergence issue occurs, the collapse probability needs to be considered 
in the overall methodology [Zhang (2006); Romano, Faggella, Gigliotti et al. (2018)]. 
However, distinguishing between lack of convergence due to numerical issues or due to 
imminent physical failure (collapse) of the structure being analyzed is challenging and 
can possibly be addressed by artificial intelligence. (2) To render the PBEE analysis and 
the PPBOSD more practical, fragility curves for various structural members as well as the 
associated repair/replacement costs need to be developed and compiled for various types 
of structures as in the FEMA P-58 PACT tool [FEMA (2012)] for buildings. (3) The 
gradient-based optimization algorithms currently available in OpenSees-SNOPT may 
lead to a local minimum, and this issue can be addressed by using multiple starting points 
or using other global optimization methods. It is worth noting that from a practical 
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viewpoint, a local minimum could already be highly beneficial, representing a significant 
improvement over the initial design. All the challenging issues mentioned above and 
possibly others can be appropriately tackled and implemented in the versatile architecture 
of the proposed framework.  
The probabilistic design objective is expressed in terms of the target loss hazard curve in 
this study, but it can be defined to closely reflect the design objectives of decision-makers 
in practice. More importantly, this framework provides the proper tool needed to develop, 
calibrate and validate simplified probabilistic performance-based design procedures for 
engineering practice. Finally, the proposed PPBOSD framework can be extended to other 
natural and man-made hazards (e.g., tsunami, wind/hurricane/tornadoes, storm surge, fire, 
blast), as well as multi-hazard design problems.  
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