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1 Introduction

In this work we take a brief look at the classical conver-
gence theory for multigrid methods developed in the late
1970’s and 1980’s. Much of this theory is due to the pio-
neering work of Wolfgang Hackbusch. Here we present the
theory from a strictly algebraic point of view. After years of
study and refinement, some aspects of the theory have been
greatly simplified, but the central ideas in our analysis re-
main inspired by the original work. We attempt to be brief
and concise in our presentation, and to avoid temptations to
pursue extensions and generalizations. We direct our focus
to the most essential aspects of the classical V-Cycle con-
vergence theory, although some discussion of the W-Cycle
is included, since historically convergence proofs for the W-
Cycle predated those for the V-Cycle.

In Section 2, we present definitions and notation. In Sec-
tion 3, we present our main assumption and prove some lem-
mas that connect our assumption to previous work, in par-
ticular the seminal work of Braess and Hackbusch [2]. More
precisely, we show our assumption (2) is equivalent to the
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well known weak approximation property, and dual norm
estimates that often played a central role in earlier work.

In Section 4 we present the main convergence proof for
the 2-level method, the W-Cycle and the V-Cycle. Our main
results may be summarized as:

κ2−1
κ2

= ||T || ≤ ||W || ≤ ||V || ≤ κ

κ +1
,

where T , W , and V are the error propagators for the two-
level iteration, the W-Cycle, and the V-Cycle, respectively,
and κ is the constant in our central assumption (2). The
constant κ2 ≤ κ gives an exact characterization of two-level
convergence. In exceptional circumstances κ2 = κ .

Although we make few specific citations in our presen-
tation, certainly many researchers made important contribu-
tions to multigrid convergence theory over many years. In-
deed a complete list of references would be longer than our
presentation. Thus we limit the references to the work of
Hackbusch and Braess [2], two manuscripts that preceded
this work but set the stage [1,4], and some important sur-
veys and books [3,5–7] that give more complete coverage of
multigrid theory, and contain many further references to the
available literature.

2 Notation and Definitions

Let A be an N×N, symmetric, positive definite matrix. We
consider the solution of

Ax = b.

Typically A corresponds to the discretization of a self-adjoint
elliptic partial differential equation by finite elements, finite
differences or finite volumes.

Let N ≡ NJ > NJ−1 > · · · > N1 denote the subspace di-
mensions of a J level method. Often the Nk correspond to
different levels of refinement in the discretization process.
Let R̂k be the Nk ×Nk+1 matrix with rank Nk. R̂k is a so-
called restriction, locally mapping the level k + 1 space to
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the level k space. Let A≡ AJ and define

Ak = R̂kAk+1R̂t
k.

Note each Ak is symmetric, positive definite, and often cor-
responds to the usual discretization matrix for level k. Let
the matrices Rk : RNJ → RNk be given by

Rk = R̂kR̂k+1 . . . R̂J .

By convention R̂J = IJ . Then

Ak = RkARt
k.

The energy inner product and corresponding norm on the
finest level J are defined by

(x,y)J ≡ (x,y) = xtAJy,

||x||2J ≡ ||x||2 = xtAJx.

For x̂, ŷ ∈ RNk , we have

(x̂, ŷ)k = x̂tAkŷ≡ (x,y)J ,

||x̂||2k = x̂tAkx̂≡ ||x||2J ,

where x = Rt
kx̂, and y = Rt

kŷ. These usually correspond to the
natural inner product and norm associated with the underly-
ing boundary value problem.

The coarse grid projection from the finest space NJ to Nk
with respect to the energy inner product, Pk : RNJ → RNk , is
given by

Pk = A−1
k RkAJ

Here we observe PkRt
kx = x for all x ∈ RNk . Thus we have

the well known identities

AkPk = RkA,

PkRt
k = Ik.

The error propagator for the coarse grid correction is

Ck = IJ−Rt
kA−1

k RkAJ = IJ−Rt
kPk.

Note that Ck : RNJ → RNJ is a self adjoint projection matrix
in the energy inner product and that, as a projection, C2

k =Ck.
The projection Ck induces the A-orthogonal decomposition
of RNJ as

RNJ = Vk⊕Wk,

where Vk denotes the nullspace of Ck and Wk its A-
orthogonal complement. Vk in some sense corresponds to
the coarse discretization space at level k. Finally, we have
the identity

Ck−1Rt
k = Rt

kĈk−1

Ĉk−1 = Ik− R̂t
k−1A−1

k−1R̂k−1Ak

where Ĉk−1 is Nk×Nk; i.e., it is the “local” two-level coarse
grid error propagator between levels k−1 and k.

Let Bk be the Nk×Nk matrix used to be used as a pre-
conditioner for Ak. We assume Bk is symmetric and positive
definite. We note the eigenvalues µ of B−1

k Ak are real and
positive since they satisfy the generalized eigenvalue prob-
lem

Akx = µBkx.

We assume the Bk are scaled such that

xtAkx
xtBkx

≤ 1. (1)

To approximately solve Akx = b, we take x0 as an initial
guess, solve Bke0 = b−Akx0, and set x f = x0 + e0. The “lo-
cal” Nk×Nk error propagator for the smoother at level k is
given by

Ŝk = Ik−B−1
k Ak.

We note that often more than one smoothing step is used;
it is straightforward to incorporate this into the definition of
Bk. If m > 1 smoothing iterations are used with a precon-
ditioner B̂k then our analysis remains valid for Bk defined
implicitly by Ik−B−1

k Ak = (Ik− B̂−1
k Ak)

m. If B̂k satisfies (1)
then a simple calculation shows that Bk does as well.

We view Ŝk as an NJ×NJ matrix operating on vectors in
RNJ by setting

Sk = IJ−Rt
kB−1

k RkAJ = IJ−Rt
kB−1

k AkPk.

Note that Sk is self adjoint in the energy inner product. Sim-
ilar to Ck we have the identity

SkRt
k = Rt

kŜk.

We now consider multilevel iterations. The error propagator
for the symmetric V-Cycle Vk is defined recursively as

V2 = S1/2
2 C1S1/2

2

Vk = S1/2
k S1/2

k−1Vk−1S1/2
k−1S1/2

k 3≤ k ≤ J.

(Here and in future, the S1/2
k is computed with respect to the

energy inner product.) It is easy to express Vk directly as

Vk = S1/2
k Sk−1 . . .S2C1S2 . . .Sk−1S1/2

k .

The operators S1/2
J formally appear so that smoothers can be

applied just once on each level. Algorithmically, one starts
with a smoothing step and ends with a smoothing step. That
is, one applies the operator

Ṽk = S1/2
k VkS1/2

k = SkSk−1 . . .S2C1S2 . . .Sk−1Sk.

whose norm can be estimated by ||Ṽk|| ≤ ||Vk||.
The error propagator for the symmetric W-Cycle Wk is

defined recursively as

W2 = S1/2
2 C1S1/2

2

Wk = S1/2
k S1/2

k−1Wk−1Sk−1Wk−1S1/2
k−1S1/2

k 3≤ k ≤ J.

Unlike the V-Cycle, a non-recursive definition for the W-
Cycle is very complicated.
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3 Central Assumption

Our proof for the convergence of the V-Cycle represents in
its essence an algebraic version of the proof of Braess and
Hackbusch. We begin in this section with the discussion of
the basic estimate on which the proof of Braess and Hack-
busch relies and state this estimate first in the form of an
abstract assumption. Let x ∈ RNJ and define, for x 6= 0, the
functional

ρ(x) =
||S1/2

J x||2

||x||2
.

The central assumption is then as follows: for all x ∈ RNJ,
there exists κ ≥ 1, independent of J and NJ , such that

||CJ−1x|| ≤
√

κ(1−ρ(x)) ||x||. (2)

It relates the action of the smoother and of the coarse grid
correction, that is basic for the fast convergence of multigrid
methods. We see below how this assumption is related to
several assumptions commonly made in multigrid analysis
and with that indirectly to the regularity properties of the
underlying continuous problem.

Lemma 1 The estimate

||CJ−1x||2 ≤ κ||(B−1
J AJ)

1/2x||2 (3)

holds if and only if (2) holds

Proof The proof trivially follows from the identity

||(B−1
J AJ)

1/2x||2 = (x,B−1
J AJx)

= (x,(IJ−SJ)x)

= (1−ρ(x))||x||2.

In light of (3), the constant κ is easily seen to be the largest
eigenvalue of the generalized eigenvalue problem

(CJ−1x,CJ−1χ) = µ(B−1
J AJx,χ). (4)

Here we present two additional lemmas relating our analysis
to previous work.

Lemma 2 Assume there exists a κ ≥ 1, such that for any
x ∈ RNJ , there exists χ ∈ RNJ−1 such that

||x−Rt
J−1χ|| ≤

√
κ||(B−1

J AJ)
1/2x||. (5)

Then (5) holds if and only if (3) holds.

Proof Estimate (5) is called the weak approximation
property. Assume (5). Then

||CJ−1x||2 = (CJ−1x,CJ−1x)
= (CJ−1x,x)

= (CJ−1x,x−Rt
J−1χ)

≤
√

κ ||CJ−1x|| ||(B−1
J AJ)

1/2x||.

On the other hand, assume (3) and choose χ = PJ−1x. Then
||x−Rt

J−1χ||= ||CJ−1x||.
The weak approximation property can be used to vali-

date our main assumption (2). Many analyses, like the adap-
tion of the proof of Braess and Hackbusch in [7], also make
use a pair of (discrete) dual norms, and the induced interme-
diate scale of norms.

Lemma 3 Estimate (3) holds if and only if

max
||w||=1,w∈WJ−1

wtBJw
wtAJw

≤ κ. (6)

Proof Observe that ||(BJA−1
J )1/2w||2 = wtBJw, and

||(B−1
J AJ)

1/2w||2 = wtAJB−1
J AJw form a pair of dual norms

with respect to the energy inner product. Assume (3),
w ∈WJ−1, and let z be defined by AJz = BJw; then

||(B−1
J AJ)

1/2z||2 = ztAJB−1
J AJz

= wtBJw

= ||(BJA−1
J )1/2w||2.

Then using (3) and the fact that w ∈WJ−1

wtBJw = wtAz

= wtA(z− (IJ−1−CJ−1)z)
≤ ||w||||CJ−1z||
≤
√

κ||w||||(B−1
J AJ)

1/2z||
=
√

κ||w||||(BJA−1
J )1/2w||.

This argument is a discrete form of the well known Nitsche
trick. Conversely, assume (6). Then

||CJ−1w||2 = (CJ−1w,w)

≤ ||(BJA−1
J )1/2CJ−1w||||(B−1

J AJ)
1/2w||

≤
√

κ||CJ−1w||||(B−1
J AJ)

1/2w||.

Thus we see that Lemma 3 provides another equivalent al-
ternative for validating assumption (2).

The nature of the initially stated basic assumption be-
comes particularly apparent from its equivalence to con-
dition 6. In the finite element context, for a second-order
Laplace-type boundary value problem, the norm induced by
the smoother is in many cases equivalent to a correspond-
ingly weighted L2-norm. Condition 6 then essentially means
that

‖Pku−Pk−1u‖L2 ≤ c2−k‖Pku−Pk−1u‖H1

holds for all functions u in the continuous solution space H1

and all levels k, where Pk here denotes the projection that
maps the continuous solution to its finite element approxi-
mation of level k. It is not very difficult to deduce from this
condition the estimate

‖u−Pku‖L2 ≤
1
3

c2−k‖u−Pku‖H1
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for the functions u ∈ H1. That means, that one gains in
the L2-norm one order of convergence compared to the
H1-norm. This property is usually shown with help of the
Nitsche trick that is based on H2-regularity and more or less
equivalent to it. In this scenario, the initially stated condition
means that we study a problem with full elliptic regularity.
This is the main drawback of the Braess and Hackbusch ap-
proach that was later overcome by other techniques (see [3,
6,7]) that have their own disadvantages.

4 Convergence Rate Estimates

We begin by estimating the rate of convergence of the two-
level scheme, given by ||TJ || where TJ = S1/2

J CJ−1S1/2
J . First

note that since CJ−1 =C2
J−1,

||TJ ||= ||S1/2
J CJ−1S1/2

J ||

= ||CJ−1S1/2
J ||

2

= ||S1/2
J CJ−1||2

= ||CJ−1SJCJ−1||
= ||CJ−1(IJ−B−1

J AJ)CJ−1||.

Thus we can frame our analysis in terms of the generalized
eigenvalue problem

(B−1
J AJCJ−1x,CJ−1χ) = µ(CJ−1x,CJ−1χ)

on WJ−1. Since BJ is positive definite, the eigenvalues µ of
B−1

J AJ on WJ−1 lie in the positive interval 0 < λ ≤ µ ≤ 1.
It is important to observe that this generalized eigenvalue
problem is similar to, but more restrictive than, the eigen-
value problem for κ given in (4). (Replace x and χ in
(4) with CJ−1x and CJ−1χ and use C2

J−1 = CJ−1.) Thus
κ ≥ 1/λ ≡ κ2, 1−λ = (κ2−1)/κ2, and we have proved:

Theorem 1

κ2−1
κ2

= ||TJ || ≤
κ−1

κ
,

where κ2 ≤ κ and κ is given in (2).
We remark that our proof shows that if smoothing pre-

serves the invariant subspace VJ−1, then κ2 = κ . It is this
small “gap” between the two generalized eigenvalue prob-
lems that precludes this approach from showing in general
that two-level convergence implies V-Cycle convergence.

We also remark that the above proof shows the best rate
of convergence for the two-level iteration is found by min-
imizing over all subspaces VJ−1. Clearly this is achieved
when VJ−1 is the span of eigenvectors associated with the
NJ−1 smallest eigenvalues of B−1

J AJ . This subspace is not
necessarily unique, and as a practical matter, might be diffi-
cult to compute.

In the following theorem, we compare the V-Cycle and
W-Cycle with the two-level iteration of Theorem 1.

Theorem 2 For J ≥ 2,

||TJ || ≤ ||WJ || ≤ ||VJ ||. (7)

Proof We begin with the left-hand inequality in (7). Let
W̃J−1 = S1/2

J−1WJ−1S1/2
J−1. Then

||WJ ||= ||S1/2
J W̃ 2

J−1S1/2
J ||

= ||W̃J−1S1/2
J ||

2

= ||(CJ−1 +W̃J−1−CJ−1)S
1/2
J ||

2

= ||(CJ−1 +∆)S1/2
J ||

2.

Since ∆ represents the error in the coarse grid correction
CJ−1∆ = 0. Thus

||WJ ||= max
||x||=1

({CJ−1 +∆}S1/2
J x,{CJ−1 +∆}S1/2

J x)

= max
||x||=1

||CJ−1S1/2
J x||2 + ||∆S1/2

J x||2

≥ ||CJ−1S1/2
J ||

2

= ||TJ ||.

To prove the right-hand inequality in (7), we begin by
considering the non-symmetric V-Cycle. Let

U2 = S1/2
2 C1

Uk = S1/2
k S1/2

k−1Uk−1 3≤ k ≤ J.

Notice that Vk =UkU t
k and ||Vk||= ||Uk||2. We will prove by

induction that

Wk =UkZkU t
k, (8)

||Zk|| ≤ 1. (9)

Since W2 =U2U t
2, Z2 = I2. Now assume (8)-(9) hold for k

to show for k+1. Now

Wk+1 = S1/2
k+1W̃ 2

k S1/2
k+1 =Uk+1Zk+1U t

k+1,

where

Zk+1 = ZkU t
kSkUkZk.

But

||Zk+1|| ≤ ||Zk||2||Uk||2||Sk|| ≤ 1,

and the induction is closed.
We begin our analysis of the V-Cycle with two technical

lemmas.

Lemma 4 Let κ ≥ 1, and let

R(γ) = max
0≤ρ≤1

(
(1− γ)min{1,κ(1−ρ)}+ γ

)
ρ.

Then

R(γ)≤ κ

κ +1
. (10)
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Proof If 0≤ ρ ≤ (κ−1)/κ , then min{1,κ(1−ρ)}= 1
and (10) is immediate. If ρ ≥ (κ−1)/κ , then
min{1,κ(1−ρ)}= κ(1−ρ), and

R(γ) = max
(κ−1)/κ≤ρ≤1

(
(1− γ)κ(1−ρ)+ γ

)
ρ.

Now R(γ) is an increasing function of γ for any
(κ−1)/κ ≤ ρ ≤ 1. Thus

R(γ)≤ R
(

κ

κ +1

)
=

κ

κ +1
max

(κ−1)/κ≤ρ≤1
(2−ρ)ρ

=
κ

κ +1
.

The next lemma analyzes the error between an approxi-
mate coarse grid correction, given by ṼJ−1 = S1/2

J−1VJ−1S1/2
J−1,

and the exact coarse grid correction CJ−1.

Lemma 5 Suppose that, for v ∈ VJ−1,

||ṼJ−1v|| ≤ γ||v||.

Then

||ṼJ−1− (1− γ)CJ−1|| ≤ γ.

Proof Let x = v+w, v ∈ VJ−1 and w ∈WJ−1. Then

ṼJ−1x = ṼJ−1v+w,
CJ−1x = w.

Thus

||(ṼJ−1− (1− γ)CJ−1)x||2 = ||(ṼJ−1v+ γw||2

≤ γ
2(||v||2 + ||w||2)

= γ
2||x||2.

We now turn to convergence of the V-Cycle. The classic ap-
proach is essentially an induction proof, which states that if
the J− 1 level V-Cycle converges at a given rate, then so
does the J level V-Cycle. The base case for the induction,
the two-level estimate, is already given in Theorem 1.

Theorem 3 For the general case of a V-Cycle, assume that

||ṼJ−1v|| ≤ γ||v|| ≤ κ

κ +1
||v|| (11)

for v ∈ VJ−1. Then

||ṼJ || ≤ ||VJ ||= ||S1/2
J ṼJ−1S1/2

J || ≤
κ

κ +1
. (12)

Proof Let e ∈ RN
J and 0≤ γ ≤ κ/(κ +1) be given. Then

(e,S1/2
J ṼJ−1S1/2

J e) = (S1/2
J e,ṼJ−1S1/2

J e)

= {1− γ}(CJ−1S1/2
J e,CJ−1S1/2

J e)

+(S1/2
J e,{VJ−1− (1− γ)CJ−1}S1/2

J e). (13)

For the first term on the right hand side of (13), we have

(CJ−1S1/2
J e,CJ−1S1/2

J e)≤min{1,κ(1−ρ(e))}||S1/2
J e||2,

due to assumption (2), the trivial estimate ||CJ−1|| ≤ 1, and
the estimate ||S1/2

J e||2 = (e,SJe)≤ ||e||||SJe||, from which
follows 1−ρ(S1/2

J e)≤ 1−ρ(e). For the second term, we
use Lemma 5 to see that

(S1/2
J e,{VJ−1− (1− γ)CJ−1}S1/2

J e)≤ γ||S1/2
J e||2.

Finally, ||S1/2
J e||2 ≤ ρ(e)||e||2. Combining these estimates,

(e,S1/2
J VJ−1S1/2

J e)≤ R(γ)||e||2,

and second inequality in (12) follows from Lemma 4. The
first inequality in (12), necessary to validate the hypothesis
(11) for the next level, and thus close the induction, follows
from

||ṼJ ||= ||S1/2
J VJS1/2

J || ≤ ||S
1/2
J ||

2||VJ || ≤ ||VJ ||.

To summarize, in this section we have proved the chain
of estimates

κ2−1
κ2

= ||TJ || ≤ ||WJ || ≤ ||VJ || ≤
κ

κ +1
.

The possibility that κ2 = κ in some exceptional but unlikely
circumstances indicates that this is probably the best esti-
mate possible through this classical approach.
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