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Abstract. This paper describes a combination of automatic hp-adaptive fi-
nite elements and domain decomposition. The combination is based on the

Bank-Holst parallel adaptive meshing paradigm. The hp-adaptivity is based
on a derivative recovery technique while the domain decomposition method

is formulated using a mortar-like formulation with Dirac δ functions for the

mortar element space. Numerical results show that the approach can scale
to hundreds of processors and the convergence of the domain decomposition

method is independent of the number of processors as well as the distribution

of element sizes and element degrees among the local meshes.

1. Introduction

hp-adaptive finite elements and domain decomposition are popular methods for
numerically solving PDEs. The former is known for its fast rate of convergence and
the latter is recognized as an efficient way to solve large problems using parallel
computation. In the software package PLTMG [Ban11], we combine these two
methods to take advantages of their strong points. In this paper we describe some
of the challenges in forming an effective combination, based on extensions of the
Bank-Holst paradigm [BH00, BH03, Ban06b].

In Bank-Holst paradigm, the domain is partitioned according to a posteriori
error estimates obtained on a coarse mesh of the whole domain solved on a single
processor. In this partition, each subdomain has approximately equal error even
though they can greatly vary in size, number of elements and degrees of freedom.
At the conclusion of the adaptive hp refinement, each subdomain will have (ap-
proximately) the same number of degrees of freedom. This is achieved by giving
each processor the same target number of degrees of freedom and allowing them
to perform adaptive meshing independently (with focus on their own subdomain).
The domain decomposition solver is employed only when adaptive enrichment has
concluded.
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The hp-finite element method in this work is based on gradient/derivative re-
covery technique introduced in [BX03a, BX03b, BXZ07]. High order derivatives of
the exact solution are recovered by superconvergent approximations. These approx-
imations are used to formulate a posteriori error estimates that guide the adaptive
meshing. The approach is also able to address a crucial question in hp-adaptivity;
that is whether it is more advantageous to refine a given element into several child
elements (h-refinement) or increase its degree. A superconvergent result is used
as a consistency check of the a posteriori error estimates. In the region where the
exact solution is smooth enough, the result should be consistent. In the regions
near singularities and low regularity, we anticipate that the recovery scheme will
have difficulties approximating high order derivatives of the exact solution and the
superconvergent result is no longer valid. Consequently, the consistency check can
be used to identify regions near singularities regions with rapid changes, and sig-
nal the adaptive procedure to use h-refinement in these regions and p-refinement
elsewhere.

2. hp-Finite Element

2.1. Basis functions. In our study, we use nodal basis functions, rather than
a more traditional hierarchical family of functions as in [MM11]. For a standard
element of degree p, basis functions are defined by their values at nodal points of
degree p (equals 1 at the associated nodal point and 0 at all the others) as illustrated
in Figure 1 (left).
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Figure 1. A standard cubic element (left), a cubic element with
one quartic edge (middle) and a cubic element with one quartic
and one quintic edge (right).

Along edges shared by elements of different degrees, the element of the lower
degree inherits the degrees of freedom of the higher degree element. This results in
elements of degree p with one or two transition edges of higher degree. Some typical
cases are illustrated in Figure 1. Special treatment is utilized for basis functions
associated with the transition edges. A transition basis function of degree p + k
is sought in the form of a linear combination of the standard basis functions of
degree p associated with the transition edge and special polynomials of degree
p + 1, p + 2, . . . , p + k. These special polynomials can be chosen to be ones that
equal zero at all of nodal points of degree p (see [Ngu10, BN12])

This construction of basis functions guarantees there are no hanging nodes and
the global finite element space is continuous. In addition, the construction can be
generalized to three dimensions (see the Appendix in [BN12]).
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2.2. Error estimates. Let Ω be the domain of the PDE and Th be a shape

regular triangulation of Ω of size h. Denote by V(p)
h the space of continuous piece-

wise polynomials of degree p associated with Th. Define Q be the L2 projection
from the space of discontinuous piecewise constants functions associated with Th
into the space of continuous piecewise linear polynomials V(1)

h . Finally, let S be a
multigrid smoother for the Laplace operator and m be a small integer, typically
one or two.

Our error estimate is inspired by the work on gradient/derivative recovery
techniques of Bank, Xu, and Zheng ([BX03a, BX03b, BXZ07]), where it is shown
that ||∂p(u−SmQuhp)||Ω is an asymptotically exact approximation of ||∂p(u−uhp)||Ω
with better than first order of accuracy. In addition, ∂(SmQ(∂puhp)) is proved to
be a superconvergent approximation of ∂p+1u. Here u is the exact solution and uhp
is the finite element solution of the PDE.

To describe our a posteriori estimate for the case of element τ of degree p, let
Pp(τ) be the space of polynomials of degree p defined on τ . We write

Pp+1(τ) = Pp(τ)⊕ Ep+1(τ)

where the hierarchical extension Ep+1(τ) consists of those polynomials in Pp+1(τ)
that are zero at all degrees of freedom associated with Pp(τ). In the case of two
dimensions, this is a subspace of dimension p+ 2, with a convenient basis given by

ψp+1,k =

k−1∏
j=0

(c1 − j/p)
p−k∏
m=0

(c2 −m/p) 0 ≤ k ≤ p+ 1.

where ci is the i-th barrycentric coordinate function. Using this basis, we approxi-
mate u− uhp on element τ as

(2.1) u− uhp|τ ≈ ετ = ατ

p+1∑
k=0

∂kc1∂
p+1−k
c2 û

k!(p+ 1− k)!
ψp+1,k

where û is a hierarchical extension of degree p+ 1 of uhp.

The partial derivatives of order p + 1 appearing in (2.1) are formally O(hp+1
t )

when expressed in terms of ∂x and ∂y. The derivative ∂kx∂
p+1−k
y û is constant on

element τ , computed by differentiating the recovered p-th derivatives of uhp, which
are linear polynomials on element τ .

The constant ατ is chosen such that

||∂p(u− SmQuhp)||0,τ = ||∂p(ετ )||0,τ .

Normally, one should expect ατ ≈ 1, except for elements where the true solution
u is not smooth enough to support p derivatives. Therefore, the size of ατ can be
used to formulate hp-refinement indicator that decide whether element τ should be
refined in h or in p. Then our local error indicator is defined by ητ = |ετ |1,τ . For
more details on our formulation of a posteriori error estimates and hp refinement
indicator, see [BN12].

2.3. hp Refinement Procedure. The hp-Refinement procedure is outlined
in Figure 2. In this procedure, the target number of degrees of freedom for the new
mesh, denoted by NDTRGT0, is given by

(2.2) NDTRGT0 = min(NDTRGT,NDF × 41/pave).
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Here NDTRGT is the target number given by user and the average degree of
elements in the current mesh is estimated by the following formula

(2.3) pave =

√
NDF

NVF

where NDF and NVF are the number of degrees of freedom and the number of
vertices of the current mesh respectively .

The use of (2.2) tries to force a geometric increase in the number of degrees
of freedom in each refinement step. This is an empirical formula based on the
observation that the dimensions of the subspaces (i.e. NDF) must grow more
slowly for higher order elements or the higher rates of convergence promised by
these elements might not be achieved.

R1 Create a heap with respect to ητ with the largest
error estimate ητmax

at the root;
R2 If NDF ≈ NDTRGT0 or η2

τmax
≤ η2

ave/2, then exit.
R3 Decide to refine τmax in h or p based on ατmax

R4 Refine element τmax, and possibly others as required.
R5 Update error indicators for affected elements.

Add new elements as needed.
Remake the heap. Go to R2.

Figure 2. hp-refinement procedure

While we normally expect the refinement loop to exit when the target number
of degrees of freedom is approximately achieved, we can also exit if the largest error
in the current mesh is sufficiently small. In particular,

(2.4) η2
τmax
≤ η2

ave

2
=

1

2N

∑
t∈ΩI

η2
t

where ΩI is the fine subregion associated with processor I in the case of parallel
computation, and ΩI ≡ Ω otherwise; N is the number of triangles in ΩI .

In hp-refinement procedure, the most interesting test is to decide between h-
refinement and p-refinement for element τmax. In our implementation, we use h-
refinement if

(2.5) ατmax
> 2αave

and use p-refinement otherwise. Here αave is the average of all of ατ in the mesh
before the refinement. If the scaling factor ατmax

≈ 1, then the recovered derivatives
and the error estimate are consistent, and we assume that the solution is locally
smooth, which in turn justifies p-refinement. Large values of ατmax

empirically
correspond to locally non-smooth behavior of the solution, and this in turn suggests
h-refinement.

While (2.5) is the main test for hp-refinement, we also check for round-off error
problems, and for the maximum degree (limited by the available quadrature rules),
and change the decision suggested by (2.5) if necessary. Finally, for very coarse
meshes we always choose h-refinement. In particular, we choose h-refinement until
the relative error

(2.6) RELERP ≤ 1

5
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is satisfied. Condition (2.6) tries to insure that the mesh contains enough elements
that hp-refinement is a viable option. We have also observed that our error esti-
mates are sometimes unreliable on extremely coarse meshes, perhaps due to data
oscillations, or more generally that h is not sufficiently small for the asymptotic
error behavior underlying our derivative recovery procedures to hold.

3. Parallel hp-Adaptive Paradigm

3.1. Bank-Holst paradigm. In this work, we use the Bank-Holst paradigm
[BH00, BH03, Ban06b, BO07, Ova04, Mit98a, Mit98b], that addresses the load
balancing problem in a new way, requiring far less communication. Another impor-
tant point is that our approach allows serial adaptive finite element codes to run
in a parallel environment without a large investment in additional coding. This
approach has three main components:

Step 1: A small (nonlinear) problem is solved on an initial coarse mesh, and a
posteriori error estimates are computed for the coarse grid solution. The
triangulation is partitioned such that each subdomain has approximately
equal error (although they can significantly differ in size, numbers of ele-
ments and degrees of freedom).

Step 2: Each processor is provided the complete coarse mesh and solution, and
instructed to solve the entire (nonlinear) problem, with the stipulation
that its adaptive refinement should be limited largely to its own partition.
Load balancing is achieved by instructing each processor to create a refined
mesh with the same number of degrees of freedom.

Step 3: A final mesh is computed using the union of the refined partitions provided
by each processor. This mesh is reconciled such that the (virtual) mesh
made up of the union of the refined subregions would be conforming. A
final solution is computed, using a domain decomposition method. An
initial guess is provided by the local solutions.

The above approach has several interesting features. First, the load balanc-
ing problem (Step 1) is reduced to the numerical solution of a small problem on
a single processor. It can be done using any serial adaptive finite element code
without any modifications. Second, the adaptive mesh generation calculation (Step
2) takes place independently on each processor, and can also be performed with no
communication.

The only parts of the calculation requiring communication are

(1) the initial fan-out of the mesh distribution to the processors, once the
decomposition is determined by the error estimator.

(2) the mesh regularization, requiring communication to produce a global
conforming mesh.

(3) the final solution phase. Note that a good initial guess for Step 3 is
provided in Step 2 by taking the solution from each subregion restricted
to its partition.

3.2. Bank-Holst paradigm and hp-refinement. Even though hp-refinement
can be used directly with Bank-Holst paradigm without any restriction, a careful
use of hp-refinement can make the combination smoother and more effective. The
following are the practices that we employ
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(1) In Step 1, only h-refinement is used. In this step, having a good approx-
imate solution and accurate a posteriori error estimate is not the first
priority. It is more critical to create a mesh with a sufficient number of
elements so that a good partition of the domain can be obtained. In ad-
dition, avoiding p- and hp-refinement in this step is also appropriate as
these strategies are not effective on extremely coarse meshes.

(2) At the beginning of Step 2 on each processor, if the number of elements
in the local subdomain is small, adaptive h-refinement or local uniform
h-refinement should be used first. After that, automatic hp-refinement
can be used.

Since the adaptive enrichment on each processor (Step 2) is completely inde-
pendent of what happens on other processors, the global refined mesh, constructed
from the meshes associated with the refined regions on each of the processors, is
initially non-conforming along the interface system. With the use of hp-refinement,
the task to reconcile the local meshes can be challenging. The meshes are unstruc-
tured in geometry (in h) and have variable degree (variable p). In addition, there
is no refinement tree, and nonconformity exists in both h and p. Thus, we need to
efficiently identify and resolve these nonconformities, and ultimately to establish
links between degrees of freedom on the fine mesh interface system on a given pro-
cessor and the corresponding degrees of freedom on other processors which share
its interface. For detail descriptions of this task, we refer to [BNar].

4. Domain Decomposition Solver

In this section, we describe the domain decomposition algorithm implemented
in PLTMG for Step 3 of the Bank-Holst paradigm presented in Subsection 3.1.
This algorithm is described in detail in [BN11, BL03, Ban06a, Lu04, BV08].

For simplicity in our discussion, we restrict attention to the case of just two
subdomains. In our scheme, each subregion contributes equations corresponding all
fine degrees of freedom, including its interface. Thus in general there will be multiple
unknowns and equations in the global system corresponding to the interface degrees
of freedom. This is handled by equality constraints that impose continuity at all
degrees of freedom on the interface. The result is a mortar-element like formulation,
using Dirac δ functions for the mortar element space. In any event, with a proper
ordering of unknowns, the global system of equations has the block 5× 5 form

(4.1)


A11 A1γ

Aγ1 Aγγ I
Aνν Aν2 −I
A2ν A22

I −I



δU1

δUγ
δUν
δU2

Λ

 =


R1

Rγ
Rν
R2

Uν − Uγ

 .

Here A11 and A22 correspond to the fine degrees of freedom on processors 1
and 2, respectively, that are not on the interface, while Aγγ and Aνν correspond to
interface points. The fifth block equation imposes continuity, and its corresponding
Lagrange multiplier is Λ. The identity matrix appears because the global fine mesh
is conforming. The introduction of the Lagrange multiplier and the saddle point
formulation (4.1) are only for expository purposes; indeed, Λ is never computed or
updated.
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On processor 1, we develop a similar but “local” saddle point formulation. That
is, the fine mesh subregion on processor 1 is “mortared” to the remaining coarse
mesh on processor 1. This leads to a linear system of the form

(4.2)


A11 A1γ

Aγ1 Aγγ I
Āνν Āν2 −I
Ā2ν Ā22

I −I



δU1

δUγ
δŪν
δŪ2

Λ

 =


R1

Rγ
Rν
0

Uν − Uγ

 ,

where quantities with a bar (e.g., Ā22) refer to the coarse mesh. A system similar
to (4.2) can be derived for processor 2. With respect to the right hand side of
(4.2), the interior residual R1 and the interface residual Rγ are locally computed
on processor 1. We obtain the boundary residual Rν , and boundary solution Uν
from processor 2; processor 2 in turn must be sent Rγ and Uγ . The residual for
the coarse grid interior points is set to zero. This avoids the need to obtain R2 via
communication, and to implement a procedure to restrict R2 to the coarse mesh on
processor 1. Given our initial guess, we expect R1 ≈ 0 and R2 ≈ 0 at all iteration
steps. Rγ and Rν are not generally small, but Rγ +Rν → 0 at convergence.

As with the global formulation (4.1), equation (4.2) is introduced mainly for
exposition. The goal of the calculation on processor 1 is to compute the updates
δU1 and δUγ , which contribute to the global conforming solution. To this end, we
formally reorder (4.2) as

(4.3)


−I I

−I Āνν Āν2

A11 A1γ

I Aγ1 Aγγ
Ā2ν Ā22




Λ
δŪν
δU1

δUγ
δŪ2

 =


Uν − Uγ
Rν
R1

Rγ
0

 .

Block elimination of the Lagrange multiplier Λ and δŪν in (4.3) leads to the block
3× 3 Schur complement system

(4.4)

A11 A1γ

Aγ1 Aγγ + Āνν Āν2

Ā2ν Ā22

δU1

δUγ
δŪ2

 =

 R1

Rγ +Rν + Āνν(Uν − Uγ)
Ā2ν(Uν − Uγ)

 .

The system matrix in (4.4) corresponds to the final adaptive refinement step on
processor 1, with possible modifications due to global fine mesh regularization. It is
exactly the matrix used in the preliminary local solve to generate the initial guess for
the global domain decomposition iteration. In the solution of (4.4), the components
δU1 and δUγ contribute to the global solution update, while δŪ2 is discarded. We
remark that the global iteration matrix corresponding to this formulation is not
symmetric, even if all local system matrices are symmetric.

The domain decomposition algorithm is incorporated as the solver for the ap-
proximate Newton method which is used to solve the discretized equations 1. In
particular, only one domain decomposition iteration (a so-called inner iteration)
is used in each approximate Newton step. Thus, loosely speaking, each solve of
(4.4) alternates with a line search step in which the global solution is updated. The

1Even when the original problem is linear, we formally apply the approximate Newton method
and the linearity is realized after one Newton step.
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Newton line search procedure requires global communication to form some norms
and inner products, as well as the boundary exchange described above.

In this paper, the convergence of the domain decomposition algorithm is deter-
mined using either one of the the following criteria:

(4.5)
||δUk||G
||Uk||G

≤ max

(
||δU0||G
||U0||G

,
||∇eh||0,Ω
||∇uh||0,Ω

)
× 10−1.

or

(4.6)
||δUk||G
||Uk||G

≤ ||δU
0||G

||U0||G
× 10−4.

Here ||δUk||G and ||Uk||G are the discrete global norm of the approximate solution
and the update respectively, at iteration k, while ||∇eh||0,Ω and ||∇uh||0,Ω are the
a posteriori error estimate and the norm of the initial solution. Normally, (4.5) is
sufficient for the purposes of computing an approximation to the solution of the
partial differential equation. However, we also use the more stringent criterion (4.6)
to illustrate the behavior of the domain decomposition solver as an iterative method
for solving linear systems of equations.

5. Numerical Results

In this section, we present some numerical results. Our examples were run on
a Linux-based Beowulf cluster, consisting of 38 nodes, each with two quad core
Xeon processors (2.33GHz) and 16GB of memory. The communication network is
a gigabit Ethernet switch. This cluster runs the npaci rocks version of Linux
and employs mpich2 as its mpi implementation. The computational kernels of
PLTMG [Ban11] are written in fortran; the gfortran compiler was used in these
experiments, invoked using the script mpif90 and optimization flag -O.

In our experiments, we used PLTMG to solve the boundary value problem

−∆u = 1 in Ω,

u = 0 on ∂Ω,

where Ω is a domain surrounding an airfoil-shaped object (see Figure 3, on the
left).

At the beginning, an adaptive mesh of size Nc = 50K was created on one
processor. All elements on this mesh were linear elements. This mesh was then
partitioned into P subregions, P = 2k, 1 ≤ k ≤ 8. This coarse mesh was broadcast
to P processors (simulated as needed) and each processor continued the adaptive
process, first in h and then automatic hp, creating a mesh of size NP . In this
experiment, NP was chosen to be 400K, 600K, and 800K. This resulted in global
meshes varying in size from approximately 750K to 161M . These global meshes
were regularized to be h-conforming and p-conforming by applying appropriate
refinement and unrefinement in both h and p to the local meshes. For the case
NP = 800K, P = 32, the solution and the load balance is shown in Figure 3. The
mesh density and degree density of the global mesh and one local mesh are shown in
Figure 4 and Figure 5. As expected, both the mesh density and the degree density
are high in the local subdomain and much lower elsewhere in the local mesh.

After the global meshes are regularized, a global DD solve was made to obtain
the global solution. The results are summarized in Table 1. For the case NP =
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Figure 3. The load balance (left) and solution (right) in the case
NP = 800K, P = 32.

Figure 4. The mesh density for the global mesh (left) and for one
of the local meshes (right) in the case NP = 800K, P = 32.

Figure 5. The degree density for the global mesh (left) and for
one of the local meshes (right) in the case NP = 800K, P = 32.

800K,P = 256, the convergence history when using the strict criterion (4.5) is
shown in Figure 6.

For this approach of domain decomposition, the number of degrees of freedom
of the global mesh is predicted by

(5.1) N ≈ PNP − (P − 1)Nc.

Equation (5.1) only predicts an upper bound, as it does not account for refinement
outside of Ωi, needed to keep the mesh conforming and for other reasons. For
example, for Nc=50K, NP=800K, P = 256, (5.1) predicts N ≈ 192050000 when
actually N = 161009439.
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Figure 6. Convergence history of the domain decomposition
solver for the case NP = 800K,P = 256 when the criterion (4.6)
is used.

Table 1. Convergence Results. Numbers of iterations needed to
satisfy convergence criteria are given in the column labeled DD.
The numbers in parentheses are the number of iterations required
to satisfy (4.5) which is the default convergence criterion used by
PLTMG.

NP = 400K NP = 600K NP = 800K
P N DD N DD N DD
2 750247 14 (4) 1150487 14 (4) 1550418 14 (4)
4 1450884 13 (4) 2252526 19 (5) 3050963 20 (5)
8 2851662 19 (6) 4442935 19 (5) 6101079 20 (5)

16 5670458 20 (4) 8975651 20 (3) 12269476 20 (3)
32 11315140 20 (4) 17721124 20 (4) 24019421 20 (4)
64 20260417 20 (4) 31612049 19 (4) 44327632 18 (4)

128 34750517 10 (3) 56984391 8 (3) 83764874 8 (3)
256 61949578 13 (3) 108554486 10 (3) 161009439 10 (4)
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