
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

A Two Level Solver for hp Adaptive Finite Element Equations

Randolph E. Bank

Received: April 17, 2017 / Accepted: date

Abstract Higher order finite elements present certain chal-
lenges for multilevel methods. Such matrices have more
nonzero elements and special block structure. In the case
of h− p adaptive methods, the block structure is more com-
plicated. In this work we present a simple two level solver
for such systems, that exploits these special properties. The
convergence rate is (empirically) multigrid-like, at least up
to piecewise polynomials of degree nine. Numerical illustra-
tions demonstrate its robustness on a wide variety of prob-
lems, including convection-diffusion and Helmholtz equa-
tions.

Keywords Two level solver, h− p adaptivity

Mathematics Subject Classification (2010) 65M55,
65F10

1 Introduction

As the use of h − p adaptive methods become more
widespread, the development of efficient solvers for the re-
sulting linear systems becomes more important. Such ma-
trices typically have many more nonzeroes than the sparse
matrices for low order finite element spaces. These nonze-
roes generally can be organized in dense blocks of varying
sizes. These properties should be taken into account is de-
veloping multi level solvers.

In this work we present a simple two level solver for
such matrices. The main components are a smoother and a
coarse grid correction. Because of the density of the matri-
ces, we restrict attention to very simple block smoothers,

Bank: The work of this author was supported by the National Science
Foundation under contract DMS-1318480.

Bank: Department of Mathematics, University of California, San
Diego, La Jolla, California 92093-0112. Email:rbank@ucsd.edu

in this case block symmetric Gauss-Seidel. The develop-
ment of more sophisticated and potentially more effective
smoothers is hindered by the density of the matrices. Al-
lowing even a modest degree of fill-in is likely to result
in smoothers very close the sparse Gaussian elimination
in complexity. In that situation, it is likely that the direct
method would become more efficient.

Our coarse grid correction is inspired by the block data
structure we use to store the system matrix, and has a defi-
nite hierarchical basis flavor. The coarse grid space always
contains the space of piecewise linear finite elements, and if
all elements have degree p≥ 2, it will contain the complete
space of piecewise quadratic finite elements. For the case of
two dimensional triangular finite elements and scalar partial
differential equations, the dimension of the coarse grid cor-
rection space is bounded by approximately 6V , where V is
the number of vertices in the mesh. In more general settings,
one should expect the coarse grid space to be bounded in a
similar fashion, and thus to become quite small in compari-
son to the fine grid space as p increases.

This two level method exhibits interesting behavior on
adaptive h− p meshes. Initially all of the elements have de-
gree p = 1, and the coarse grid correction space and the fine
space are identical. This remains true as long as all elements
have degree p ≤ 2. Typically these spaces have relatively
small dimension, and a simple two level hierarchical basis
method can easily solve problems on the coarse grid correc-
tion space. In this setting, the smoother is mainly an added
benefit. Later, when p becomes larger for many of the ele-
ments, the coarse grid space becomes smaller in comparison
with the fine grid, and the smoother plays an increasingly
prominent role.

The method empirically exhibits convergence rates that
are independent of the mesh size h, and sometimes even im-
proves as h becomes smaller. On the other hand, because the
dimension of the coarse grid correction space is bounded

2 Randolph E. Bank

independent of p, it does not have an asymptotic conver-
gence rate bounded independent of p, and we expect that the
convergence rate will eventually decrease with increasing p
and fixed h. On the other hand, there are often good reasons
to bound p in practical situations. These could include the
availability of quadrature formulas (this limits p ≤ 9 in the
PLT MG software package), or the complexity growth in p
of common finite element procedures, e.g, matrix and right
hand side assembly, that will fail to scale as O(n), n the fine
space dimension, unless p is bounded. For this reason, we
are not overly concerned about its convergence behavior as
p→ ∞. As we illustrate in Section ??, the method performs
quite well in the range p≤ 9.

The rest of this paper is organized as follows. In Section
??, we describe the point and block sparse matrix data struc-
tures that we use, and that motivated our choice of coarse
grid correction subspace. In Section ?? we define our two
level solver for the case of the standard family of two di-
mensional triangular finite element spaces, and scalar ellip-
tic partial differential equations. In Section ?? we present
some numerical results for a variety of elliptic equations.

2 Sparse Matrix Data Structures

Let A be an n× n matrix with elements Ai j, and a symmet-
ric sparsity structure; that is, both Ai j and A ji are treated as
nonzero elements (i.e. stored and processed) if |Ai j|+ |A ji|>
0. All diagonal entries Aii are treated as nonzero regardless
of their numerical values.

Our point data structure is a modified and generalized
version of the data structure introduced in the (symmetric)
Yale Sparse Matrix Package [?,?]. In our data structure, the
nonzero entries of A are stored in a linear array a, and ac-
cessed through an integer array ja. Let ηi be the number of
nonzeros in the strict upper triangular part of row i, and set
η =

∑n
i=1 ηi. The array ja is of length n+1+η and the ar-

ray a is of length n+1+η if At =A. If At 6=A, then the array
a is of length n+1+2η . The entries of ja(i), 1≤ i≤ n+1,
are pointers defined as follows:

ja(1) = n+2

ja(i+1) = ja(i)+ηi, 1≤ i≤ n

The locations ja(i) to ja(i+ 1)− 1 contain the ηi column
indices corresponding to the row i in the strictly upper trian-
gular matrix.

In a similar manner, the array a is defined as follows:

a(i) = Aii, 1≤ i≤ n

a(n+1) is arbitrary

a(k) = Ai j, 1≤ i≤ n,

j = ja(k), ja(i)≤ k ≤ ja(i+1)−1

If At 6= A, then

a(k+η) = A ji, 1≤ i≤ n,

j = ja(k), ja(i)≤ k ≤ ja(i+1)−1

In words, the diagonal is stored first, followed by the strict
upper triangle stored row-wise. If At 6= A, then this is fol-
lowed by the strict lower triangle stored column-wise. Since
A is structurally symmetric, the column indexes for the up-
per triangle are identical to the row indexes for the lower
triangle, and hence need not be duplicated in storage.

As an example, let

A =


A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35
0 A42 A43 A44 0
0 0 A53 0 A55


Then

1 2 3 4 5 6
ja 7 9 10 12 12 12
a A11 A22 A33 A44 A55

Diagonal

7 8 9 10 11
ja 2 3 4 4 5
a A12 A13 A24 A34 A35

Upper Triangle

12 13 14 15 16
ja
a A21 A31 A42 A43 A53

Lower Triangle

To illustrate the use of this data structure, the following al-
gorithm computes y = Ax or y = AT x. If A = AT , the param-
eters lshi f t = ushi f t = 0. If AT 6= A and we wish to compute
y = Ax, then ushi f t = 0 and lshi f t = η = ja(n+1)− ja(1).
If AT 6= A and we wish to compute y = AT x, then ushi f t = η

and lshi f t = 0.

for i = 1,n

y(i)← a(i)× x(i)

end for

for i = 1,n

for k = ja(i), ja(i+1)−1

j = ja(k)

y(i)← y(i)+a(k+ushi f t)× x(j)

y(j)← y(j)+a(k+ lshi f t)× x(i)

end for

end for

A Two Level Solver for hp Adaptive Finite Element Equations 3

A similar data structure can be used to store an LDU
or UT DU factorization, arising from either Gaussian elimi-
nation or an incomplete factorization. In this case, only the
strictly lower (upper) triangular part of L (U) needs to be
stored as the diagonal is an identity matrix.

Now suppose matrix A is a block m×m matrix, with
block i having dimension ni and

m∑
i=1

ni = n.

We assume the block structure is structurally symmetric, and
that each block Ai j is a dense ni× n j matrix, and is stored
as a linear array within the data structure a. Our block ja
data structure is analogous to the point ja data structure de-
scribed above, but now the column indices refer to blocks
rather than individual matrix elements. Because entries in ar-
ray a will no longer correspond in a simple fashion to those
in ja, we need two additional integer data structures. First,
the array b of size m that stores the sizes of individual blocks

b(i) = ni, 1≤ i≤ m.

We need a second array jp of pointers that indicate the start-
ing point for various matrix blocks in the array a. Array jp is
the same size as ja. For 1≤ i≤m, jp(i) points to the begin-
ning of the i-th diagonal block, and jp(i+1)−1 points to the
end of that block. For ja(1) ≤ i ≤ ja(m+ 1)− 1, jp(i− 1)
points to the beginning of the corresponding off-diagonal
block in the upper triangle and jp(i)−1 points to its end.

In the array a, each diagonal block is stored diagonal en-
tries first, followed by upper triangular entries stored row-
wise. If AT 6= A, this is followed by the lower triangular en-
tries stored column-wise. Off diagonal blocks in the upper
triangle are stored row-wise. If AT 6= A, the upper triangle is
followed by the lower triangular blocks stored column-wise
analogous to the point data structure described above.

3 Two Level Solver

We consider scalar elliptic partial differential equations of
the form

−∇ · (αu)+β ·u+ γu = f

in Ω ⊂R2 with

u = 0

on ∂Ω . Our h− p adaptive algorithm is based on conforming
triangular Lagrange finite elements of degrees 1− 9. The
upper bound of 9 was imposed by the family of quadrature
rules implemented in the PLT MG package [?].

There is a natural block structure associated with such
an h− p adaptive mesh. Suppose the triangular mesh has V

vertices. Each vertex is associated with a nodal basis func-
tion, each giving rise of a block of size ni = 1 in the stiff-
ness matrix A. If a triangle edge is associated with a poly-
nomial of degree p > 1, then there are p− 1 nodal basis
functions (bump functions) associated with interior nodes
on that edge; the two endpoint basis functions are counted
as vertex functions. These p−1 basis functions give rise to
a block of size ni = p− 1 in A. Finally, if the element it-
self is of degree p > 2 there will be (p−1)(p−2)/2 nodal
basis functions (bubble functions) associated with the strict
interior of that triangle. These give rise to a block of size
ni = (p−1)(p−2)/2 in A.

For a mesh consisting uniformly of elements of degree p,
the order of the stiffness matrix A is approximately n≈ p2V .
However, the block dimension of the matrix is approxi-
mately m≈ 6V independently of p. Although vertex, bump,
and bubble functions typically have different numbers of
non zeroes per row, on average, A has (p2 + 6p+ 7)/2 non
zeroes per row, indicating that A becomes significantly more
dense with increasing p. If p ≤ 2, all of the blocks have
ni = 1 and the block data structure is unnecessary and the
point data structure is more efficient. The block data struc-
ture begins to pay dividends as p increases. The combined
storage for all of the integer data structures will become
smaller than the single ja array used in the point data struc-
ture. Perhaps more important, the ratio of overhead opera-
tions (indirect addressing) to floating point operations used
in assembling and solving the linear system is increasingly
reduced with increasing p as the blocks become larger.

Our two level solver consists of a smoother and a coarse
grid correction. The smoother is block symmetric Gauss-
Seidel, using the block structure of the matrix A. For each
of the diagonal blocks we use (dense) Gaussian elimination
to compute an LDU factorization (or UT DU factorization if
AT = A).

The coarse grid correction is motivated by interpreting
the block ja data structure for the matrix A as a point ja
data structure for the coarse grid correction matrix H. In par-
ticular, we compute a hierarchical basis for the coarse grid
correction space as follows:

– For each vertex v in the mesh, we associate a contin-
uous piecewise linear nodal basis (pyramid) function.
This implies that the coarse grid correction space always
contains the usual space of continuous piecewise linear
polynomials.

– For each interior edge e associated with piecewise poly-
nomials of degree p≥ 2, we add a single quadratic bump
function associated with the midpoint of edge e.

– For each element t associated with piecewise polyno-
mials of degree p ≥ 3, we add a single cubic bubble p
function associated with the barycenter of element t.

With these definitions, the coarse grid correction space
has a maximum dimension of approximately 6V , achieved

4 Randolph E. Bank

when all elements in the mesh have degree p ≥ 3. The av-
erage number of non zeroes per row in H in this maximal
situation is 23/2. The basis associated with the coarse grid
correction has a natural hierarchical structure, allowing stan-
dard hierarchical basis solvers to be employed for solving
linear systems associated with the coarse grid correction.
Often the matrix H is sufficiently small relative to A that
LDU or UT DU factorizations are feasible and attractive.

The prolongation and restriction operators are just the
usual Galerkin (change of basis) operators.

In terms of convergence, many of the standard two level
proofs apply when the mesh is quasiuniform [?,?,?]. How-
ever, it should be clear that the rate of convergence cannot be
independent of p as p→∞. On the other hand, as a practical
matter p should be bounded. In PLT MG, p ≤ 9 is required
due to the suite of quadrature rules used by the package.
More generally, if we again consider the case of uniform
p, the dimension space scales as n ≈ p2V . The cost of nu-
merical quadrature scales as p4V = O(p2n), and the cost of
Gaussian elimination for the diagonal blocks of A scales as
p6V = O(p4n). In this situation, if one seeks complexity es-
timates that scale as O(n), then p should be bounded, eg as
p≤ pmax. As a side remark, for d dimensional simplicial el-
ements, the space dimension scales as n ≈ pdV , while the
quadrature and diagonal block factorization costs scale as
p2dV and p3dV , respectively.

4 Numerical Experiments

In this section, we present a selection of numerical results
that illustrate the robustness of this two level h− p solver.
To have a well controlled experimental environment, we
used uniform square meshes and constant p = 8 in all of
these experiments. In particular, we set Ω = (0,1)× (0,1),
and employed uniform meshes of size 41×41, 81×81, and
161×161, resulting in finite element spaces of approximate
dimension 103K, 410K, and 1.64M, respectively, using con-
tinuous piecewise polynomials of degree p = 8.

We solved the six linear scalar partial differential equa-
tions given below:

−∆u = 1

−10−3uxx−uyy = 1

−∆u+103ux = 1

−∆u+103((y− .5)ux− (x− .5)uy) = 1

−∆u−103u = 1

−∆u+103u = 1.

For all these equations we impose homogeneous Dirichlet
boundary conditions u = 0 on ∂Ω . The solutions of these
six problems are shown in Figure ??.

−∆ = u = 1 (left) and −∆u+103ux = 1 (right).

−∆u+103ux = 1 (left) and −∆u+103((y− .5)ux− (x− .5)uy) = 1
(right).

−∆u−103u = 1 (left) and −∆u+103u = 1 (right).

Fig. 1

We solved each of the example problems for the three
values of n, and for two different values of the error toler-
ance, ε = 10−3 and ε = 10−6. We started all iterations with
initial guess zero, and used the criteria

ek =
||rk||`2

||r0||`2

≤ ε (1)

to measure convergence. Here rk is the preconditioned resid-
ual. The problems were accelerated using composite step
conjugate gradients [?] for symmetric problems and com-
posite step biconjugate gradients for nonsymmetric prob-
lems. The coarse grid problems were solved using one itera-
tion of ILU where the drop tolerance was made sufficiently
small that as a practical matter it became an exact solve.

The results are reported in Tables ??–??. The reported
data are K, the number of iterations required to satisfy (??),

A Two Level Solver for hp Adaptive Finite Element Equations 5

and

Digits =− logeK .

For ε = 10−3, all of the problems were solved in few it-
erations, often with eK << ε . This is a reflection of the effec-
tiveness of the coarse grid correction. Starting from an initial
guess of zero, on the first iteration, the coarse grid correction
computes a solution that is essentially as good as the finite
element solution for uniform p = 2. Thus we should except
an exceptional decrease in the error on the first iteration that
is not necessarily a reflection of the asymptotic behavior of
the method. For h− p adaptive meshes, the coarse grid space
always includes the piecewise linear subspace, but not nec-
essarily the complete quadratic subspace, so one can still
expect an exceptional decrease of the error on the first iter-
ation, We note that in the context of an adaptive feedback
loop, only a modest error reduction is needed in any solve
step due to a good initial guess. (In PLT MG, the default is
ε = 10−2.) Thus for these classes of problems, this solver is
effective in this context.

The results for ε = 10−6 reveal a bit more about the
asymptotic behavior of the method. The results are still quite
good for the Poisson equation, and for the two equations
−∆u±103u= 1. Particularly impressive is the highly indefi-
nite Helmholtz equation, systems that are often very difficult
to solve. The number if iterations decreases with increasing
n. This effect is likely due to improvements in the coarse
grid correction. As h is decreased, the approximation proper-
ties provided by the piecewise quadratic finite element space
contained within the coarse grid correction improves.

The two convection dominated equations also perform
well but show a significant increase in the number of iter-
ations for the case n ≈ 1.3m. After some investigation, it
appears that this is due to growth in the condition number of
A with increasing n. Since condition numbers for all these
problems are increasing, this effect will eventually appear in
all of the problems as n increases. The use of higher preci-
sion floating point arithmetic could delay the onset of this
effect. In all these experiments, we used standard double
precision arithmetic.

As a side remark, as the size of the problems addressed
by adaptive methods continues to increase, roundoff error
issues will become increasingly important in many parts of
the calculation, not just the solver. For example, it is now
common for h-refined meshes to locally become so refined
that the coordinates of all the vertices of some elements can
be identical to the level of roundoff error. This implies that
many routine finite element calculations, such as mapping
such elements to a reference element, can suffer from catas-
trophic cancellation.

Perhaps the most significant difference in Table ?? is the
anisotropic problem, which showed a large increase in the
number of iterations. This is likely due to the smoother. A

block smoother more like a line smoother for point matrices
would be a better choice from the viewpoint of convergence.
While implementation of such a smoother might be rela-
tively straightforward for this particular problem, it could
be more challenging in the case of unstructured meshes
with variable p. Also as we discuss below, using an incom-
plete factorization that allows some fill-in as a smoother to
overcome this problem might make this two-level solver
unattractive in comparison with sparse Gaussian elimina-
tion. However, with the low convergence tolerances typical
of the feedback loops used in adaptive methods, develop-
ment of such a smoother is not such an important issue in
practice.

In Table ?? we provide some data on the size of various
data structures used in these calculations. Indirectly this also
provides some indication of the computational complexity.
Information is provided on A, H, sparse Gaussian elimina-
tion for both A and H using a minimum degree ordering,
and on factorization of the diagonal blocks of A used in the
smoother of our two level iteration. Three numbers are pro-
vided. In the case of A and its Gaussian elimination factor-
ization, int reports the combined storage of the ja array, the
corresponding pointer array jp (same size as ja), and the
block size array b of size m. The factorization of the diago-
nal blocks of A can make use of the int data structures of A
so no additional integer data structure are needed. For H and
its factorization, only the point ja data structure is needed.
The sym and nonsym columns reports the number of nonze-
roes stored, essentially the size of the a array.

From the data we note that the total integer storage for
the block matrices is far less than the real storage. Thus the
integer overhead operations are greatly reduced in relation
to the floating point operations needed for common matrix
operations, so the block data structure is far more efficient
in these cases than a point data structure, where the integer
and real data structures are of comparable size.

Gaussian elimination of the coarse grid matrix H is less
costly and requires less space than the factorization of the di-
agonal blocks of A needed for the block symmetric Gauss-
Seidel smoother. Thus the cost of our two level solver is
dominated by the cost of the smoother. Solving linear sys-
tems involving H by an iterative method, e.g. a hierarchical
basis method, might be locally more efficient than than di-
rect solution, but that efficiency will have a smaller impact
on the global complexity of the two level solver.

Also note that size if the LDU or UT DU factorizations
of A by Gaussian elimination is only 2−3 times that of the
original matrix. Thus preconditioners or smoothers based
on incomplete factorization allowing even modest fill-in are
likely to result in factorizations very close to Gaussian elim-
ination.

6 Randolph E. Bank

n = 103041 n = 410881 n = 1640961

K Digits K Digits K Digits

−∆u = 1 1 4.95 1 5.59 1 6.21
−10−3uxx−uyy = 1 2 3.50 1 3.51 1 4.45
−∆u+103ux = 1 1 6.53 1 6.63 1 5.85

−∆u+103((y− .5)ux− (x− .5)uy) = 1 1 6.78 1 6.24 1 5.78
−∆u−103u = 1 3 3.54 1 3.55 1 4.45
−∆u+103u = 1 1 3.50 1 4.13 1 4.74

Table 1 ε = 10−3.

n = 103041 n = 410881 n = 1640961

K Digits K Digits K Digits

−∆u = 1 3 6.12 3 6.74 1 6.21
−10−3uxx−uyy = 1 63 6.15 46 6.00 25 6.05
−∆u+103ux = 1 1 6.49 1 6.64 3 6.59

−∆u+103((y− .5)ux− (x− .5)uy) = 1 1 6,79 1 6.24 4 6.42
−∆u−103u = 1 8 6.46 6 6.59 4 6.18
−∆u+103u = 1 6 6.42 5 6.54 4 6.40

Table 2 ε = 10−6.

n = 103041 n = 410881 n = 1640961
m = 9761 m = 38721 m = 154241

int sym nonsym int sym nonsym int sym nonsym

A 135 3101 6100 539 12398 24385 2154 45976 97512
H 63 63 116 250 250 462 1000 1000 1846
GE(A) 526 6628 13153 2820 32495 64579 7295 158375 315108
GE(H) 247 247 484 1361 1361 2684 14744 7217 14280
GE(D) 0 878 1652 0 3505 6600 0 14012 26384

Table 3 Storage ×10−3.

References

1. R. E. BANK, Hierarchical bases and the finite element method, in
Acta Numerica 1996 (A. Iserles, ed.), Cambridge University Press,
1996, pp. 1–43.

2. R. E. BANK, PLTMG: A software package for solving elliptic par-
tial differential equations, users’ guide 12.0, tech. report, Depart-
ment of Mathematics, University of California at San Diego, 2016.

3. R. E. BANK AND T. F. CHAN, An analysis of the composite step
biconjugate gradient method, Numerische Mathematik, 66 (1993),
pp. 295–319.

4. S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ, AND A. H.
SHERMAN, Yale sparse matrix package I: The symmetric codes,
Internat. J. Numer. Meth. Engrg., 18 (1982), pp. 1145–1151.

5. S. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, Algo-
rithms and data structures for sparse symmetric Gaussian elimina-
tion, SIAM J. Sci. Stat. Comput., 2 (1982), pp. 225–237.

6. J. XU, Iterative methods by space decomposition and subspace cor-
rection, SIAM Rev., 34 (1992), pp. 581–613.

7. H. YSERENTANT, Old and new convergence proofs for multigrid
methods, in Acta numerica, 1993, Acta Numer., Cambridge Univ.
Press, Cambridge, 1993, pp. 285–326.

