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Abstract For the second lowest order Raviart–Thomas mixed method, we
prove that the canonical interpolant and finite element solution for the vector
variable in elliptic problems are superclose in the H(div)-norm on mildly struc-
tured meshes, where most pairs of adjacent triangles form approximate paral-
lelograms. We then develop a family of postprocessing operators for Raviart–
Thomas mixed elements on triangular grids by using the idea of local least
squares fittings. Super-approximation property of the postprocessing operators
for the lowest and second lowest order Raviart–Thomas elements is proved un-
der mild conditions. Combining the supercloseness and super-approximation
results, we prove that the postprocessed solution superconverges to the exact
solution in the L2-norm on mildly structured meshes.
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1 Introduction and preliminaries

Gradient recovery methods for Lagrange elements have been studied exten-
sively by many authors, see, e.g., [30,29,3,4,5,27,28,26] and references therein.
Let u be the exact solution of Poisson’s equation and uh be the finite element
solution from Lagrange elements. In general ∇uh rather than uh is the main
quantity of interest. Gradient recovery methods aim to get a new approxima-
tion ph to ∇u by postprocessing uh or ∇uh. Comparing to ∇uh, ph is often
H1-conforming and ph superconverges to ∇u in some situation. In addition,
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ph can be used to develop a posteriori error estimators. The recovery-based
a posteriori error estimators are popular for their simplicity and asymptotic
exactness, see, e.g., [4,29,28].

To derive recovery-type superconvergence, a common ingredient is the so-
called supercloseness estimate showing that the canonical interpolant and finite
element solution are superclose in some norm. In this paper, we consider the
RT1 mixed method for the second order elliptic equation, namely, (1.5) with
r = 1. We shall prove that the canonical interpolant Π1

hp and the finite ele-
ment solution p1h are superclose in the H(div)-norm under mildly structured
grids, i.e., most pairs of adjacent triangles in grids form O(h1+α)-approximate
parallelograms except for a region with measure O(hβ), see Definitions 2.1 and
2.2. The supercloseness result in this paper generalizes a result for the RT0
mixed method in [19]. For Poisson’s equation, Brandts [7] proved a superclose-
ness estimate for RT1 on three-line grids, i.e., each edge in grids is parallel to
one of three fixed lines.

To relax the restriction on mesh structures in supercloseness analysis, we
give a constructive proof for Theorem 3.2 instead of using the odd-even ar-
gument and the Bramble–Hilbert lemma employed in [6,7]. For Lagrange ele-
ments over (α, β)-grids, the authors in [3] transferred the local error

∫
T
∇(u−

uI) ·∇vh on each element T to line integrals by the divergence theorem, where
uI is the linear Lagrange interpolant. Then line integrals are grouped in terms
of tangential components of∇vh by delicate triangular integral identities. How-
ever, it’s not clear how to handle the local error

∫
T

(p−Πr
hp) · qh for the RTr

element in a similar fashion. The key observation here is that RTr elements
satisfy the divergence-free property, i.e., div(pr+1 −Πr

hpr+1) = 0 on a trian-
gle T , where pr+1 ∈ Pr+1(T )2. Hence pr+1 − Πr

hpr+1 = ∇⊥wr+2 for some
wr+2 ∈ Pr+2(T ) and it can be handled by Green’s theorem, see Section 5.

For mixed methods, the finite element solution ph approximating the vector
variable p ∈ H(div, Ω) is the main quantity of physical interest. As far as we
know, existing postprocessing/recovery techniques for p and ph are restricted
to strongly structured grids, e.g., three-line, translation invariant and rectan-
gular grids, see, e.g., [11,14,13,7]. As grids become increasingly unstructured,
the rate of superconvergence of ‖p−KhΠhp‖0,Ω deteriorates, where Πh is the
canonical interpolation and Kh is some postprocessing operator. In addition,
most of the existing results of recovery methods focus on the lowest order case
while the analysis of recovery operators for higher order elements is limited,
especially on irregular grids. In this paper, we construct a new family of recov-
ery operators Rrh for RTr (r ≥ 0) elements by fitting the numerical solution ph
with a vector polynomial of degree r+1 in the least squares(LS) sense on each
local patch surrounding each vertex in triangular grids. We shall show that R0

h

and R1
h have nice super-approximation property under mild and easy-to-check

conditions. The order of approximation of Rrh is almost independent of the
mesh structure. Combining the supercloseness and Rrh, we finally obtain the
superconvergence of the postprocessed solution to the exact solution for RT0
and RT1 mixed methods, see Theorem 4.4.
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Recovery by local least squares fittings is not a new idea. The famous
Zienkiewicz–Zhu(ZZ) superconvergent patch recovery Gh is based on it, see,
e.g., [30,29]. For linear elements, ‖∇u −Gh∇u‖ = O(h2) under strongly reg-
ular grids (cf. [17]), that is, each pair of adjacent triangles form an O(h2)
approximate parallelogram. Alternatively, Zhang and Naga [28] proposed a
different LS-based patch recovery operator Grh for Lagrange elements of degree
r by postprocessing the scalar function u rather than ∇u. Roughly speaking,
‖∇u − Grhu‖ = O(hr+1) provided each LS problem has a unique solution on
each local patch. Rrh can be viewed as a Raviart–Thomas version of Gr+1

h . In
practice, the excellent superconvergence property of Grh is attributed to the
unique solvability of vertex-based LS problems, which is difficult to prove on
unstructured grids. For example, [22] is mainly devoted to the analysis of the
uniqueness of the LS solution for G1

h on unstructured grids. As far as we know,
there is no similar analysis for Grh with r ≥ 2. We shall give a practical crite-
rion of uniqueness for G2

h on unstructured grids, which also works for R1
h, see

Theorem 4.1.
For a domain U , the Sobolev seminorms and norms are defined by

|v|k,p,U =
( ∫

U

|Dkv|p
) 1
p , ‖v‖k,p,U =

( k∑
m=0

|v|pm,p,U
) 1
p ,

|v|m,U = |v|m,2,U , ‖v‖m,U = ‖v‖m,2,U ,

where

|Dkv| :=
∑

α1+···+αn=k

∣∣∣∣ ∂α1+···+αn

∂xα1 · · · ∂xαn
v

∣∣∣∣ .
Sobolev norms with ∞-index and norms of vector-valued functions are gener-
alized in usual ways.

In this paper, we consider the second order elliptic equation

− div(a2(x)∇u+ a1(x)u) + a0(x)u = f(x), x ∈ Ω, (1.1a)

u = g(x), x ∈ ∂Ω, (1.1b)

where div = ∇· is the divergence operator, a2, a0 are scalar-valued and a1 is
vector-valued. Assume thatΩ is simply connected and a2,a1, a0 are sufficiently
smooth on Ω. In addition, a2 ≥ Λ > 0 for some constant Λ. Let

p = a2∇u+ a1u,

a = a−12 , b = a−12 a1, c = a0.

Equation (1.1) is equivalent to the first order system

ap− bu−∇u = 0, x ∈ Ω, (1.2a)

−div p+ cu = f, x ∈ Ω, (1.2b)

u = g, x ∈ ∂Ω. (1.2c)
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Let Q = H(div, Ω) := {q ∈ L2(Ω)2 : div q ∈ L2(Ω)} and V = L2(Ω). The
mixed formulation for (1.2) is to find the pair {p, u} ∈ Q × V, such that

(ap, q)− (q, bu) + (div q, u) = 〈q · n, g〉, (1.3a)

−(div p, v) + (cu, v) = (f, v), (1.3b)

for each pair {q, v} ∈ Q × V. Here 〈·, ·〉 denotes the L2-inner product on ∂Ω.
Let Th be a collection of triangles that forms a triangulation of Ω. Let

hT = |T | 12 be the diameter of T and h = maxT∈Th hT < 1 be the mesh-size.
Th is assumed to quasi-uniform, namely, maxT∈Th hT ≤ C0(minT∈Th hT ) for
some generic constant C0. The quasi-uniformity implies the minimum angle
condition (MAC), namely, there exists a fixed constant Θ > 0, such that
θ ≥ Θ > 0 for any angle θ of any triangle T ∈ Th. Given a one-dimensional or
two-dimensional subset U ⊂ R2, let

Pr(U) = {v : v is a polynomial on U of degree ≤ r}

denote the space of polynomials of degree ≤ r. Let Eh, Eoh, E∂h denote the set of
edges, interior edges and boundary edges in Th , respectively. LetNh denote the
set of vertices in Th. Several kinds of local patches are useful for finite element
superconvergence analysis. For z ∈ Nh, let ωz be the union of triangles in
Th sharing z as a vertex. For e ∈ Eh, let ωe be the union of triangles in Th
sharing e as an edge. For T ∈ Th, let ωT be the union of T and triangles in
Th sharing at least one vertex with T . The local nodes, edges , and triangles
in U are Nh(U) = {z ∈ Nh : z ∈ Ū}, Eh(U) = {e ∈ Eh : e ⊂ Ū}, and
Th(U) = {T ∈ Th : T ⊂ Ū}, respectively.

For r ≥ 0 and T ∈ Th, define the space of shape functions

RT r(T ) :=

{(
v1
v2

)
+ v3

(
x1
x2

)
: vi ∈ Pr(T ), i = 1, 2, 3

}
. (1.4)

The RTr finite element spaces are

Qrh := {qh ∈ Q : qh|T ∈ RT r(T ), ∀T ∈ Th} ,
Vrh := {vh ∈ V : vh|T ∈ Pr(T ), ∀T ∈ Th}.

The mixed method for (1.3) is to find {prh, urh} ∈ Qrh × Vrh, such that

(aprh, qh)− (qh, bu
r
h) + (div qh, u

r
h) = 〈qh · n, g〉, qh ∈ Qrh, (1.5a)

−(div prh, vh) + (cuh, vh) = (f, vh), vh ∈ Vrh. (1.5b)

Under mild assumptions, Douglas and Roberts [12] proved the well-posedness
and a priori error estimates for the method (1.5).

Let |v|h,m,U :=
(∑

T∈Th |v|
2
m,T

) 1
2 denote the mesh-dependent semi-norm

w.r.t. Th. A . B means that A ≤ CB, where C is a generic constant that
may change from line to line, and depends only on the shape regularity of Th
measured by C0 or Θ. We say A ≈ B if A . B and B . A. The regularity
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condition will be indicated on right hand sides of estimates. In addition to Qrh
and Vrh, we need the standard nodal finite element space

Wr
h = {w ∈ C(Ω) : w|T ∈ Pr(T ), ∀T ∈ Th},

where C(Ω) is the space of continuous functions on Ω. We present two well-
known inequalities that will be used in the rest of this paper.

Theorem 1.1 (Interpolation error) Let Irh : C(Ω) → Wr
h denote the La-

grange interpolation of degree r. For T ∈ Th and r ≥ 1, it holds that

‖v − Irhv‖0,γ,T . hr+
2
γ |v|h,r+1,T , 1 ≤ γ ≤ ∞. (1.6)

Theorem 1.2 (Trace inequalities ) For T ∈ Th and v ∈ H1(T ), it holds
that

‖v‖0,∂T . h
− 1

2

T ‖v‖0,T + h
1
2

T ‖∇v‖0,T . (1.7)

2 Local error expansions
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Fig. 1 A local triangle T and associated quantities.

We begin with geometric identities on a local element T . It has three ver-
tices {zk}3k=1, oriented counterclockwise, and corresponding barycentric coor-
dinates {λk}3k=1. Let ek denote the edge opposite to zk, θk the angle opposite
to ek, `k the length of ek, dk the distance from zk to ek, tk the unit tangent
to ek, oriented counterclockwise, nk the unit outward normal to ek, ∂tk the
tangential derivative, ∂nk the normal derivative, and ∂2tknk the second mixed
derivative, see Figure 1. Corresponding quantities on triangles T ′ and T ′′ have
superscripts ′ and ′′ respectively. The subscripts are equivalent mod 3, e.g.,
`4 = `1, θ0 = θ3.

We have the rotational gradient ∇⊥v = (−∂x2
v, ∂x1

v)
ᵀ
, and the adjoint

∇× q = ∂x1
q2 − ∂x2

q1. ∇⊥ and ∇× are related by Green’s formula∫
T

∇⊥r · q =

∫
∂T

rq · t−
∫
T

r∇× q, (2.1)
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where t is the unit tangent to ∂K oriented counterclockwise. For v ∈ R2,
define v⊥ = (−v2, v1). Clearly, n⊥k = tk, t

⊥
k = −nk.

Now we introduce basic definitions for RTr elements. For e ∈ Eh, let
{(wj , gj)}r+1

j=1 denote the Gaussian quadrature on e, where {gj} are quadra-

ture points and {wj} are corresponding weights. {(wj , gj)}r+1
j=1 is exact for

P2r+1(e), i.e., ∫
e

v =

r+1∑
j=1

wjv(gj) for all v ∈ P2r+1(e). (2.2)

Let vj ∈ Pr(e) be the polynomial that is w−1j at gj and 0 at the rest of

quadrature points. For T ∈ Th, let {λl}r(r+1)/2
l=1 be the nodal basis function

of Lagrange elements of degree r − 1 on T ({λl} = ∅ if r = 0; {λl} = {1} if
r = 1). We can specify degrees of freedom of RTr elements as

N j
e (q) :=

1

|e|

∫
e

q · nevj , N lm
T (q) :=

1

|T |

∫
T

qmλl,

where ne is a unit normal to e, q = (q1, q2)ᵀ, and 1 ≤ j ≤ r+ 1, 1 ≤ l ≤ r(r+
1)/2,m = 1, 2. By (2.2) and the definition of vj , we have N j

e (q) = q(gj) · ne
provided q ∈ Pr+1(e)2. For q ∈ H1(Ω)2, the RTr interpolant Πr

hq ∈ Qrh
satisfies

N j
e (Πr

hq) = N j
e (q), N lm

T (Πr
hq) = N lm

T (q),

for all indices j, l,m, and e ∈ Eh, T ∈ Th. The existence and uniqueness of Πr
hq

is always guaranteed. In addition, Πr
h is stable in the L∞-norm

‖Πk
hq‖0,∞,T . ‖q‖0,∞,T , T ∈ Th. (2.3)

For v ∈ V, the interpolant P rhv is the L2-projection of v onto Vrh. There is a
nice commuting property about P rh , Πr

h and div, i.e.,

div(Πr
hq) = P rh(div q), ∀q ∈ H1(Ω)2. (2.4)

The following interpolation error estimates hold, see, e.g., [12].

‖q −Πr
hq‖0,Ω . hr+1|q|h,r+1,Ω , (2.5a)

‖div(q −Πr
hq)‖0,Ω . hr+1|div q|h,r+1,Ω , (2.5b)

‖v − P rhv‖0,Ω . hr+1|v|h,r+1,Ω . (2.5c)

In the rest of this section, we will present variational error expansions
for the RT1 element. Comparing to RT0, the theory of RT1 is much more
complicated. Let d be the diameter of the circumscribed circle of T . For each
edge ek, there are several associated geometric quantities

µ1
11,k =

1

5760

(
3`4k − 3(`2k−1 − `2k+1)2 − 4`2k(`2k−1 + `2k+1)

)
,

µ1
12,k = µ1

21,k =
1

1440d
`1`2`3(`2k−1 − `2k+1), µ1

22,k = − 1

1440d2
`21`

2
2`

2
3,

µ2
11,k =

1

2880`1`2`3
d(`2k−1 − `2k+1)

(
4`2k − (`2k−1 − `2k+1)2 − 3`2k(`2k−1 + `2k+1)

)
,

µ2
12,k = µ2

21,k = −µ1
11,k, µ2

22,k = −µ1
12,k,
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and second order differential operators {Djli,k}1≤i,j,l≤2

D11
1,k = tk · ∂2tk , D12

1,k = D21
1,k = tk · ∂2tknk , D22

1,k = tk · ∂2nk ,
D11

2,k = nk · ∂2tk , D12
2,k = D21

2,k = nk · ∂2tknk , D22
2,k = nk · ∂2nk .

We define the second order differential operator Bk(q) :=
∑2
i,j,l=1 µ

i
jl,kD

jl
i,k(q).

The next lemma is our main tool for estimating the global variational error
whose proof is left in Section 5.

Lemma 2.1 For p2 ∈ P2(T )2 and w2 ∈ P2(T ),

∫
T

(p2 −Π1
hp2) · ∇⊥w2 =

3∑
k=1

∫
ek

Bk(p2)∂2tkw2.

Built upon Lemma 2.1, we derive the local error expansion for general p.

Theorem 2.1 For w2 ∈ P2(T ),

∫
T

(p−Π1
hp) · ∇⊥w2 =

3∑
k=1

∫
ek

Bk(p)∂2tkw2 +O(h3T )|p|3,T ‖∇⊥w2‖0,T .

Proof Let pI be the quadratic interpolant of p. By Lemma 2.1, we have

∫
T

(p−Π1
hp) · ∇⊥w2 =

∫
T

(id−Π1
h)(p− pI) · ∇⊥w2

+

3∑
k=1

∫
ek

Bk(pI − p)∂2tkw2 +

3∑
k=1

∫
ek

Bk(p)∂2tkw2

:= I + II + III,

(2.6)

where id is the identity operator. The inequalities (1.6) and (2.3) give the
upper bound

|I| . ‖(id−Π1
h)(p− pI)‖0,T ‖∇⊥w2‖0,T

. hT ‖(id−Π1
h)(p− pI)‖0,∞,T ‖∇⊥w2‖0,T

. hT ‖p− pI‖0,∞,T ‖∇⊥w2‖0,T

. h3T |p|3,T ‖∇⊥w2‖0,T .

(2.7)
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Using the trace inequality (1.7), inverse inequality, and µijl,k = O(h4T ),

|II| .
3∑
k=1

‖Bk(pI − p)‖0,ek‖∂2tkw2‖0,ek

.
3∑
k=1

(
h
− 1

2

T ‖Bk(pI − p)‖0,T + h
1
2

T |Bk(pI − p)|1,T
)

×
(
h
− 1

2

T ‖D
2w2‖0,T + h

1
2

T |D
2w2|1,T

)
.

3∑
k=1

(h
− 1

2

T |h
4
T (pI − p)|2,T + h

1
2

T |h
4
T (pI − p)|3,T )× (h−

3
2 ‖∇⊥w2‖0,T )

. h3T |p|3,T ‖∇⊥w2‖0,T .
(2.8)

Combining (2.6)–(2.8) , we prove the theorem. ut

Supercloseness estimates in this paper hold on mildly structured grids, see,
e.g., [16,3,27,22,15].

Definition 2.1 For e ∈ Eoh, let T, T ′ ∈ Th be the two adjacent elements
sharing e. Define e1 = e′1 = e. By going along ∂T and ∂T ′ counterclockwise,
we obtain other two pairs of corresponding edges e2, e

′
2 and e3, e

′
3. We say ωe =

T ∪T ′ is an O(h1+α)-approximate parallelogram provided |ei| = |e′i|+O(h1+α)
for i = 1, 2, 3.

Definition 2.2 Assume Eoh is the disjoint union of two subsets Eoh,1 and Eoh,2.
We say the triangulation Th satisfies the (α, β)-condition if for each e ∈ Eoh,1,

ωe an O(h1+α)-approximate parallelogram, while
∑
e∈Eoh,2

|ωe| = O(hβ).

Although the expression of Bk is complicated, it suffices to keep the following
in mind.

1. {Bk}3k=1 are second order differential operators of magnitude h4T :

Bk(q) = O(h4T )

2∑
i,j,l=1

∂xi∂xjql.

2. For e ∈ Eoh, we have ωe = T ∪T ′. Let te denote the unit tangent and and ne
the unit normal to e whose directions are induced by T . Let ā = 1

|T |
∫
T
a

and ā′ = 1
|T |
∫
T ′
a. Let Be be the operator based on T and B′e based on

T ′. If ωe is an O(h1+α)-approximate parallelogram, then on the edge e, we
have the cancellation

āBe(q)− ā′B′e(q) = O(h4+min(1,α)
e )

2∑
i,j,m=1

∂xi∂xjqm. (2.9)
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Indeed, ωe is an approximate parallelogram implies that `k = `′k + O(h1+α),
tk = t′k +O(hα), sin θk = sin θ′k +O(hα), d = d′ +O(h1+α). Combining these
estimates with ā = ā′+O(h), (2.9) follows from the telescoping type inequality∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
n∑
i=1

|ai − bi|
∏
j 6=i

max(aj , bj).

3 Supercloseness estimates

In this section, first we prove a superconvergence estimate for variational error
which is a foundation of supercloseness estimates.

Lemma 3.1 Let Th satisfy the (α, β)-condition and ā be the piecewise con-
stant with ā|T = 1

|T |
∫
T
a for each T ∈ Th. For wh ∈ W2

h, it holds that

(ā(p−Π1
hp),∇⊥wh) . h2+min( 1

2 ,α,
β
2 )
(
|p|2,∞,Ω + |p|3,Ω

)
‖∇⊥wh‖0,Ω .

Proof By Theorem 2.1 and the Cauchy–Schwarz inequality, the left hand side
is

(ā(p−Π1
hp),∇⊥wh)

=
∑
T∈Th

3∑
k=1

∫
ek

āBk(p)∂2tkwh +
∑
T∈Th

O(h3T )|p|3,T ‖∇⊥wh‖0,T

=
( ∑
e∈Eoh,1

+
∑

e∈Eoh,2∪E
∂
h

) ∫
e

(
āBe(p)− ā′B′e(p)

)
∂2tewh

+O(h3)|p|3,Ω‖∇⊥w2‖0,Ω := I + II +O(h3)|p|3,Ω‖∇⊥w2‖0,Ω .

(3.1)

Here the notations in (2.9) are adopted and B′e(p) = 0 if e ∈ E∂h . By the
cancellation (2.9), the trace inequality (1.7), and the inverse inequality,

|I| .
∑
e∈Eoh,1

h4+min(1,α)‖D2p‖0,e‖D2wh‖0,e

.
∑
e∈Eoh,1

h4+min(1,α)
(
h−

1
2 ‖D2p‖0,T + h

1
2 ‖D3p‖0,T

)(
h−

1
2 ‖D2wh‖0,T

)
.
∑
e∈Eoh,1

h2+min(1,α)‖p‖3,T ‖∇⊥wh‖0,T

. h2+min(1,α)‖p‖3,Ω‖∇⊥wh‖0,Ω .
(3.2)
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For e ∈ Eoh,2, there is no cancellation. Let Ω̃ = ∪e∈Eoh,2∪E∂hωe. Using |Ω̃| =

O(hmin(1,β)) and the inverse inequality, the sum over Eoh,2 is

|II| .
∑

e∈Eoh,2∪E
∂
h

h4|D2p|0,∞,e
∫
e

|∂2tkwh|

. h2|p|2,∞,Ω
∑

e∈Eoh,2∪E
∂
h

∫
ωe

|∇⊥wh|

. h2+min( 1
2 ,
β
2 )|p|2,∞,Ω‖∇⊥wh‖0,Ω̃ .

(3.3)

Combining (3.1)–(3.3) we prove the theorem. ut

Subtracting (1.5) from (1.3) gives the error equation

(a(p− prh), qh)− (qh, b(u− urh)) + (div qh, u− urh) = 0, qh ∈ Qrh, (3.4a)

−(div(p− prh), vh) + (c(u− urh), vh) = 0, vh ∈ Vrh. (3.4b)

Douglas and Roberts [12] have shown the standard a priori error estimates:

‖p− prh‖0,Ω . hr+1‖u‖r+2,Ω ,

‖ div(p− prh)‖0,Ω . hr+1‖u‖r+3,Ω ,

‖u− urh‖0,Ω . hr+1‖u‖r+1+δr0,Ω ,

(3.5)

where δr0 = 1 if r = 0 and δr0 = 0 if r 6= 0. In addition, [12] gives the
well-known supercloseness result for the scalar unknown u

‖P rhu− urh‖0,Ω . hr+2‖u‖r+2+δr0,Ω . (3.6)

(3.6) holds on unstructured meshes and implies that ‖ div(Πr
hp − prh)‖0,Ω is

supersmall. For convenience, let ξh := Πr
hp− prh.

Theorem 3.1 For general shape regular Th and r ≥ 0,

‖ div(Πr
hp− prh)‖0,Ω . hr+2‖u‖2+r+δr0,Ω .

Proof Let

vh :=
div ξh

‖ div ξh‖0,Ω
∈ Vrh.

By (2.4) and (3.4), we have

‖ div ξh‖0,Ω = (div ξh, vh) = (P rh div p− div prh, vh)

= (div(p− prh), vh) = (u− P rhu, cvh) + (P rhu− urh, cvh).

It then follows from (2.5), (3.5), (3.6), and ‖vh‖0,Ω = 1 that

‖ div ξh‖0,Ω = (u− P rhu, cvh − P rh(cvh)) +O(hr+2)‖u‖2+r+δr0,Ω
= O(h2r+2)‖u‖r+1,Ω |cvh|h,r+1,Ω +O(hr+2)‖u‖2+r+δr0,Ω
= O(hr+2)‖u‖2+r+δr0,Ω .

In the last step, we use vh|T ∈ Pr(T ) and the inverse inequality. ut
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Before proving the superconvergence estimate of ‖Πr
hp− prh‖0,Ω , it is nec-

essary to discuss the L2 de Rham complex in R2:

H1(Ω)
∇⊥−−→ Q div−−→ V → 0.

Here V = L2(Ω) is equipped with the standard (·, ·) inner product. Since we
are dealing with variable coefficients, Q is equipped with the weighted L2 inner
product (·, ·)a:

(q1, q2)a := (aq1, q2), q1, q2 ∈ L2(Ω)2.

The weighted L2-norm is ‖q‖a = (aq, q)
1
2 . Clearly, ‖q‖0,Ω ≈ ‖q‖a for all

q ∈ L2(Ω)2. Similarly, we have the discrete subcomplex

Wr+1
h

∇⊥−−→ Qrh
div−−→ Vrh → 0. (3.7)

Since Ω is simply connected, (3.7) is exact and the discrete Helmholtz/Hodge
decomposition (cf. [1,2,9,18]) holds:

Qrh = ∇⊥Wr+1
h ⊕ gradh Vrh, (3.8)

where ⊕ denotes the direct sum w.r.t. (·, ·)a., gradh : Vrh → Qrh is the ad-
joint of −div : Qrh → Vrh w.r.t. the weighted inner product (·, ·)a, namely,
(a gradh vh, qh) = −(vh,div qh) for all qh ∈ Qrh.

The last ingredient for our supercloseness analysis is a discrete Poincaré
inequality.

Lemma 3.2

‖vh‖0,Ω . ‖ gradh vh‖a, v ∈ Vrh.

Proof div : Qrh → Vrh is surjective and there exists qh ∈ Qrh and div qh = vh.
In addition, Raviart and Thomas [23] have shown that ‖qh‖a ≈ ‖qh‖0,Ω .
‖vh‖0,Ω . It then follows

‖vh‖20,Ω = −(a gradh vh, qh) . ‖ gradh vh‖a‖vh‖0,Ω ,

which completes the proof. ut

With the above preparations, we are able to prove supercloseness estimates
for the RT1 mixed methods.

Theorem 3.2 Assume that Th satisfies the (α, β)-condition. Then

‖Π1
hp− p1h‖ . h2+min( 1

2 ,α,
β
2 )
(
|p|2,∞,Ω + ‖p‖3,Ω

)
.



12 R. E. Bank, Y. Li

Proof For simplicity, the super-index r = 1 is suppressed in the proof. Consider
the discrete Helmholtz decomposition

ξh := Πhp− ph = ∇⊥wh ⊕ gradh vh, (3.9)

for some {vh, wh} ∈ V1
h ×W2

h. Let qh = gradh vh/‖ gradh vh‖a. By Lemma 3.2
and Lemma 3.1,

‖ gradh vh‖a = (gradh vh, qh)a = −(vh,div qh)

= −
(
vh,

div ξh
‖ gradh vh‖a

)
. ‖ div ξh‖0,Ω . hr+2‖u‖r+2+δr0 .

(3.10)

It remains to bound ∇⊥wh. Let qh = ∇⊥wh/‖∇⊥wh‖a. The orthogonality
implies

‖∇⊥wh‖a = −(a(p−Πhp), qh) + (a(p− ph), qh) := I + II. (3.11)

I is split as

I = ((ā− a)(p−Πhp), qh)− (ā(p−Πhp), qh).

By ‖ā− a‖0,∞,Ω = O(h), (2.5) and Lemma 3.1,

|I| . h3|p|2,Ω + h2+min( 1
2 ,α,

β
2 )
(
|p|2,∞,Ω + ‖p‖3,Ω

)
. (3.12)

By div qh = 0, ‖qh‖0,Ω ≈ 1, (3.4) and (3.6),

II = (qh, b(u− uh))

= (b · qh, u− Phu+ Phu− uh)

= (b · qh − Ph(b · qh), u− Phu) +O(h3)‖u‖3,Ω
= O(h4)|b · qh|h,2,Ω |u|2,Ω +O(h3)‖u‖3,Ω .

(3.13)

Since qh|T ∈ P1(T )2, the inverse estimate implies

|b · qh|2,T . ‖qh‖0,T + ‖D1qh‖0,T . h−1T ‖qh‖0,T .

(3.13) then reduces to

II = O(h3)‖u‖3,Ω . (3.14)

Then the theorem follows from (3.10)–(3.12), and (3.14). ut
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4 Superconvergent recovery

In this section, we introduce a new recovery operator Rrh : Qrh →W
r+1
h ×Wr+1

h .
For qh ∈ Qrh, it suffices to specify nodal values of Rrhqh. Here a node is the
location of the degree of freedom of Lagrange elements, which can be a vertex of
a triangle or an interior point of an edge/ triangle. For vertices z1, z2, z3 ∈ Nh,
let z1z2 denote the edge with endpoints z1, z2 and z1z2z3 the triangle with
vertices z1, z2, z3. Rrh is defined in three steps.

Step 1. For each vertex z ∈ Nh, let Rrhqh(z) := qz(z), where qz ∈
Pr+1(ωz)

2 minimizes the quadratic functional

F(q) =
∑

e∈Eh(ωz)

r+1∑
j=1

(
N j
e (q)−N j

e (qh)
)2

+
∑

T∈Th(ωz)

r(r+1)/2∑
l=1

2∑
m=1

(
N lm
T (q)−N lm

T (qh)
)2
,

subject to q ∈ Pr+1(ωz)
2.

Step 2. For each node z in the interior of an edge e = z1z2 ∈ Eh, let

Rrhqh(z) := (1− α)qz1(z) + αqz2(z), α = |z − z1|/|e|.

Step 3. For each node z in the interior of the triangle T = z1z2z3 ∈ Th, let

Rrhqh(z) := α1qz1(z) + α2qz2(z) + α3qz3(z),

where α1, α2, α3 are barycentric coordinates of z w.r.t. z1, z2, and z3.
In some cases, ωz needs be enlarged to ensure that the above LS problem

has a unique solution. Since Rrh depends only on the degrees of freedom of the
RTr element, Rrhq is well-defined for all q ∈ Q and RrhΠ

r
hq = Rrhq. Recall that

N j
e (q) = q(gj) · ne if q ∈ Pr+1(T )2 and e ∈ Eh(T ).

To clarify the recovery procedure, we give details to two important cases:
RT0 and RT1 elements.

Example 1. RT0 elements on triangular meshes. In this case, R0
hqh is

a continuous piecewise linear function. At step 1, let {ej}Jj=1 = Eh(ωz). Let
mj = (mj1,mj2)ᵀ be the midpoint of ej and nj = (nj1, nj2)ᵀ be a unit normal
to ej . Then qz = (c1+c2x1+c3x2, c4+c5x1+c6x2)ᵀ ∈ P1(ωz)

2 is the minimizer
of

F(q) =

J∑
j=1

(
q(mj) · nj − qh(mj) · nj

)2
,

subject to q ∈ P1(ωz)
2.

Equivalently, cz = (c1, . . . , c6)ᵀ satisfies the normal equation Aᵀ
zAzcz =

Aᵀ
zdz, where dz = (qh(m1) · n1, . . . , qh(mJ) · nJ)ᵀ, Az = (aᵀ

1 , . . . ,a
ᵀ
J)ᵀ

is an N × 6 matrix, aj = (nj1,mj1nj1,mj2nj1, nj2,mj1nj2,mj2nj2). Then
Rhqh(z) = qz(z) for z ∈ Nh.
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To avoid ill-conditioned Az on graded meshes, we calculate qz by scaling
it properly. Let hz = |ωz|

1
2 and q̂z(x̂) = qz(z+ hzx̂) = (ĉ1 + ĉ2x̂1 + ĉ3x̂2, ĉ4 +

ĉ5x̂1 + ĉ6x̂2)ᵀ. Then ĉz = (ĉ1, . . . , ĉ6)ᵀ solves Âᵀ
zÂz ĉz = Âᵀ

zdz, where Âz =
(âᵀ

1 , . . . , â
ᵀ
J)ᵀ, âj = (nj1, m̂j1nj1, m̂j2nj1, nj2, m̂j1nj2, m̂j2nj2), m̂j = (mj −

z)/hz = (m̂j1, m̂j2). Then R0
hqh(z) = (ĉ1, ĉ4)ᵀ.

Example 2. RT1 elements on triangular meshes. In this case, R1
hqh is a

continuous piecewise quadratic function. At step 1, let {ej}Jj=1 = Eh(ωz) and

{Tl}Ll=1 = Th(ωz). Let

qz =

(
c1 + c2x1 + c3x2 + c4x

2
1 + c5x1x2 + c6x

2
2

c7 + c8x1 + c9x2 + c10x
2
1 + c11x1x2 + c12x

2
2

)
∈ P2(ωz)

2

minimize

F(q) =

J∑
j=1

(
q(xj) · nj − qh(xj) · nj

)2
+
(
q(yj) · nj − qh(yj) · nj

)2
+

L∑
l=1

2∑
m=1

(
1

|Tl|

∫
Tl

qm −
1

|Tl|

∫
Tl

qh,m

)2

, q ∈ P2(ωz)
2,

where q = (q1, q2)ᵀ, qh = (qh,1, qh,2)ᵀ, xj = 3+
√
3

6 aj + 3−
√
3

6 bj , yj = 3−
√
3

6 aj +
3+
√
3

6 bj , and ej = ajbj . Equivalently, cz = (c1, . . . , c12)ᵀ solves the normal
equation Aᵀ

zAzcz = Aᵀ
zdz, where

dz = (qh(x1) · n1, qh(y1) · n1, qh(x2) · n2, qh(y2) · n2, . . . ,

qh(yJ) · nJ ,
1

|T1|

∫
T1

qh,1,
1

|T1|

∫
T1

qh,2, . . . ,
1

|TL|

∫
TL

qh,2

)ᵀ

,

and Az = (aᵀ
1 , . . . ,a

ᵀ
2J+2L)ᵀ is a (2J + 2L)× 12 matrix,

a2j−1 = (nj1ξj , nj2ξj), a2j = (nj1ηj , nj2ηj),

ξj = (1, xj1, xj2, x
2
j1, xj1xj2, x

2
j2),

ηj = (1, yj1, yj2, y
2
j1, yj1yj2, y

2
j2), 1 ≤ j ≤ J,

a2N+2l−1 =
1

|Tl|

∫
Tl

(1, x1, x2, x
2
1, x1x2, x

2
2, 0, 0, 0, 0, 0, 0),

a2N+2l =
1

|Tl|

∫
Tl

(0, 0, 0, 0, 0, 0, 1, x1, x2, x
2
1, x1x2, x

2
2), 1 ≤ l ≤ L.

Then R1
hqh(z) = qz(z) for z ∈ Nh. At step 2, for the midpoint z of the edge

e = z1z2, Rhqh(z) = (qz1(z) + qz2(z))/2. one can again introduce the scaled
polynomial q̂z(x̂) = qz(z + hzx̂) in practice.

Assume that the solution of each local LS problem at each vertex z is
unique. By definition Rrh preserves (r+ 1)-degree polynomials, namely, Rrhq =
q on T for q ∈ Pr+1(ωT )2, which leads to the super-approximation property
‖q −Rrhq‖0,Ω = O(hr+2). However, it’s not obvious that these local LS prob-
lems are uniquely solvable. The next obvious lemma gives several statements
equivalent to uniqueness.



Superconvergent recovery of Raviart–Thomas elements 15

Lemma 4.1 The following statements are equivalent:

1. There exists a unique qz at z.
2. Azc = 0 implies c = 0.
3. Πr

hqz = 0 on ωz implies qz ≡ 0.

Hence it suffices to study the unisolvence of Πr
h on Pr+1(ωz)

2. Πr
h is moment-

based interpolation while nodal interpolation is often easier to analyze. The
next lemma reduces Statement 3 in Lemma 4.1 to the case of Lagrange inter-
polation.

Lemma 4.2 Assume Πr
hqz = 0 on ωz. Then qz = ∇⊥w for some w ∈

Pr+2(ωz). In addition, for e ∈ Eh(ωz), w(l) = 0 at any Lobatto quadrature
point l on e.

Proof Πr
hqz = 0 and (2.4) imply

div qz = div(qz −Πr
hqz) = div qz − P rh div qz = 0.

Hence qz = ∇⊥w for some w ∈ Pr+2(ωz). Given e = ab ∈ Eh(ωz),

w(b)− w(a) =

∫
e

∂tew =

∫
e

qz · ne =

∫
e

Πr
hqz · ne = 0.

Hence w(z) ≡ c for all vertices z in ωz. By subtracting c from w, we can
assume that w vanishes at all vertices. For v ∈ Pr(e),∫

e

w∂tev = −
∫
e

v∂tew = −
∫
e

qz · nev = −
∫
e

Πr
hqz · nev = 0,

and thus ∫
e

wṽ = 0 for all ṽ ∈ Pr−1(e). (4.1)

Note that on e = ab, the Lobatto quadrature
∫
e
f =

∑r+2
j=1 µjf(lj) is exact

for f ∈ P2r+1(e), where lj = a + (b − a)l̂j , {l̂j}r+2
j=1 are zeros of the polyno-

mial dr

dsr

(
sr+1(1− s)r+1

)
and {µj}r+2

j=1 are corresponding weights. Let ṽ be the

polynomial which is µ−1j at lj and 0 at rest of the (r − 1) interior quadrature

points {li}r+1
i=2,i6=j in (4.1). Then w(lj) =

∫
e
wṽ = 0. The proof is complete. ut

The next theorem gives practical criteria of checking the well-posedness of
R0
h and R1

h.

Theorem 4.1 Let z be a vertex in Th. If #T (ωz) ≥ 5 and the sum of each
pair of adjacent angles in ωz is ≤ π, then there exists a unique qz at z for R0

h.
If #T (ωz) ≥ 4, then there exists a unique qz at z for R1

h.
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(0,1)

(0,0)

( , )

( , )

(1,0)

Fig. 2 A local patch containing the reference triangle.

Proof Assume Πr
hqz = 0 on ωz. By Lemma 4.2, qz = ∇⊥w for some w ∈

Pr+2(ωz). If r = 0, then w ∈ P2(ωz) vanishes at all vertices in ωz and thus
w = 0 by Theorem 2.3 in [22]. Hence qz = 0.

If r = 1, w ∈ P3(ωz) vanishes at all vertices and midpoints of edges in ωz.
Without loss of generality, we can assume that z = (0, 0) and the reference
triangle T̂ spanned by (0, 0), (0, 1), (1, 0) is in Th(ωz).

If w is reducible, then the zero set w−1(0) is the union of three straight
lines(counting multiplicity) or the union of a straight line and a conic. Clearly
three lines cannot pass all vertices and midpoints in ωz provided #Th(ωz) ≥ 4.
If w−1(0) contains a conic branch C, then C must contain at least two vertices
a, b in ωz because #Th(ωz) ≥ 4. However, C cannot pass through (a + b)/2
by elementary geometry.

Hence reducible w cannot vanish at all nodes in ωz and we can assume

w = c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 + c5x

2
2 + c6x1x2 + c7x

2
2 + c8x1 + c9x2

is irreducible. Furthermore, we can assume one of the coefficients of highest
order terms is 1, say c1 = 1(similar argument for c2, c3 or c4 = 1). Let (α, β)
be the vertex outside T̂ next to (0, 1), see Figure 2. Solving the linear system
of equations

w(1, 0) = w(0, 1) = w(1/2, 0) = w(0, 1/2) = w(1/2, 1/2)

= w(α, β) = w

(
α

2
,
β + 1

2

)
= w

(
α

2
,
β

2

)
= 0,

we have

c1 =
3− 3α

1 + β
, c2 =

3α(α− 1)

β(1 + β)
. (4.2)

Note that β 6= 0, β 6= −1 in (4.2), otherwise the irreducible cubic curve w−1(0)
intersects with a line at five distinct points, which is impossible by Bézout’s
theorem (cf.[25]). Also α 6= 1 otherwise it violates the topology of the patch
ωz. Hence α/β = −c2/c1. Let (α′, β′) be the vertex outside T̂ next to (1, 0).
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Similarly we have α′/β′ = −c2/c1. Then it forces (α, β) = (α′, β′), which
contradicts #Th(ωz) ≥ 4. Hence r ≡ 0 and qz ≡ 0.

Therefore by Lemma 4.1, there exists a unique qz for r = 0, 1. ut

We say a vertex z is good if the condition in Theorem 4.1 holds at z, otherwise
it is a bad vertex. In practice, Th typically has a few bad vertices, e.g., boundary
vertices. There are several ways of dealing with a bad vertex z. If z is directly
connected to a good vertex z′, one can define ωz := ωz′ and thus Az is of full
column rank. A more convenient way is to empirically add some extra elements
to the patch ωz in practice, e.g., enlarge ωz by one layer. Alternatively, one
can solve a rank-deficient local least squares problem, which might reduce the
rate of superconvergence of Rh.

In the rest of this paper, we assume that

At each vertex z, there exists a unique qz.

Using the uniqueness of the LS solution, we obtain the boundedness of Rrh.

Theorem 4.2 For qh ∈ Qrh and T ∈ Th,

‖Rrhq‖0,T . ‖q‖0,ωT , r = 0, 1.

Proof For z ∈ Nh, Let σmin and σmax be the minimum and maximum sin-
gular values of Âz respectively. The goal is to show that σmin is uniformly
bounded away from 0. MAC implies #Th(ωz) ≤ Nmax = 2π/Θ. Hence it suf-
fices to consider the case #Th(ωz) = N for some fixed N ≤ Nmax. In this case,
#Eh(ωz) = 2N . Let N1 = 2N,N2 = 6 provided k = 0 and N1 = 6N,N2 = 12
provided k = 1. Let MN1×N2 and SN1×N2 be the set of N1 × N2 matri-
ces and N1 × N2 rank-deficient matrices, respectively. It is well known that
σmin = dist(Âz, SN1×N2

), the distance (measured by matrix 2-norm) from Âz

to rank-deficient matrices. dist(·, SN1×N2
) is continuous on MN1×N2

. Recall

that Âz is the scaled LS coefficient matrix determined by ωz. Consider all
possible ωz and define

Az = {Âz ∈MN1×N2
: #Th(ωz) = N,ωz satisfies MAC}.

Clearly Az is a compact set in MN1×N2
and any Âz ∈ Az is of full rank

by the uniqueness assumption. Hence σmin = dist(Âz, SN1×N2
) ≥ C1 > 0,

where C1 depends only on the minimum angle Θ. The maximum singular
value σmax ≤ C2, where C2 only depends on Ω. For qh ∈ Qrh,

|ĉz| ≤ ‖(Âᵀ
zÂz)

−1‖2|Âᵀ
zdz| ≤ σ−2minσmax|dz|

≤ C−21 C2‖qh‖0,∞,ωz . h−1z ‖qh‖0,ωz ,
(4.3)

where | · | is the Euclidean norm. Finally by (4.3), we have

‖Rrhqh‖0,T . h‖Rrhqh‖0,∞,T . h|ĉz| . ‖qh‖0,ωT ,

which completes the proof. ut
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The super-approximation property of Rh follows from the uniqueness and
boundedness results.

Theorem 4.3 For q ∈ Hr+2(Ω),

‖q −Rrhq‖0,Ω . hr+2|q|r+2,Ω , r = 0, 1.

Proof Let T = z1z2z3 ∈ Th and T1 ⊂ Ω be a smallest local triangle containing
ωT . Let qr+1 ∈ Pr+1(T1)2 be the degree-(r + 1) local Lagrange interpolant of
q using based on T1. By the uniqueness assumption, Rrhqr+1 = qr+1 on T . It
then follows from RrhΠ

r
h = Rrh that

‖q −Rrhq‖0,T ≤ ‖q − qr+1‖0,T + ‖RrhΠr
h(qr+1 − q)‖0,T . (4.4)

Using the boundedness from Theorem 4.2, the stability in (2.3), and (1.6),

‖RrhΠr
h(qr+1 − q)‖0,T . ‖Πr

h(qr+1 − q)‖0,ωT
. h‖Πr

h(qr+1 − q)‖0,∞,ωT . h‖qr+1 − q‖0,∞,ωT . hr+2|q|r+2,T1
.

(4.5)

Combining (4.4), (4.5) and the shape regularity Th completes the proof. ut

In the end, we present the superconvergent recovery estimate.

Theorem 4.4 Assume that Th satisfies the (α, β)-condition. Then

‖p−Rrhprh‖0,Ω . hr+1+min( 1
2 ,α,

β
2 )
(
|p|r+1,∞,Ω + ‖p‖r+2,Ω

)
, r = 0, 1.

Proof The theorem follows from

‖p−Rrhprh‖0,Ω ≤ ‖p−Rrhp‖0,Ω + ‖Rrh(Πr
hp− prh)‖0,Ω ,

Theorems 4.2 and 4.3, Theorem 3.2(r = 1) or Theorem 4.5(r = 0) in [19]. ut

5 Proof of Lemma 2.1

The following elementary triangular identities hold:

cos θk = (`2k−1 + `2k+1 − `2k)/(2`k−1`k+1), sin θk = `k/d, dk = `k−1`k+1/d,

nk−1 = − sin θk+1tk − cos θk+1nk, nk+1 = sin θk−1tk − cos θk−1nk,

∂2tk−1
= cos2 θk+1∂

2
tk
− 2 cos θk+1 sin θk+1∂

2
tknk

+ sin2 θk+1∂
2
nk
,

∂2tk+1
= cos2 θk−1∂

2
tk

+ 2 cos θk−1 sin θk−1∂
2
tknk

+ sin2 θk−1∂
2
nk
.

(5.1)
For each edge ek, we define several associated geometric quantities {αijl,k}1≤i,j,l≤2

α1
11,k =

1

24d`2k
`k−1`k+1

(
3`4k − (`2k−1 − `2k+1)2

)
,

α1
12,k = α1

21,k =
1

12d2`k
`2k−1`

2
k+1(`2k−1 − `2k+1), α1

22,k = − 1

6d3
`3k+1`

3
k−1,

α2
11,k =

1

48`3k
(`2k−1 − `2k+1)

(
9`4k − (`2k−1 − `2k+1)2

)
,

α2
12,k = α2

21,k = −α1
11,k, α2

22,k = −α1
12,k.



Superconvergent recovery of Raviart–Thomas elements 19

To prove Lemma 2.1, we introduce cubic bubble functions

ψ0 = λ1λ2λ3, ψk = λk−1λk+1(λk−1 − λk+1), 1 ≤ k ≤ 3.

By counting the dimension, it is clear that {ψk}3k=0 can span polynomials in
P3(T ) that vanish at {zk}3k=1 and midpoints of {ek}3k=1. In fact, {ψk}3k=0 has
been used to derive superconvergence of quadratic Lagrange elements (cf.[15])
and a posteriori error estimators (cf.[5]).

Lemma 5.1 For p2 ∈ P2(T )2,

p2 −Π1
hp2 = ∇⊥r,

where

r = αijl,βD
jl
i,β(p2)ψ0 +

3∑
k=1

`3k
12
D11

2,k(p2)ψk, ∀1 ≤ β ≤ 3.

Proof By Π1
h(p2 −Π1

hp2) = 0 and using Lemma 4.2, we have

p2 −Π1
hp2 = ∇⊥

( 3∑
k=0

ckψk
)
. (5.2)

For a unit vector d and the directional derivative ∂d, the definition of RT 1(T )
implies that ∂2dΠ

1
hp2 is proportional to d. Then applying d⊥ ·∂2d to (5.2) gives

d⊥ · ∂2dp2 =

3∑
k=0

ck∂
3
dψk. (5.3)

By direct calculation,

∂3dψ0 = 6∂dλ1∂dλ2∂dλ3, (5.4a)

∂3dψk = 6∂dλk−1∂dλk+1(∂dλk−1 − ∂dλk+1), 1 ≤ k ≤ 3. (5.4b)

In particular, ∂3tkψ0 = 0 and ∂3tkψj = −12δjk/`
3
k. By (5.4) and (5.3) with

d = tk, we have

ck =
`3k
12
nk · ∂2tkp2 =

`3k
12
D11

2,k(p2), 1 ≤ k ≤ 3. (5.5)

It remains to determine c0. (5.3) with d = nk implies that

D22
1,k(p2) = c0∂

3
nk
ψ0 + ck∂

3
nk
ψk + ck−1∂

3
nk
ψk−1 + ck+1∂

3
nk
ψk+1, (5.6)
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By ∂nkλk = −1/dk, ∂nkλk+1 = cos θk−1/dk+1, ∂nkλk−1 = cos θk+1/dk−1, (5.4)
with d = nk, (5.5), and (5.6), we obtain

c0 = − dk−1dkdk+1

6 cos θk−1 cos θk+1
D22

1,k(p2)

+
`3k
12
dk

(
cos θk+1

dk−1
− cos θk−1

dk+1

)
D11

2,k(p2)

−
`3k−1
12

dk−1
cos θk+1

(
1

dk
+

cos θk−1
dk+1

)
D11

2,k−1(p2)

+
`3k+1

12

dk+1

cos θk−1

(
1

dk
+

cos θk+1

dk−1

)
D11

2,k+1(p2).

(5.7)

Then using (5.1) and (5.7), we obtain c0 = αijl,kD
jl
i,k(p2), 1 ≤ k ≤ 3. ut

Now we can prove Lemma 2.1. In the proof, we shall use the integral
formula∫

T

λm1
1 λm2

2 λm3
3 =

2|T |m1!m2!m3!

(m1 +m2 +m3 + 2)!
,

∫
e

λm1
1 λm2

2 =
|e|m1!m2!

(m1 +m2 + 1)!
,

(5.8)
where λ1, λ2 are barycentric coordinates w.r.t. the edge e.

Proof Using (2.1) and Lemma 5.1, we have∫
T

(p2 −Π1
hp2) · ∇⊥r2 =

3∑
k=1

∫
ek

r∇⊥r2 · tk −
∫
T

r∆r2 := I + II. (5.9)

Recall that φk = λk−1λk+1 and let Ih be the linear interpolation. Then using
the hierarchical representation

r2 − Ihr2 = −1

2

3∑
k=1

`2kφk∂
2
tk
r2, (5.10)

and ∆φk = 2∇λk−1 · ∇λk+1 = −2 cos θk/(dk−1dk+1), we obtain

∆r2 =
1

4|T |2
3∑
k=1

`2k`k−1`k+1 cos θk∂
2
tk
r2. (5.11)

It then follows from Lemma 5.1, (5.11), and
∫
T
ψ0 = |T |/60,

∫
T
ψk = 0, 1 ≤

k ≤ 3, that

II = −|T |
60
c0∆r2 = − 1

240|T |

3∑
k=1

c0`
2
k`k−1`k+1 cos θk∂

2
tk
r2

= − 1

120

3∑
k=1

∫
ek

αijl,kD
jl
i,k(p2)`k cot θk∂

2
tk
r2.

(5.12)
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By the elementary identity tk = cos θk+1

sin θk
nk+1 − cos θk−1

sin θk
nk−1, Lemma 5.1, and

ψk = −`k∂tk(φ2k)/2, we have

I = −
3∑
k=1

1

12

∫
ek

`3kD11
2,k(p2)ψk∇⊥r2 ·

(
cos θk−1

sin θk
nk−1 −

cos θk+1

sin θk
nk+1

)

=

3∑
k=1

1

24

∫
ek

`4kD11
2,k(p2)φ2k

(
cos θk−1

sin θk
∂2tktk−1

r2 −
cos θk+1

sin θk
∂2tktk+1

r2

)
.

(5.13)
Then using the quadrature rule (5.8),

I =
1

720

3∑
k=1

`5kD11
2,k(p2)

(
cos θk−1

sin θk
∂2tktk−1

r2 −
cos θk+1

sin θk
∂2tktk+1

r2

)
.

In addition, (5.10) gives

∂2tktk−1
r2 = − `k

2`k−1
∂2tkr2 +

`2k+1

2`k−1`k
∂2tk+1

r2 −
`k−1
2`k

∂2tk−1
r2,

∂2tktk+1
r2 = − `k

2`k+1
∂2tkr2 −

`k+1

2`k
∂2tk+1

r2 +
`2k−1

2`k`k+1
∂2tk−1

r2.

Therefore,

I =
1

1440

3∑
k=1

∫
ek

{
`5k

sin θk
D11

2,k(p2)

(
cos θk+1

`k+1
− cos θk−1

`k−1

)

+
`4k−1

sin θk−1
D11

2,k−1(p2)

(
cos θk +

`k
`k+1

cos θk+1

)
−

`4k+1

sin θk+1
D11

2,k+1(p2)

(
`k
`k−1

cos θk−1 + cos θk

)}
∂2tkr2

(5.14)

Combining (5.12), (5.14) and using (5.1), we obtain Lemma 2.1. ut

6 Numerical experiments

We test our recovery operators Rrh with r = 1, 2, 3 by the Poisson equation

−∆u = f in Ω,

where Ω and u will be given in the next three experiments. Readers are referred
to [19] for numerical results on recovery superconvergence of the RT0 element.
The experiments are implemented using the iFEM package [8] in Matlab 2018b.
In tables, ‖·‖ is the L2-norm ‖·‖0,Ω , ‘nt’ denotes the number of triangles. The
order of convergence is p such that error≈ ndof−

p
2 , where ndof is the number

of degrees of freedom. The value of p is computed by least squares.
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Fig. 3 Delaunay initial grid on a square.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 4 (left)Regular refinement, 5504 elements. (right)Newest vertex bisection, 5504 ele-
ments.

Problem 1. In the first experiment, let Ω be the unit square [0, 1]2 and

u = exp(x1 + x2) sin(2πx1) sin(πx2)

be the exact solution. Due to Theorem 4.1, we do not enlarge the patch ωz
when z is an interior vertex. If z is a boundary vertex, extra neighboring el-
ements are added to ωz such that #ωz ≥ 8. It turns out that all local least
squares problems are uniquely solvable. We start with the Delaunay triangula-
tion in Fig. 3, and computed a sequence of meshes by regular refinement, i.e.,
dividing an element into four similar subelements by connecting the midpoints
of each edge, see Table 1. We also computed a sequence of meshes by newest
vertex bisection (cf. [20,8]), see Fig. 4 and Table 2.

For regular refinement, the sequence of grids satisfies (α, β)-condition with
(α, β) = (∞, 1). For RT1 elements, Theorem 3.2 predicts that ‖Π1

hp− p1h‖ =
O(h2.5), which is confirmed by Table 1. In view of the high order recovery
superconvergence ‖p − R1

hp
1
h‖ = O(h3.4), our supercloseness estimate ‖p −

R1
hp

1
h‖ = O(h2.5) in Theorem 4.4 might be suboptimal.
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The sequence of grids created by newest vertex bisection is far from uni-
formly parallel, i.e., almost no pair of adjacent triangles forms an O(h1+α)
approximate parallelogram with some positive α. Hence there is no super-
closeness in Table 2. Surprisingly, we still observe apparent superconvergence
for ‖p−R1

hp
1
h‖.

Problem 2: Although our supercloseness estimates only work for RT0 and
RT1 elements, we perform numerical experiments on the recovery operators
R2
h and R3

h for RT2 and RT3 elements. We use the same Ω, u, and initial mesh
with regular refinement in Problem 1. Local patches ωz is chosen in the same
way as in Problem 1. The numerical results are presented in Tables 3 and 4.

As mentioned in Problem 1, the sequence of grids satisfies (α, β)-condition
with (α, β) = (∞, 1). Unlike RT0 and RT1 elements, there is no supercloseness
phenomenon for RT2 and RT3 even on regularly refined meshes. However, it
can be observed that the rate of recovery superconvergence is at least ‖p −
Rrhp

r
h‖ = O(hr+2) with r = 2, 3. Therefore, the supercloseness estimate is not

a necessary ingredient of superconvergence analysis. We conjecture that the
superconvergence is due to a significant number of locally symmetric patches,
see [24] for the theory of Lagrange elements.

Problem 3. Postprocessing superconvergence is often used to develop
recovery-type a posteriori error estimator and adaptive FEMs. In the end,
we test the adaptivity performance of R1

h on the domain Ω = [−1, 1]2\Ω0,
where Ω0 is a right triangle whose smallest angle is ω = π/24, see Fig. 5(left).
Let

u(r, θ) = r
π

2π−ω sin

(
π

2π − ω
θ

)
− r2

4
,

where (r, θ) is the polar coordinate. The corresponding source f = −∆u = 1.
We use the classical adaptive feedback loop (cf. [10,21])

SOLVE→ ESTIMATE→ MARK→ REFINE.

It will return a sequence of meshes {Th`}`≥0 and numerical solutions {ph`}`≥0.
The algorithm starts from the initial grid Th0

in Fig. 5(left). In the procedure
ESTIMATE, ηT = ‖R1

h`
p1h` − p

1
h`
‖0,T serves as a posteriori error estimator for

each triangle T ∈ Th` . The procedure MARK selects a collection of triangles
M` ⊂ Th` such that ∑

T∈M`

η2T ≥ 0.3
∑
T∈Th`

η2T .

Then the elements in M` and necessary neighboring elements are refined by
local mesh refinement strategy to yield a conforming subtriangulation Th`+1

of Th` . In particular, we use regular refinement with bisection closure in the
procedure REFINE, see Fig. 5(right) for an adaptively refined triangulation.
The numerical results are presented in Fig. 6.

It can be observed that the adaptive algorithm yields optimal rate of con-
vergence and apparent recovery superconvergence. A distinct feature of the a
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posteriori error estimator ηh` := ‖R1
h`
p1h` − p

1
h`
‖0,Ω =

(∑
T∈Th`

η2T
) 1

2 is the

well-known asymptotic exactness:

lim
`→∞

ηh`
‖p− p1h`‖0,Ω

= 1,

which is numerically confirmed using the rate of superconvergence in Fig. 6
with a triangle inequality, see, e.g., [27,4] for details.

Table 1 RT1 with regular refinement

nt ‖p− p1h‖ ‖Π1
hp− p

1
h‖ ‖p−R1

hp
1
h‖

86 3.176e-1 4.297e-2 5.186e-1
344 8.000e-2 7.852e-3 5.560e-2
1376 2.006e-2 1.397e-3 5.344e-3
5504 5.022e-3 2.461e-4 4.929e-4
22106 1.256e-3 4.336e-5 4.616e-5
order 1.998 2.501 3.414

Table 2 RT1 with bisection refinement

nt ‖p− p1h‖ ‖Π1
hp− p

1
h‖ ‖p−R1

hp
1
h‖

86 3.176e-1 4.297e-2 5.186e-1
344 1.325e-1 1.092e-1 7.453e-2
1376 3.401e-2 2.682e-2 1.005e-2
5504 8.604e-3 6.607e-3 1.610e-3
22016 2.164e-3 1.637e-3 3.336e-4
order 1.979 2.020 2.605

Table 3 RT2 with regular refinement

nt ‖p− p2h‖ ‖Π2
hp− p

2
h‖ ‖p−R2

hp
2
h‖

86 2.378e-2 5.201e-3 1.505e-1
344 3.022e-3 5.488e-4 1.005e-2
1376 3.792e-4 6.501e-5 5.247e-4
5504 4.745e-5 8.002e-6 2.551e-5
22106 5.933e-6 9.953e-7 1.351e-6
order 2.993 3.080 4.215

7 Concluding remarks

In this paper, we develop supercloseness estimate for the second lowest order
RT element and a family of postprocessing operators Rrh for higher order RT
elements applied to second order elliptic equations. Since both the analysis of
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Table 4 RT3 with regular refinement

nt ‖p− p3h‖ ‖Π3
hp− p

3
h‖ ‖p−R3

hp
3
h‖

86 3.733e-3 3.394e-3 4.022e-2
344 2.359e-4 2.140e-4 1.180e-3
1376 1.478e-5 1.338e-5 2.668e-5
5504 9.242e-7 8.354e-7 6.377e-7
order 3.994 3.996 5.330
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Fig. 5 (left)Initial grid for the adaptive algorithm. (right)Adaptive grid, 2026 elements.
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Fig. 6 Error curves for RT1.

supercloseness and postprocessing operators are local, our superconvergence
results can be adapted to Neumann and mixed boundary conditions. In prac-
tice, Rrh can be extended to 3-dimensional RT elements in a straightforward
way although the theoretical analysis in this paper may need significant mod-
ifications; see also [13] for numerical experiments on a different postprocessing
operator for the lowest order RT elements in R3.
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