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Abstract. In this paper, we consider local mesh refinement algorithms and data structures for
finite element methods for linear elliptic partial differential equations in the plane. Quadrilateral and
triangular are treated in a unified fashion. Because we restrict the local refinement to be regular, the
resulting finite element systems are always sparse, and the refinement algorithms can be implemented
efficiently, in time proportional to the number of elements.

1. Introduction. The finite element method for computing approximate solu-
tions to linear elliptic partial differential equations in the plane [12] is usually consid-
ered to have three parts: subspace selection, matrix assembly, and matrix solution.
If a particular approximate solution is deemed too inaccurate, improvement may be
obtained by selecting a larger subspace, using either mesh refinement or higher-order
basis functions. In this paper, we consider various aspects of mesh refinement, partic-
ularly in the context of accuracy improvement in the presence of singularities in the
solution to the partial differential equation.

A finite element mesh is a subdivision of the domain Ω of the differential equation
into a number of polygons, called elements. In this paper, we deal only with meshes
formed of shape-regular quadrilateral or triangular elements, and we assume that Ω
is, in fact, specified as the union of such elements. Extensions to allow for curved
edges in the boundary of Ω are straightforward.

Throughout this paper, we assume that the finite element basis functions are
piecewise linear for triangular meshes or bilinear (isoparametric) for quadrilateral
meshes. In part, the reason for this is simplicity, since many of our remarks apply as
well to higher order bases. Moreover, since we are concerned with mesh refinement
in the presence of singularities, it may often be the case that little benefit can be
gained through the use of higher order, more costly finite elements. For discussion
of accuracy improvement through the use of higher order elements for problems with
smooth solutions or point singularities, see [1, 14].

Mesh refinement strategies are of three types. In global mesh refinement, every
element in the mesh is refined to obtain a finer mesh. In most cases, this is the simplest
strategy to implement, but it can be very wasteful in the sense that many elements
are generated away from the areas of interest. A modification of the global strategy is
semi-local mesh refinement, in which elements in one or more selected cross-sections
of the mesh are refined. In certain cases this strategy may be implemented as easily
as global refinement and may be less wasteful. However, complications occur when
the desired refinement does not correspond to a natural cross-section of the mesh.

The last refinement strategy is (adaptive) local mesh refinement, in which only
selected elements are refined. This is an attractive strategy for problems involving
either sharp fronts or point singularities, because the refinement can be restricted to
those portions of Ω where it is required. However, for adaptive local mesh refinement
to be efficient, it is necessary that:

(i) the best (or nearly best) elements to refine can be selected cheaply;

∗Scientific Computing, R. Stepleman et al (eds.), IMACS/North-Holland, 1983.
†Department of Mathematics, University of California at San Diego, La Jolla, California 92093.
‡Exxon Production Research Company, Houston Texas 77001.
§Exxon Production Research Company, Houston Texas 77001.

1



(ii) the resulting systems of linear equations retain their sparseness as the mesh
is refined; and

(iii) the local refinement process itself can be implemented efficiently.
For our purposes, we will assume that (i) holds; there is developing an extensive
literature on this selection problem, and the reader is referred to such work as [14, 4, 8]
for details. In this work we focus on (ii) and (iii). For example, if the system of
equations becomes increasingly dense as the mesh is refined, then the advantage gained
by refining only a small number of elements is partially lost. (In global refinement, all
matrices retain the original sparseness.) And if the local refinement process cannot be
implemented efficiently, then the actual cost of computing an approximate solution to
the differential equation may actually be higher with local refinement than with the
other two strategies, even in cases where the other strategies are extremely wasteful.

An outline of this paper is as follows. Section 2 introduces notation and other
basic information common to all the meshes we consider. Sections 3 and 4 develop
formal criteria for regular meshes and refinement strategies that guarantee that (ii)
holds for quadrilateral and triangular meshes, respectively. Section 5 describes a
sample refinement algorithm that, we will show, generates refined meshes satisfying
the criteria developed in Sections 3 and 4. Section 6 discusses the implementation
of the refinement algorithm, concentrating mainly on the required data structures,
and demonstrating that the algorithm, in some sense, optimally satisfies (iii). An
appendix outlines the proof of several statements made in Sections 3 and 4. We note
that some of the information in this paper has appeared previously, in less unified
form, in [14, 7, 6, 5].

2. Definitions and Notation. Let Ω be a bounded, polygonal region of IR2.
The domain Ω is assumed to be decomposed into a small number of macro elements
ti, 1 ≤ i ≤ nt0 which form a tessellation T0 of Ω. The macro elements are either
triangles or quadrilaterals, and we require that is ti, tj ∈ T0, ti 6= tj , then t̄i ∩ t̄j is
either empty, a common vertex, or a shared edge.1

We assume all macro elements are shape regular; that is, each element’s side
lengths are bounded above and below by fixed multiples of that element’s diameter,
and all interior angles are uniformly bounded above 0 and below π. In particular,
quadrilateral elements must be strictly convex. Shape regularity does not require
global quasi-uniformity of the mesh.

Globally, we denote the vertices of T0 by vk, 1 ≤ k ≤ nv0 and the edges by ek,
1 ≤ k ≤ ne0, As with the usual types of finite element computations (e.g., matrix
assembly), it is important in our algorithms to have also have local notation to describe
the edges and vertices of a given element. Thus we say that element ti contains ke
vertices νji , 1 ≤ j ≤ ke and ke edges εji , 1 ≤ j ≤ ke, where ke = 3 for triangles and
ke = 4 for quadrilaterals (cf. Figure 2.1). Thus, for 1 ≤ i ≤ nt0, and 1 ≤ j ≤ ke,
νji = vk for some k, 1 ≤ k ≤ nv0 and εji = e` for some `, 1 ≤ ` ≤ ne0. Throughout

this paper, we will view local designations (e.g., νji ) and global designations (e.g., vk)
as interchangeable names for a unique entity, and use whichever designation makes
more sense in context.

To ensure the shape regularity of the elements in T0 is inherited by elements
created during the refinement process, we restrict attention to bisection-type mesh
refinement. A triangular element ti is subdivided into four geometrically similar
triangles, called the sons of ti, by pairwise connecting the midpoints of the three edges

1 t̄i denotes the closure of ti.
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Fig. 2.1. Local Notation.

of ti. Element ti is referred to as the father of its sons. In the case of quadrilaterals,
the sons are created by joining midpoints of opposing sides of ti (see Figure 2.2).
In this case, the sons are not geometrically similar to their father (except for the
important special case in which ti is a parallelogram), but they remain shape regular.
Indeed, they become “nicer” in the sense that the bilinear mapping which maps
the unit square (or reference element) to a son of ti is more nearly affine than the
corresponding mapping for ti itself. In Figure 2.2, the numbers in the corners of
the quartet of sons are to be interpreted as the superscript j in the local designations
νjsi+k of the vertices of tsi+k, 0 ≤ k ≤ 3. They define the geometric orientation of each
member of the quartet relative to the father. In particular, note that vertices of each
son in Figure 2.2 are locally ordered in a fashion consistent with Figure 2.1. It is this
consistency, and the fact that the sons of an element bear known, fixed relationships
to their father, and not the specific conventions we adapt, that are important in the
algorithms we discuss.

In the case of triangles, we will use a second type of refinement called “green”
refinement, in which a vertex of ti is connected to the midpoint of the opposite edge
(Figure 2.3). While green refinement creates elements which can be less shape regular
than their father, we will restrict its use so that no element created by green refinement
is ever refined itself.

An admissible mesh [4, 3] is a collection of refined and unrefined elements, which
is recursively defined as follows:

(i) T0 is an admissible mesh; and
(ii) if T is admissible and t ∈ T is refined, then T ∪ sons of t is admissible.2

Given an admissible mesh T , and vertex v which is a corner of each unrefined
element it touches is called regular, and all other vertices are called irregular (Figure
2.4). Because admissible meshes allow irregular vertices, they are not necessarily
tessellations of Ω.

The irregularity index [4] of a mesh T is the maximum number of irregular vertices
on a side of any unrefined element. A k-irregular mesh has irregularity index no greater
than k. For example, the mesh in Figure 2.4 is a 3-irregular mesh. Vertices lying on
∂Ω (which are necessarily regular) are called boundary vertices; all other vertices are
called interior vertices.

Each edge of an element ti is either a boundary edge of Ω or part of the perimeter
of one or more other elements in the mesh. We define the neighbor of ti across
edge εji to be the smallest element with one edge which completely overlaps εji . For

convenience, we denote both this neighbor and its global element number by τ ji . It is

2Here sons of t are created only by regular refinement.
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Fig. 2.2. Bisection-Type Mesh Refinement.

important to note that the neighbor relation is nonsymmetric and time-dependent.

The level `i of element ti is defined inductively as follows

`i =

{
1 if ti ∈ T0

`fi + 1 if ti /∈ T0
,

where tfi is the father of ti.

If we regard Ω as a pseudo-element whose “sons” are the macro-elements of T0, the
process of creating an admissible mesh can be viewed as the creation of an element tree,
in which the root is Ω, other nodes correspond to macro-elements or elements created
during the refinement process, and the branches lead downward from an element to
its sons. All internal nodes in the tree have exactly four sons, except for Ω, which has
nt0 sons. Leaves of the tree correspond to unrefined elements. The level `i of ti then
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Fig. 2.4. Irregular Vertices.

corresponds to the distance from ti to Ω in the tree; that is, the length of the shortest
part from ti to the root.

In general, it is advantageous to “regularize” an admissible mesh T by restricting
the number of irregular vertices on each edge. There are several reasons for this:
simplifying computations such as matrix assembly and mesh refinement, increasing
approximation power by insuring that neighboring elements are not of vastly differing
sizes, and guaranteeing that each element is in the support of a bounded number of
basis functions. (cf. Sections 3 and 4). There are a number of ways to accomplish this
regularization, but we shall mainly consider the following 1-irregular rule [14, 6, 5]
and several of it variants.

1-Irregular Rule: Refine any unrefined element for which any of
the sides contains more than one irregular vertex.

We shall see that applying such a rule as often as possible to an admissible mesh
T leads to a regularized mesh having several important properties described in the
next two sections. The algorithm described in Section 5 incorporates both this rule
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and the ke − 1 neighbor rule:

ke − 1 Neighbor Rule: Refine any element with ke − 1 neighbors
that have been regularly refined.

3. Quadrilateral Meshes. In this section, we consider bisection-type local
mesh refinement for quadrilateral meshes (e.g, [14, 4, 2]). Let T0 be the given initial
mesh and T be an admissible mesh generated from T0. For convenience, in this section
we assume T0 consists of a single square macro element. Thus we can use bilinear,
rather than isoparametric basis functions in our discussions, and the initial adjacency
information about elements in T0 is not required. These simplifications do not have
a significant impact on the issues addressed in this section.

Let S = S(T ) denote the space of C0 piecewise bilinear functions associated with
T .

S = {φ |φ is continuous and φ|t∈T is bilinear}

We define a basis B = {bi} for S as the unique set of elements of S satisfying the
Lagrange conditions

bi(vj) = δij

for all regular vertices vj in T . Here δij is the Kronecker delta. The basis B is well
defined [14, 4]. This choice of basis gives a natural correspondence between basis
functions and the regular vertices in the mesh. Figure 3.1 shows a typical case in
which the elements forming the support of bi are denoted by dots.

vit
t t

t tt

Fig. 3.1. Support of bi.

In a mesh with no irregular vertices, the support of a given basis function bi is
limited to those unrefined elements which have vi as a vertex. There are thus at
most four nonzero, linearly independent basis functions in any given element. These
two properties imply that the finite element stiffness matrix will be sparse and the
elementwise assembly procedure will be similar for all elements. The following example
[14] shows that these desirable properties cannot be guaranteed for general admissible
meshes.

Let T0 be (0, 1) × (0, 1), and let T` be the (` + 1)-level mesh resulting from the
regular refinement of exactly those elements containing the point p = (2/3, 2/3). T4
is shown in Figure 3.2. Since 2/3 = 1− 1/2 + 1/4− 1/8 + 1/16− . . ., T` is formed by
alternately refining the upper right or lower left son of the of the smallest currently
refined element containing p. Each mesh T`, ` ≥ 3 is 2-irregular.
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Fig. 3.2. T4.

The regular vertices in T` are the ten boundary vertices and the ` interior vertices

vi = (pi, pi), pi =

i∑
j=0

(
1

2

)j
, 1 ≤ i ≤ `.

Then the smallest unrefined element in T` containing p is in the support of the basis
functions corresponding to vi, 1 ≤ i ≤ `, and the resulting stiffness matrix will be
essentially dense for large values of `. The element assembly process will also be
complicated due to the large numbers of nonzero basis functions in many elements.

This provides the motivation for considering subsets of the class of admissible
meshes for which certain desirable properties can be guaranteed. Our basic strategy
is to take an arbitrary admissible mesh T and to generate a more refined mesh T ′
having the desired properties by applying one or more refinement rules. Let T ′ have
unrefined elements {t′i}, regular vertices {v′i}, and associated finite element space S ′
with basis B′ = {b′i}.

For example, a mesh T ′ generated using the 1-irregular rule will satisfy the fol-
lowing properties (see [14]):

Q1. T ′ is 1-irregular;
Q2. T ′ uniquely contains the fewest elements of any 1-irregular mesh containing

T ;
Q3. There are at most four basis functions b′j having support in any element t′i;
Q4. The restrictions to any element t′i of those basis functions functions nonzero

in t′i are linearly independent;
Q5. The support of any basis function b′i intersects the support of at most twelve

other basis functions b′j ;
Q6. |{t′i}| ≤ 9|{ti}|;
Q7. {v′i} can be partitioned into mutually disjoint sets V1, V2, . . . , V12 such that

for any distinct v′i and v′j in the same set Vk, supp(b′i)∩ supp(b′j) contains no
elements.

The effect of properties Q1-Q7 is to ensure the efficiency of the overall solution
process. Q1, Q3, and Q4 combine to allow the assembly procedure for the stiffness
matrix that is much simpler than what might be required for T . Q1 implies that the
levels of neighboring elements differ by at most one, and allows the use of mesh data
structures that conserve storage without a severe penalty in computational effort (see
Sections 5 and 6). Q2 shows that no mesh with these two properties can have fewer
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elements than T ′. Q6 ensures that the stiffness matrix for T ′ is not too much larger
than the one for T . and Q5 shows that it is not significantly denser. (in fact Q5
and Q6 are usually very pessimistic; normally T ′ has only a few extra elements, and
rows of the stiffness matrix have nine nonzeroes rather than the thirteen suggested by
Q5.) In the terminology of [3], Q6 shows that the overlap index of S ′ is bounded by
twelve. Q7 is of interest in applying iterative methods to the solution of the system
for T ′. For instance, Q7 implies that an SOR iteration for the system can be broken
up into separate vectorizable iterations for each Vk, since the new coefficient for a
basis function in Vk does not depend on any other new coefficient for a basis function
in Vk.

In the Appendix, we outline a proof that for an arbitrary admissible mesh T , Q4
holds if and only if

Q8. There exist no unrefined elements t1, t2 and t3 with `1 < `2 < `3, all contain-
ing a common irregular vertex on their boundaries.

For quadrilaterals, the 1-irregular rule is equivalent to the following big element
rule:

Big-Element Rule: Whenever Q8 is violated, refine t1.

We do not know of other rules that always require no more mesh refinement than the
1-irregular rule but are still sufficient to guarantee properties Q3-Q6. For example,
we might use the following middle element rule:

Middle-Element Rule: Whenever Q8 is violated, refine t2.

The resulting mesh would satisfy Q3 and Q4 and might contain fewer elements than
T ′, but no property analogous to Q5 could be insured.

A 2-irregular rule analogous to the 1-irregular rule cannot guarantee Q3, since the
mesh illustrated in Figure 3.2 would satisfy such a rule. In the case of quadrilateral
elements, the 1-irregular rule by itself is sufficient to guarantee Q1-Q7. Nonetheless,
it may be desirable to also impose the 3-neighbor rule. By refining an element with
irregular vertices on three sides, one adds only two additional vertices but obtains four
additional basis functions in S ′. Meshes generated using a combination of the two
rules satisfy properties analogous to Q1-Q7, with, in some cases, larger constants.

4. Triangular Meshes. In this section, we consider bisection-type local mesh
refinement for triangular meshes (e.g, [6, 5]). As in the case of quadrilaterals, our
goal is to develop a procedure which is efficient for mesh generation and use in matrix
assembly and solution.

Let T0 be a given initial mesh and T be an admissible mesh generated from T0. For
convenience, in this section we assume T0 consists of a single triangle. Let S = S(T )
denote the space of C0 piecewise linear functions associated with T .

S = {φ |φ is continuous and φ|t∈T is linear}

We define the Lagrange basis B = {bi} for S as in the case of quadrilateral elements.

Given an admissible mesh T , we can obtain a more refined mesh T ′, with unrefined
elements {t′i}, regular vertices {v′i}, subspace S ′ and basis B′ = {b′i}, by application
of the 1-irregular rule.
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The properties of the 1-irregular rule when applied to triangular meshes differ
somewhat from the case of quadrilateral elements. First, unlike quadrilaterals, refine-
ment of triangular elements does not always generate new regular vertices. Let the
`+ 1 level mesh T` be generated by successive refinement of the center element of the
smallest quartet of currently unrefined elements. T3 is illustrated in Figure 4.1. All
the T` are 1-irregular. However, the only regular nodes for ` > 2 are the six boundary
nodes.
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Fig. 4.1. T3.

Second, the 1-irregular rule for triangular meshes does not guarantee exactly three
basis functions will be nonzero in each element. Consider the situation in Figure 4.2.
The mesh satisfies the 1-irregular rule, but the four basis functions corresponding to
the vertices marked by dots are nonzero in t.
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Fig. 4.2. Four Nonzero Basis Functions in t.

Given a 1-irregular mesh T ′, we can generate a more refined mesh T ′′ by applying,
wherever possible, the following green rule:

Green Rule: With as few elements as possible, triangulate any
unrefined element with an irregular vertex on one or more of it sides.

The three situations in which the green rule can occur are shown in Figure 4.3.
The following analogues of Q1-Q7 hold:

T1. T ′ is 1-irregular;
T2. T ′ uniquely contains the fewest elements of any 1-irregular mesh containing

T ;
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Fig. 4.3. The Green Rule.

T3. There are at most three basis functions b′′j having support in any element
t′′i ∈ T ′′.

T4. The restrictions to any element t′′i of those basis functions functions nonzero
in t′′i are linearly independent;

T5. The support of any basis function b′′i intersects the support of at most twelve
other basis functions b′′j ;

T6. |{t′i}| ≤ 13|{ti}| and |{t′′i }| ≤ 2|{t′i}|;
T7. {v′i} can be partitioned into mutually disjoint sets V1, V2, . . . , V9 such that

for any distinct v′i and v′j in the same set Vk, supp(b′i)∩ supp(b′j) contains no
elements.

T5 and T6 are usually pessimistic. The most common number of nonzeroes in a
row of the stiffness matrix is seven, and for most meshes encountered in practice T ′′
contains fewer than twice as many elements as T .

The big element rule and the 1-irregular rule are not equivalent for triangular
meshes; the big element rule may force more refinement than the 1-irregular rule.
While the green rules solves the problem of irregular vertices by regularizing them at
the conclusion of the refinement process, other strategies are possible. For example,
a rule like

Refine the neighbors of any element whose refinement is dictated by
accuracy considerations.

used in conjunction with, say, the big element rule, forces the irregular vertices to
lie in regions where refinement is not required for reasons of accuracy. In that case,
regularizing may not be necessary.

The 2-neighbor rule, used in conjunction with the 1-irregular rule, leads to 1-
irregular meshes in which each remaining irregular vertex is located at the midpoint
of an edge of a unique unrefined element. When the green rule is applied to such a
mesh, the only situation which occurs is that of Figure 4.3a. Analogues of T1-T6 hold
for this process, but the constants are somewhat larger.

Note that the green rule could also be used with quadrilateral elements, refin-
ing quadrilaterals with irregular vertices on their sides into quadrilaterals and trian-
gles. The three special cases for quadrilateral meshes satisfying the 1-irregular and
3-neighbor rules are shown in Figure 4.4.

One can also use the green rule in conjunction with the k-irregular rule for any
fixed k > 1. Analogues of T1-T6 would hold for such meshes, with differing constants.
The number of special cases requiring irregular refinement as in Figure 4.3 increases
with increasing k. The amount by which the shape regularity of the result elements

10



�
�
�
�

A
A
A
A

t

(a)

t t

(b)
�
�
�
�

��
��
@@

t t

(c)

Fig. 4.4. The Green Rule for Quadrilaterals.

is degraded also increases.

5. A Local Mesh Refinement Procedure. In this section we present an
algorithm for computing locally refined meshes of the types described in Sections 3
and 4 [6]. For quadrilateral elements, our algorithm implements the 1-irregular and
3-neighbor rules, and for triangles, it implements the 1-irregular and 2-neighbor rules.

Our scheme assumes that a logical-valued function DV TEST is available which
indicates, for a given element in the mesh, whether the element is to be refined.
DV TEST can either be a user specification of a fixed refinement pattern (say, by
using element level numbers to control refinement) or be the output of a self-adaptive
mechanism within the code which uses local error indicators. An element in the mesh
may be refined either because DV TEST indicates it should be refined, or because it
violates the ke − 1-neighbor rule or the 1-irregular rule. Note that a given element
may satisfy both rules when it it is processed, but violate a rule later in the refinement
process due to the refinement of one or more of its neighbors. Thus it is clear that we
must examine certain elements more than once.

Procedure REFINE
{ If this is the first call to REFINE, THEN [nt← nt0];
i← 1;
While (i ≤ nt) Do

[For j ← 1 to ke Do
[If τ ji is unrefined Then

[If τ ji has ke − 1 or ke refined neighbors Then DIV IDE(τ ji );

Else If `i > `τj
i

+ 1 Then DIV IDE(τ ji )]];

If DV TEST (ti) Then DIV IDE(ti);
i← i+ 1]};

Procedure DIVIDE
{ si ← nt+ 1;
nt← nt+ 4;
create tsi+j , 0 ≤ j ≤ 3, along with associated vertices};

Logical Function DVTEST
{. . . }

Fig. 5.1. Procedure REFINE.

The refinement procedure REFINE is presented in Figure 5.1. Notice that
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REFINE is a one-pass algorithm in which elements are processed in the order they
are created; suppose the refinement of tk is forced by the ke−1-neighbor or 1-irregular
rule because of the refinement of ti (for whatever reason). REFINE learns this fact
(and acts on it) by testing the neighbors of an element against the ke − 1-neighbor
and 1-irregular criteria before the element itself is tested for refinement in DV TEST .
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Fig. 5.2. Refinement of ti.

For example, in the situation depicted in Figure 5.2, when ti is refined, its four
sons are added to the end of the element list. When son tj is processed, its neighbor
tk violates the 1-irregular rule, so tk is refined and it’s sons are added to the end of
the element list. If the refinement of tk causes new violations of the 1-irregular or
ke − 1-neighbor rules, this will be discovered and remedied when the sons of tk are
processed.

Since a given element has at most ke neighbors, we test (and possibly refine) at
most ke + 1 elements for any reason at any step of the process. We will show that
generating the data to carry out any given step of REFINE requires constant time.
Thus, the complexity of REFINE is linear in the number of elements.

Since the 2-neighbor and 1-irregular rules are satisfied by triangular meshes gen-
erated in REFINE, each remaining irregular vertex is the sole edge midpoint in some
unrefined element. Each such element is refined by GREEN into two triangles.

Note that procedure REFINE can be reentered using the mesh generated by
a previous call to REFINE. (This requires setting nt ← nt0 outside REFINE.)
It is thus easy to incorporate REFINE into adaptive refinement schemes in which
mesh generation is alternated with equation solution. Information regarding which
elements are to be refined at a given stage is passed to REFINE via DV TEST . In
the case of triangular elements, green triangles are logically removed from the mesh
before invoking REFINE, in order to avoid the possibility of creating new triangles
with excessively small angles.

6. Data Structures and Implementation. In order to carry out procedure
REFINE and the other procedures normally associated with finite element calcu-
lations, we must be able to generate and retrieve certain data about elements and
vertices in the mesh. We describe this data below in the form of functions.

For a given element ti, we must be able to compute:

F1. knots:

knots(j, i) = k where νji = vk, 1 ≤ j ≤ ke

F2. neighbors:

n(j, i)

{
= τ ji if εji is an interior edge

< 0 if εji is a boundary edge

}
, 1 ≤ j ≤ ke

12



F3. father:

f(i) = k where tk is the father of ti

F4. sons:

s(i) =

{
si if ti is refined
0 if ti is not refined

F5. level:

`(i) = `i

For a given vertex vk we must be able to compute:

F6. vertex type:

vty(k) =



1 if vk is a user boundary vertex
2 if vk is a user interior vertex
3 if vk is a regular boundary vertex
4 if vk is a regular interior edge vertex
5 if vk is a regular interior center vertex
6 if vk is irregular

User vertices are those associated with T0 (1 ≤ k ≤ nv0). Regular interior edge
vertices are those regular interior vertices which were created as the midpoint of an
element edge during the refinement process. Regular interior center vertices were
created as the center vertex in the refinement of a quadrilateral element.

F7. vertex fathers:

vf(j, k) = mj if vk was obtained as the midpoint of the edge

with endpoints vmj
, 1 ≤ j ≤ 2

Vertex fathers are well defined for vertices of types 3, 4, and 6. If vk is a center vertex,
it was created during the refinement of a particular quadrilateral element, and we can
require its global vertex number k to be the largest of the nine vertices involved in
that refinement step. The vertex fathers of vk are then defined as an arbitrary pair
of opposing edge midpoints in the refined element.

F8. coordinates:

vx(k) = x-coordinate of vk

vy(k) = y-coordinate of vk

Since algorithm REFINE relies on integer triangle adjacency information, it does
not require the x and y coordinates of the vertices; they are required, however, for
the finite element matrix assembly process.

The data structure associated with and created by REFINE corresponds to a
refined element tree,,and consists of four integer arrays: two short arrays IUSR and
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IBOUND, and two larger arrays IRE and IV ERT . IBOUND is an array of length
2× nb0, where nb0 is the number of boundary edges in T0, and contains information
about the boundary conditions. IUSR is a 2 ke×nt0 array whose i-th column contains
knots(j, i) and n(j, i), 1 ≤ j ≤ ke, for macro element ti.

Let maxv (respectively maxt) be the total number of vertices (respectively ele-
ments) contained in the finest mesh generated. A refined triangular mesh with maxv
vertices will have maxt ∼ 8/3maxv refined and unrefined elements, while a quadri-
lateral mesh will have maxt ∼ 4/3maxv total elements. Then IRE will be of size
ke ×maxt and IV ERT will be of size 2×maxv. 2×maxv real words of storage will
be required for the x and y coordinates in the matrix assembly process.

i
1 − i
2 − 1 −
3 − 2 −
4 s(i) 3 s(i)

Fig. 6.1. Macro Element Nodes in IRE; Quadrilaterals (left) and Triangles (right).

Suppose nt0 = 3 mod 4. (If not, renumber the macro elements starting at 2, 3,
or 4 rather than 1 to accomplish this.) Columns 1− nt0 of IRE contain information
about macro elements, as indicated in Figure 6.1. The remaining storage in IRE is
devoted to refined elements. If ti+j , 0 ≤ j ≤ 3 form a quartet of sons of a regularly
refined element, then columns i−(i+3) of IRE contain information about the quartet
as a whole. Because nt0 = 3 mod 4, given tk with k > nt0, the decomposition

i = k − k mod 4(6.1)

j = k mod 4

both gives the starting column index i of the block of storage allocated to the quartet,
and establishes that tk is the j-th son of tf(k).

If ti+j , 0 ≤ j ≤ 3, form a quartet of quadrilaterals, columns i − (i + 3) of IRE
contain the information indicated in Figure 6.2. If the four elements form a quartet of
triangles, the the corresponding columns of IRE contain the information indicated in
Figure 6.3. The information contained in both IRE blocks is the same, except that
nine global vertex numbers are stored for quadrilaterals, while only six are needed for
triangles.

In the case of triangular elements, green triangles can be appended to the end of
the IRE array. The son field of the father should be set to point at the storage block
allocated to the pair, and given a negative value to distinguish green triangle sons
from regular triangle sons. For each pair of green triangles, we must store four global
vertex numbers and the father of the pair, so two columns of IRE are sufficient to
contain all the required data for the pair.

Information about vertices is stored in IV ERT , with column k corresponding
to vertex vk. The type of vertex information varies according to vertex type, as
illustrated in Figure 6.4.

Here IBC is simply a pointer into IBOUND that allows determination of the
appropriate boundary conditions. The IV F1, IV F2 and F fields require some expla-
nation, since they contain the key adjacency information about the mesh.

When a new vertex vk is created in the interior of Ω, the situation is typically
one of those shown in Figure 6.5 for triangular elements. In both cases, the creation
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ti ti+1

ti+3 ti+2

vknots(1,f(i)) vknots(2,i) vknots(2,f(i))

vknots(4,f(i)) vknots(4,i+2) vknots(3,f(i))

vknots(3,i+1)vknots(1,i+3)

vknots(3,i)

i i+ 1 i+ 2 i+ 3
1 f(i) `(i) − knots(3, i)
2 knots(2, i) knots(3, i+ 1) knots(4, i+ 2) knots(1, i+ 3)
3 knots(1, f(i)) knots(2, f(i)) knots(3, f(i)) knots(4, f(i))
4 s(i) s(i+ 1) s(i+ 2) s(i+ 3)

Fig. 6.2. Refined Quadrilateral Node in IRE.

of vk is caused by the creation of the quartet of regular elements ti+j , 0 ≤ j ≤ 3,
i = 0 mod 4. Since vk is irregular F is set to m, and IV F1 is set to i + j, where
vk is the midpoint of edge εjf(i) (εj+1

f(i) for quadrilateral elements) of element tf(i).

A decomposition of IV F1 as in (6.1) give the address of the storage block for the
quartet in IRE, and establishes the geometric relationship of vk to the quartet. If the
situation is as in Figure 6.5a, then F is updated when tm is refined, but vk remains
irregular. If the situation is as in Figure 6.5b, vk will become regular if element tm
is refined. In this case the IV F2 field in the same way as IV F1, but for the second
quartet. If vk is a center node in the refinement of a quadrilateral into elements ti+j ,
0 ≤ j ≤ 3, then the IV F1 field is set to i, since the geometric relationship of vk to
ti+j is established by its vertex type.

The actual refinement process consists of filling in entries in IRE and IV ERT .
When an element is refined, all the information required for IRE is trivially known,
except for the global vertex numbers for the edge midpoints. (The center node in the
quadrilateral case must be created, so its global vertex number is known.) For each
edge, we must either create new irregular or (regular) boundary vertices, or change
current irregular vertices into regular ones. To do this, we must have the ability to
compute knots(j, i), n(j, i), 1 ≤ j ≤ ke, f(i), s(i), and `(i) for any element currently
in the mesh. When a new vertex is created or changes status, all the necessary
information is present, having been generated in the process of determining whether
or not an irregular vertex already existed on the edge.
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ti+1 ti+2

ti

ti+3

vknots(3,i)vknots(1,f(i)) vknots(2,f(i))

vknots(2,i) vknots(1,i)

vknots(3,f(i))

i i+ 1 i+ 2 i+ 3
1 f(i) knots(1, i) knots(2, i) knots(3, i)
2 `(i) knots(1, f(i)) knots(2, f(i)) knots(3, f(i))
3 s(i) s(i+ 1) s(i+ 2) s(i+ 3)

Fig. 6.3. Refined Triangle Node in IRE.

vty = 1 vty = 2 vty = 3 vty = 4 vty = 5 vty = 6
0 0 IV F1 IV F1 IV F1 −IV F1

−IBC 0 −IBC IV F2 0 F

Fig. 6.4. Nodes in IV ERT .

We now discuss briefly the computation of functions F1-F8. If 1 ≤ i ≤ nt0,
knots(j, i), n(j, i) and s(i) are found by table look-up in IUSR and IRE. f(i)
and `(i) are trivially known. For i > nt0, one makes the decomposition (6.1); then
knots(j, i), s(i), f(i) and `(i) can be found by table look-up. Finding neighbors is
more complicated.

For triangles, if i = 0 mod 4 (the center element) then n(j, i) are trivially known.
If i 6= 0 mod 4, the one neighbor (the center element) is known. The other two are
found by checking the status of the two edge midpoint vertices of tf(i) which are
corners of ti. If such a vertex is a regular boundary vertex (type 3) or an irregular
vertex (type 6), then n(j, i) is found in the IBC or F fields, respectively, of IV ERT .
If the vertex is a regular interior vertex (type 4), then both IV F1 and IV F2 are
analyzed as in (6.1). One of IV F1 or IV F2 points to the quartet containing ti,
and the other points to the neighboring quartet. Since we know how this vertex is
geometrically related to each quartet, we can easily determine how the two quartets
are related. For quadrilateral elements, two neighbors are known, and the other two
can be determined by a procedure analogous to that for triangular elements.

For a given vertex vk, its vertex type can be determined by checking the signs of
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Fig. 6.5. Creation of Vertex vk.

its two entries in IV ERT . If k > nv0, the vertex fathers are found by decomposing
IV F1 as in (6.1). Once the geometric relationship of the vertex to the quartet pointed
at by IV F1 is known, the vertex fathers can be looked up in IRE.

Thus, each piece of data required by algorithm REFINE can be obtained in
constant time. Another data structure which can be applied to arbitrary admissible
meshes, but which does not obtain data in constant time, is presented in [10].

The finite element assembly procedure in addition requires the actual x and y
coordinates of the vertices. These are easily generated from the vertex fathers when
k > nv0 using

vx(k) =
vx(vf(1, k)) + vx(vf(2, k))

2

vy(k) =
vy(vf(1, k)) + vy(vf(2, k))

2

Since vf(j, k) < k for k > nv0, j = 1, 2, and the x and y coordinates for the vertices
in T0 are given, the remaining coordinates can be generated in one pass through the
vertices in the order in which they were created.

We conclude with several remarks on storage requirements. For a given mesh
with maxv vertices, a standard data structure for representing the finite element
mesh is a list of pointers from unrefined elements to adjacent vertices and a list of
pointers from vertices to adjacent unrefined elements [11]. For triangular elements,
the number of unrefined elements is about 2maxv, so the standard data structure
requires about 12maxv storage. IRE and IV ERT require about 10maxv storage
for the same mesh. For quadrilateral meshes the number of unrefined elements is about
maxv, so the standard data structure requires about 8maxv storage, as opposed to
7 1/3maxv storage for IRE and IV ERT . Hence our data structures, which allow for
local mesh refinement, actually require less storage than standard data structures for
static meshes.

7. Appendix. Proofs of properties T6, T7 and the equivalence of Q4 and Q8.
We now prove property T6:

There are fewer than 13 times as many unrefined elements in the
triangular mesh T ′ as there are in T .

Proof. Since T0 consists of one triangle, the number of unrefined elements in either
T0 or T ′ is three times the number of refined elements plus one. Since T is admissible,
each element t shares a corner with at most 13 different elements of the same level as
t, so it suffices to show that
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A1. Each refined element t′ ∈ T ′ shares a corner with a refined element t ∈ T .
with the level ` of t equal to the the level `′ of t′.

A1 follows by induction on `′. Let `max be the largest level of an element in T ′.
If `′ = `max − 1 then t′ must be in T , so let t = t′. Otherwise if t′ /∈ T , t′ was forced
to refine by the 1-irregular rule, so there must be an element s′ sharing part of a side
with t′, with the level of s′ equal to `′ + 1. By induction, there is a refined element
s ∈ T sharing a corner with s′ with level `′ + 1. Then t, the father of s, must satisfy
A1 (Figure 7.1). The proof is very similar to the proof of property Q6 given in [14].
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t′

s′

s

Fig. 7.1. Proof of Property T6.

We now prove property T7:

The regular triangular mesh vertices {v′i} for the mesh T ′′ can be
partitioned into mutually disjoint sets V1, V2, . . . , V9 such that for any
distinct v′i and v′j in the same set Vk, supp(b′i)∩ supp(b′j) contains no
elements.

Proof. For simplicity, we consider the case in which T0 consists of the triangle with
vertices (0, 0), (0, 1) and (1, 0). Let `min(i) denote the minimum level of an unrefined
element in T ′ for which vertex vi is a corner. Let

V L` = {vi | `min(i) = `}.

Since T0 consists of one triangle, at most six edges in T ′ meet at vi so bi is not nonzero
in any element in T ′ at level `min(i)+3 or greater. (Figure 7.2 depicts the worst case:
`min(i) = `k − 2.)

Recalling the coordinates of vi are (xi, yi), let

V 0 = {vi | (xi − yi)2`i−1 = 0 mod 3}
V 1 = {vi | (xi − yi)2`i−1 = 1 mod 3}
V 2 = {vi | (xi − yi)2`i−1 = 2 mod 3}.

The vertices in sets V 0, V 1, and V 2 when `i = 3 are labeled 0, 1, and 2, respectively,
in Figure 7.3. By construction, supp(bi) ∩ supp(bj) contains no elements for distinct
vi, vj ∈ V k ∩ V L`. Thus we can set

V`+3k = (V L` ∪ V L`+3 ∪ V L`+6 . . .) ∩ V k
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Fig. 7.2. `min(i) = `(tj).
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Fig. 7.3. V 0, V 1, and V 2.

for ` = 1, 2, 3, k = 0, 1, 2. A similar construction shows property Q7. Note that
V1, . . . , V9 can be constructed in a simple one pass algorithm processing vertices.
Finding fewer sets which satisfy property T7 is possible (since T ′′ is planar, four sets
suffice, but algorithms for constructing such sets may be more expensive.

We now outline a proof of equivalence of Q4 and Q8, i.e.,

A2. In each element t in an admissible quadrilateral mesh T , the restrictions to t
of the bi which are nonzero in t are linearly independent

holds if and only if

A3. No irregular vertex v in T touches unrefined elements t1, t2, and t3 with levels
`1 < `2 < `3.

Proof. First, suppose that A3 does not hold: there exists a vertex v touching t1,
t2, and t3 of different levels. Suppose t1 is the largest element in T touching such a
vertex. Each straight line segment (consisting of one or more edges) in T touches a
regular vertex, so we can assume that v3, v4, and v5 are chosen to be the first regular
vertices away from t on their straight line segments. Figure 7.4 depicts this situation,
where v3, v4, and v5 may, in fact, be corners of t, t3, and t2 respectively. Since `2 > `1
and `3 > `1, corners v1 and v2 of t1 must be regular as well. It follows that b1, b2, b3,
b4, and b5 must all be nonzero in element t. Since their restrictions to t are bilinear
functions, A2 cannot hold.
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Fig. 7.4. Condition A3 Violated.

Now suppose A3 holds. Since {bi} is a basis for S, to show A2, it suffices to show
that there are at most four bi which are nonzero in any element t. Suppose that t
has four regular corners v1, v2, v3, and v4. Then b1, b2, b3, and b4 are nonzero in t,
and all other bi must be zero by the Lagrange conditions and continuity. Suppose t
has exactly one irregular corner v4. Then v4 must be on the side of a neighbor t2 of
t, connecting corners v3 and v5 of t2, with `2 less than the level of t. It follows that
v3 and v5 are regular vertices, as are the other corners v1 and v2 of t. Then b1, b2,
b3, and b5 are nonzero in t, and all other bi must be zero in t (Figure 7.5). The case
when t has exactly two irregular corners is handled similarly. Note that t cannot have
three irregular corners. Thus A2 holds in every case.

t t

t t

t2

t

v4 v5v3

v1 v2

Fig. 7.5. t Has One Irregular Corner.
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[2] I. Babuška and A. Miller, A posteriori error esitmates and adaptive techniques for the
finite element method, Tech. Rep. BN-968, Institute for Physical Science and Technology,
University of Maryland, 1981.
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