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Abstract. In this paper, we prove the convergence of the multilevel iterative methods for
solving linear equations that arise from elliptic partial differential equations. Our theory is presented
entirely in terms of the generalized condition number κ of the matrix A and the smoothing matrix
B. This leads to a completely algebraic analysis of the method as in iterative technique for solving
linear equations; the properties of the elliptic equation and the discretization procedure enter only
when we seek to estimate κ, just as in the case of standard iterative methods. Here we consider
the fundamental two-level iteration, and the V and W cycles of the j-level iteration (j > 2). We
prove that the V and W cycles converge even when only one smoothing iteration is used. We present
several examples of the computation of κ using both Fourier analysis and standard finite element
techniques. We compare the predictions of our theorems with the actual rate of convergence. Our
analysis shows that accelerated iterative methods, both fixed (Chebyshev) and adaptive (conjugate
gradients and conjugate residuals), are effective as smoothing procedures.

1. Introduction. In this paper, we prove the convergence of the multilevel it-
erative method for solving linear equations that arise from elliptic partial differential
equations. While many convergence proofs already exist (e.g., Astrakhantsev [2],
Bakhvalov [4], Bank and Dupont [5], Braess and Hackbusch [7], Douglas [10, 11],
Federenko [12], Hackbusch [15, 17, 14, 16], Maitre and Musy [19], Nicolaides [20],
Van Rosendale [21], Verfürth [23], Wesseling [24], and Yserentant [25]), our assump-
tions and proof techniques are different and (we believe) enlightening. While we are
principally interested in partial differential equations, our theory can be applied to
symmetric, positive definite linear systems of equations which do not arise from par-
tial differential equations. A different perspective on algebraic aspects of the two level
scheme is given by Greenbaum [13].

We do not make the usual assumptions about elliptic regularity of the continuous
problem or approximation properties of the finite dimensional spacesMj correspond-
ing to the discretization procedure. Indeed, our theory is presented entirely in terms
of the generalized condition number κ of the matrix A and the smoothing matrix
B. This is analogous to the generalized condition number now used routinely in the
analysis of preconditioned conjugate gradient iterations (where B is commonly called
a preconditioner). This leads to a completely algebraic analysis of the method as an
iterative technique for solving linear equations; the properties of the elliptic equation
and discretization procedure enter only when we seek to estimate κ, just as in the
case of most standard iterative methods.

For the multilevel method, however, we compute κ with respect to a certain
subspace (the orthogonal complement of the coarser space Mj−1) rather than the
entire space Mj . When κ can be bounded independent of the level j, as is often the
case, the multilevel method has a rate of convergence bounded independent of j.

It has often been remarked that there is a substantial gap between theory and
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practice in multilevel methods [8] because the constants in the proof are much too
pessimistic. As we show by example in Section 3, sharp estimates for κ lead to
sharp or reasonably sharp estimates of the rate of convergence, just as in the case
of standard iterative methods. It is interesting to note that for small values of the
number of smoothing iterations m, the rate of convergence predicted by our analysis
in Theorem 2.3 is bounded by ((κ− 1)/κ)m. The number (κ− 1)/κ is similar to the
smoothing rate often used to predict the rate of convergence of the multilevel method
[9]. Smoothing rates are computed by (generally nonrigorous) techniques, sometimes
involving Fourier analysis, in which the effect of the smoothing procedure is estimated
on a certain subspace. Our analysis suggests that when this subspace is close to the
right one, then such techniques can lead to useful estimates of the convergence rates,
at least for small values of m.

Finally, our analysis shows that adaptive iterative methods (e.g., preconditioned
conjugate gradients) are effective as smoothing procedures. Unlike the analysis of Ax-
elsson and Gustafsson [3] and Kettler and Meijerink [18], we use conjugate gradients
as a smoother to multigrid. In their analysis, multigrid is used as a preconditioner
to conjugate gradients. The use of acceleration techniques in the smoothing iteration
essentially squares the rate of convergence (for large m), just as in the case of acceler-
ation of regular iterative methods. The added cost of conjugate gradient acceleration
may not be cost effective for problems with smooth solutions on a sequence of uni-
form grids, since only a modest reduction in the error components of the error on
any smoothing step is required. It is usually not hard to devise smoothing procedures
to achieve that in this case. However, if the coefficients of the partial differential
equation and the solution are rough and the grids are irregular and not uniformly
refined, finding a simple but effective smoothing procedure may be considerably more
difficult. Here, conjugate gradient acceleration can pay off handsomely since its adap-
tive nature allows it to compensate to some extent for the shortcomings of the basic
smoothing procedure.

The remainder of this paper is organized as follows: in Section 2 we define and
analyze the multilevel iteration. Here we consider the fundamental two level iteration,
and the V and W cycles of the j-level iteration (j > 2). Our analysis of the V cycle
was inspired by the recent paper of Braess and Hackbusch [7]. In Section 3 we present
several examples of the computation of κ using both Fourier analysis and standard
finite element techniques. We compare the predictions of our theorems with the
actual rate of convergence. In Section 4 we analyze the use of acceleration procedures,
both fixed (Chebyshev) and adaptive (conjugate gradients and conjugate residuals)
in conjunction with the smoothing procedure.

2. Analysis.

2.1. The Problem and the Multigrid Algorithm. Let H be a Hilbert space
and M1 ⊂ M2 ⊂ ... ⊂ Mj ⊂ H be a sequence of finite dimensional subspaces.
We denote the dimension of Mj by Nj . Let a(·, ·) : H ⊗ H → IR be a continuous,
symmetric, positive definite bilinear form and let g(·) : H → IR be a continuous,
bounded, linear functional. The problem to be solved is

a(z, v) = g(v) for all v ∈Mj .(2.1)

In a typical situation, the bilinear form a(·, ·) arises from the weak formulation of
an elliptic boundary value problem, H is an appropriate Sobolev space, and the Mj

are finite element subspaces in which we seek approximate solutions. Usually the Nj
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are required to grow geometrically in order to prove an optimal order work estimate.
The right hand side of (2.1) can be either the right hand side of the discrete elliptic
problem or a residual from the (j + 1)-level iteration.

We will solve (2.1) by a standard multigrid algorithm, MG(j, z, g,m, p, r), which
has six arguments:

• j the current level number
• z the approximate solution
• g the approximate right hand side
• m the number of smoothing iterations
• p the number of correction iterations used
• r the number of iterations of MG on level j

The precise definition of Algorithm MG is given by

Algorithm MG(j, z, g,m, p, r)
(1) If j = 1 then solve directly.
(2) If j > 1 then

(a) smooth m times on z
(b) do r times:

(i) compute a right hand side c and an initial guess e = 0 for a
residual correction problem on level j − 1

(ii) MG(j − 1, e, c,m, p, p)
(iii) z = z + e
(iv) smooth m times on z

Later in this section we will prove convergence results for this algorithm for choices
of the parameters used in practice.

Algorithm MG can be embedded in another multigrid algorithm (sometimes re-
ferred to as nested iteration or full multigrid) in which the sequence of discrete prob-
lems (2.1) associated with M1,M2, . . . is solved. The solution of the j-th problem
serves as the initial guess for the (j+ 1)-st. Since analysis of several such schemes for
both linear and nonlinear problems is available elsewhere (e.g., Bank and Dupont [5],
Bank and Rose [6], Douglas [10, 11], Hackbusch [15, 14, 16]), we do not repeat that
analysis here. Instead, we obtain reasonably sharp estimates for the spectral radius
of the iteration matrix associated with Algorithm MG.

There are two main components of Algorithm MG when j > 1: smoothing and
coarse grid correction. We will present our discussion of these topics using both inner
product and matrix notation. The former is more convenient for our proofs while the
latter is useful for clarifying details of the implementation.

Let each space Mj have a computational basis φk (when required, we will add a

superscript j to denote the level, e.g., φ
(j)
k ). Define

Aik = a(φi, φk) and Gi = g(φi).

The stiffness matrix A is symmetric, positive definite, and usually sparse. Equation
(2.1) can be rewritten as

AZ = G, where Z =

Nj∑
k=1

Zkφk.

As with the computational basis, we will add a superscript j to A, Z, and G if it is
necessary for clarification.
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2.2. Smoothing Process. We first consider the smoothing process. Let bj(·, ·) :
Mj ⊗Mj → IR be a continuous, symmetric, positive definite bilinear form (called a
smoother) associated with Mj . For simplicity, we assume

sup
v∈Mj

a(v, v)/bj(v, v) ≤ 1.(2.2)

This assumption can always be satisfied in practice by scaling any proposed smoother
by an appropriate damping constant. The smoother has the property that solving the
linear system BX = Y (where B, X, and Y are analogous to A, Z, and G) should be
easy in comparison to solving AZ = G. In particular, the cost should be proportional
to Nj in order to obtain an optimal order work estimate [4, 5, 7, 10, 11, 12, 17, 20].
The accelerated case will be considered in Section 4.

Consider the generalized eigenvalue problem

a(ψk, v) = λkbj(ψk, v) for all v ∈Mj .

Without loss of generality, we order the eigenvalues such that

0 < λ1 ≤ λ2 ≤ ... ≤ λNj
) ≤ 1,

and normalize ψk such that

bj(ψk, ψi) = δki and a(ψk, ψi) = λkδki.

From the viewpoint of the smoothing process, eigenfunctions corresponding to larger
eigenvalues are called rough while those corresponding to smaller eigenvalues are called
smooth.

Since the ψk form an orthonormal basis for Mj , we can define discrete norms
|||v|||θ ≡ |||v|||θ,j for v ∈Mj , θ ∈ IR by

|||v|||2θ =

N∑
i=1

c2iλi, where v =

N∑
i=1

ciψi.

Thus, |||v|||2 = |||v|||21 = a(v, v) and |||v|||20 = bj(v, v). The 1-norm (or energy norm) is well
defined on the spacesMj and H. The convergence of Algorithm MG will be analyzed
in this norm.

If N = Nj and v =
∑N
i=1 Viφi ∈Mj , then in matrix notation

|||v|||2θ = V TA1/2(A−1/2BA−1/2)1−θA1/2V(2.3)

= V TB1/2(B−1/2AB−1/2)θB1/2V.

The basic smoothing step S : w ∈Mj → w̄ ∈Mj is defined by

bj(w̄ − w, v) = g(v)− a(w, v) for all v ∈Mj or(2.4)

B(W̄ −W ) = G−AW in matrix terminology.

Letting e = z − w =
∑N
i=1 ciψi, we see from (2.1) and (2.4) that

ē = z − w̄ = S(e) =

N∑
i=1

ciψi(1− λi).
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We can think of ē as smoother than e in the sense that the rough components of the
error (the ones corresponding to eigenvalues close to one) are damped quickly. Note
that

|||S(e)|||θ ≤ |||e|||θ for all θ ∈ IR.

In matrix notation we have for e =
∑N
i=1Eiψi,

A1/2Ē = SA1/2E where S = I −A1/2B−1A1/2.

S is the symmetric positive semi-definite error propagation matrix for the smoothing
process.

2.3. Coarse Grid Correction. The other feature of Algorithm MG is the
coarse grid correction. Given some approximation ẑ to z in (2.1), we pose the following
coarse grid problem: find δ ∈Mj−1 such that

a(δ, v) = g(v)− a(ẑ, v) for all v ∈Mj−1.(2.5)

Problem (2.5) is solved exactly if j = 2. Otherwise, we apply Algorithm MG to this
new (j − 1)-level residual problem. Setting p = 1 (V Cycle) or p = 2 (W Cycle) in
Algorithm MG is usually sufficient to obtain both good error reduction and optimal
order work estimates.

If e = z − ẑ, then (2.5) can be written as

a(e− δ, v) = 0 for all v ∈Mj−1.(2.6)

δ is the orthogonal projection of the error fromMj toMj−1 with respect to the a(·, ·)
inner product. We define the coarse grid correction by

C(e) = e− δ = z − (ẑ + δ).(2.7)

From the viewpoint of the coarse grid correction process, elements ofMj−1 are smooth
and the elements of M⊥j−1 are rough.

Let φ
(j−1)
i be the computational basis for Mj−1 and let

φ
(j−1)
k =

N∑
i=1

Rkiφ
(j)
i , 1 ≤ k ≤ Nj−1,

define the Nj−1 ×Nj matrix R. In matrix notation, (2.5) becomes

(RART )∆̃ = R(G−AW ),

where ∆̃ corresponds to the computational basis inMj−1 and G−AW is taken with

respect to the computational basis in Mj . Setting ∆ = RT ∆̃ changes the basis to
that ofMj . Letting ē = C(e), the coarse grid correction has the matrix representation

A1/2Ē = I −A1/2RT (RART )−1RA1/2A1/2E = CA1/2E,(2.8)

where C is the symmetric positive semi-definite projector for the coarse grid correc-
tion. If (2.5) is not solved exactly, then 2.8 is replaced by

A1/2Ē = I −A1/2RT (RART )−1/2(I − Q̃j−1(p))(RART )−1/2RA1/2A1/2E

= C̃A1/2E,

where Q̃j−1(p) is the symmetric positive semi-definite error propagation matrix for p
iterations of Algorithm MG applied to the (j − 1)-level problem.
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2.4. Matrix Formulation of Algorithm MG. Suppose MG(j, z, g,m, p, r)
with r ≥ 1 is used. If E0 is the initial error and Ef is the final error, then

A1/2Ef =

{
Sm(CSm)rA1/2E0 if exact corrections are used

Sm(C̃Sm)rA1/2E0 otherwise.

Setting

Hj = H = Sm/2CSm/2 and Qj(r) = Q(r) = Sm/2HrSm/2

we have A1/2Ef = Q(r)A1/2E0 for exact coarse grid corrections and A1/2Ef =

Q̃(r)A1/2E0 otherwise. Q̃(r) and H̃ are defined analogously to Q(r) and H.
We can apply Algorithm MG to general linear positive definite systems of equa-

tions of the form

AZ = G, Z,G ∈ IRN ,

where A is an arbitrary symmetric, positive definite matrix. We define

Mj = IRN , Nj = N, and Aj = A.

Suppose we define an arbitrary full rank matrix Rj :Mj →Mj−1 = IRN
′
, N ′ ≤ N ,

such that RjR
T
j X = X for all X ∈ Mj−1. Rj need not be an interpolation matrix

since the concept of a grid may be meaningless. We define a coarser system by

Mj−1 = IRN
′
, Nj = N ′, and Aj−1 = RjAjR

T
j .

We define {Mk} and {Ak}, 1 ≤ k ≤ j − 1, inductively in the obvious fashion. The
inner product is defined by

aj(x, y) = xTAjy, for all v ∈Mj−1, x, y ∈Mj .

Notice with our definition of Aj−1 that our definition of aj−1(·, ·) is consistent on all
levels. A smoother bj(·, ·) is defined from a Bj analogously. Norms ||| · |||θ,j are defined
as in (2.3).

The choice of Rj is quite broad. However, Rj could be based on the operator
Aj . Using this technique, many finite difference multigrid schemes (e.g., [1]) can be
analyzed using the techniques in Sections 2.5 and 4.

2.5. Convergence of Algorithm MG. The central question now becomes un-
der what conditions can we expect to bound the spectral radius ρ(Hj) < 1, inde-
pendent of j? The answer clearly lies in the relation between smoothing iterations
and coarse grid corrections. In particular, the smoothing iteration must effectively
damp out the components of the error that cannot be approximated in Mj−1, i.e.,
those elements in M⊥j−1. In other words, the notions of smooth and rough from the
standpoints of smoothing and coarse grid corrections must coincide to a great extent.

In our analysis, the function f(α, β) = ααββ(α+ β)−(α+β), α, β > 0, will play an
important role. In Lemma 2.1, we summarize some of its properties:

Lemma 2.1. Let p, α, β > 0. Then
(a) supx∈[0,1] x

α(1− x)β = f(α, β)
(b) [f(α, β)]p = f(pα, pβ)
(c) f(α, β) = f(β, α)
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We also need the following norm bound:
Lemma 2.2. Assume there exist constants κ ≥ 1 and α > 0 such that for some

u ∈Mj,

|||u|||1−α ≤ κα/2|||u|||.(2.9)

Then

|||u|||1−β ≤ κβ/2|||u|||, 0 ≤ β ≤ α.

Proof. The proof follows from (2.9) and the Holder inequality

|||u|||1−β ≤ |||u|||β/α1−α|||u|||1−β/α.

We now consider in detail the convergence of one iteration of Algorithm MG for
the case of two levels (j = 2). Here, coarse grid correction problems are solved directly.

Theorem 2.3. Assume there exist constants κ ≥ 1 and α > 0 such that for all
u ∈M⊥j−1 ∩Mj,

|||u|||1−α ≤ κα/2|||u|||.

Then

|||Sm/2(C(Sm/2(v)))||| ≤ γ|||v|||,

where

γ =

{
[(κ− 1)/κ]m if m ≤ (κ− 1)α
καf(m,α) if m > (κ− 1)α

.

Note that γ monotonically decreases to zero as a function of m.
Proof. Let N = Nj and v =

∑N
i=1 ciψi. Then v̄ = Sm/2(v) =

∑N
i=1 ciψi(1 −

λi))
m/2. Taking χ = C(v̄)− v̄ ∈Mj−1, we have

|||C(v̄)|||2 = a(C(v̄), C(v̄)) = a(C(v̄), C(v̄)− χ) = a(C(v̄), v̄)

≤ |||C(v̄|||1−α|||v̄|||1+α ≤ κα/2|||C(v̄)||||||v̄|||1+α(2.10)

Now

|||v̄|||21+α =

N∑
i=1

c2i (1− λi))mλ1+α
i ≤ f(m,α)|||v|||2.

Taking square roots and substituting into (2.10) gives us

|||C(v̄)||| ≤ κα/2f(m/2, α/2)|||v|||

Using an eigenvector expansion of C(v̄) shows

|||Sm/2(C(v̄))||| ≤ f(m/2, α/2)|||C(v̄)|||1−α
≤ κα/2f(m/2, α/2)|||C(v̄)|||(2.11)

≤ καf(m,α)|||v|||
7



If we substitute β instead of α , 0 < β ≤ α, into (2.11) (using Lemma 2.2) and
minimize (2.11) with respect to β, we have

Dβ [κβf(m,β)] = log[(κβ)/(m+ β)] · κβf(m,β) = 0

⇔ κβ/(m+ β) = 1

⇒ β = m/(κ− 1)

There are two cases: the first is when m/(κ − 1) > α. Here the minimum occurs at
β = α. Hence, for m > (κ− 1)α,

γ = καf(m,α).

The second case is when m/(κ− 1) ≤ α. Here β = m/(κ− 1) and

γ = [(κ− 1)/κ]m.

We now consider the convergence of one iteration of Algorithm MG when the
coarse grid corrections are not exact. Theorem 2.4 analyzes the W Cycle (j > 2,
p = 2 in Algorithm MG). The proof can be extended to any p > 2 trivially.

Theorem 2.4. Suppose

|||Sm/2(C(Sm/2(v)))||| ≤ γ|||v||| for all v ∈Mj ,

where γ is defined in Theorem 2.3. Further, assume for all v ∈Mj that

|||C̃(v)− C(v)||| ≤ γ̃2|||C(v)− v|||,

where γ̃ = γ/(1− γ) and 0 ≤ γ < .5. Then

|||Sm/2(C̃(Sm/2(v)))||| ≤ γ̃|||v||| for all v ∈Mj .

Proof. From (2.6) and (2.7) we know that a(C(v), χ) = 0 for all χ ∈Mj−1. Since

C̃(v)− C(v) ∈Mj−1 and C(v)− v ∈Mj−1, we have

|||C̃(v)− C(v) + γ̃2C(v)|||2 = |||C̃(v)− C(v)|||2 + γ̃4|||C(v)|||2(2.12)

≤ γ̃4|||C(v)− v|||2 + |||C(v)|||2 = γ̃4|||v|||2

Finally,

|||Sm/2(C̃(Sm/2(v)))||| ≤ (1− γ̃2)|||Sm/2C(Sm/2(v)))|||
+|||Sm/2((C̃ − C + γ̃2C)(Sm/2(v)))|||

≤ [(1− γ̃2)γ + γ̃2] · |||v||| = γ̃|||v|||

We now consider the convergence of one iteration of the V Cycle j > 2, p = 1
in Algorithm MG). Our proof corresponds closely to that of Braess and Hackbusch
[7], although our assumptions are weaker (just those of Theorem 2.3) and general
smoothers are allowed. The proof uses two simple observations about the smoothing
procedure and the discrete norms ||| · |||θ.

8



Lemma 2.5. Let u ∈Mj and 0 < α ≤ 1. Then

|||Sm/2(u)|||/|||u||| ≤
{
|||S(m+1)/2(u)|||2/|||Sm/2(u)|||2

}m/2
(2.13)

|||u|||1+α/|||u||| ≤
{

1− |||S1/2(u)|||2/|||u|||2
}α/2

(2.14)

Proof. The proof of both (2.13) and (2.14) follow from the definitions of the
respective norms, the Holder inequalities

|||Sm/2(u)||| ≤ |||S(m+1)/2(u)|||m/(m+1) · |||u|||1/(m+1)

|||u|||1+α ≤ |||u|||1−α · |||u|||α2 ,

and by noting that

|||u|||22 = |||u|||2 − |||S1/2(u)|||2.

Theorem 2.6. Assume there exists a constant κ ≥ 1 (independent of j) such
that for u ∈M⊥j−1 ∩Mj,

|||u|||0 ≤ κ1/2|||u|||.

Further, assume for all v ∈Mj that

|||C̃(v)− C(v)||| ≤ γ̂|||C(v)− v|||,

where γ̂ = κ/(κ+m). Then

|||Sm/2(C̃(Sm/2(v)))||| ≤ γ̂|||v||| for all v ∈Mj .

Proof. For any v ∈Mj , let

y(v) = 1− |||S(m+1)/2(v)|||2/|||Sm/2(v)|||2

and set v̄ = Sm/2(v). Then

|||C̃(v̄)||| ≤ (1− γ̂)|||C(v̄)|||+ |||(C̃ − C + γ̂C)(v̄)|||
≤ (1− γ̂)κ1/2|||v̄|||2 + γ̂|||v̄||| using (2.10) and (2.12)

≤ {(1− γ̂)κ1/2y1/2(v) + γ̂}|||v̄||| using (2.14) with u = v̄

≤ {(1− γ̂)κ1/2y1/2(v) + γ̂}(1− y(v))m/2|||v||| using (2.13) with u = v

Let w ∈Mj and w̄ = Sm/2(w). Since C = C2, we have

a(Sm/2(C̃(Sm/2(v))), w) = a(C̃(v̄), w̄)

= (1− γ̂)a(C(v̄), C(w̄)) + a((C̃ − C + γ̂C)(v̄), w̄)

≤ {(1− γ̂)κy1/2(v)y1/2(w) + γ̂}|||v̄||| · |||w̄|||
≤ {(1− γ̂)κy1/2(v)y1/2(w) + γ̂} ·
{(1− y(v))(1− y(w))}m/2|||v||| · |||w|||
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Hence,

|||Sm/2(C̃(Sm/2(v)))||| ≤ sup
x∈[0,1]

((1− γ̂)κx+ γ̂)(1− x)m|||v|||

≤ [κ/(κ+m)] sup
x∈[0,1]

(mx+ 1)(1− x)m|||v|||(2.15)

≤ [κ/(κ+m)]|||v|||.

For large values of m, this estimate for γ̂ does not approach the estimate γ for exact
coarse grid corrections (as is the case for the W Cycle). For α = 1, m ≥ κ − 1, we
have

γ̂ = κ/(κ+m) = γ · {γ + (m/(m+ 1))m+1}−1 → eγ,

γ as in Theorem 2.3. For large values of m, this estimate requires about e times as
many smoothing iterations to obtain a comparable bound on the convergence rate.
Another drawback is that the proof does not work for 0 < α < 1. Instead of (2.15),
we get

|||Sm/2(C̃(Sm/2(v)))||| ≤ sup
x∈[0,1]

[(1− γ̂)καxα + γ̂](1− x)m|||v|||

= F (γ̂, α,m)|||v|||.

The fixed point of F (γ̂, α,m) = γ̂ is γ̂ = 1.
One benefit of the V Cycle is that it can be used to improve the estimate of

Theorem 2.4 for the W Cycle when α = 1.
Corollary 2.7. Let the assumptions of both Theorem 2.4 and 2.6 hold for

α = 1. Then

|||Sm/2(C̃(Sm/2(v)))||| ≤ γ̄|||v||| for all v ∈Mj ,

where γ̄ = min{γ̂, γ̃} and γ̃ is defined in Theorem 2.4 and γ̂ in Theorem 2.6.

3. Examples. In this section, we give estimates for the constant κ of the the-
orems of the previous section for three model problems. The first two are constant
coefficient problems. Due to their simplicity, we can compute κ exactly for these
problems. The third is a linear second order variable coefficient self adjoint problem
in a general closed domain in IR2. The estimate of κ given for this problem is not as
sharp as for those of the first two problems.

The first two examples are Poisson’s equation in one and two dimensions:

−u′′ = f in Ω = (0, 1); u(0) = u(1) = 0.(3.1)

−∆u = f in Ω = (0, 1)× (0, 1); u = 0 on ∂Ω.(3.2)

Setting H = H1
0(Ω), where H1

0 is the usual Sobolev space whose functions satisfy the
Dirichlet boundary conditions, the weak forms of (3.1) and (3.2) are: find u ∈ H such
that for all v ∈ H,

a(u, v) =

∫
Ω

∇u · ∇vdx = (f, v) =

∫
Ω

fvdx.
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First, consider the one dimensional Poisson equation (3.1). Let Nj = (N1 + 1) ·
2j−1 − 1 for some N1 ≥ 1 and set hj = (Nj + 1)−1. Let Mj ⊂ H denote the Nj-
dimensional space of C0 piecewise linear polynomials with respect to a uniform mesh
of size hj on Ω. The computational basis are the usual nodal basis. The matrices Aj
are tridiagonal:

Aj = h−1
j [−1, 2,−1].

As a smoother, we use the damped Jacobi scheme

Bj = 4h−1
j I.

We can obtain the same matrix problem using central finite differences on the same
mesh [22].

While we do not advocate using a multigrid algorithm to solve this problem, it
is of theoretical interest because it can be completely analyzed. The eigenvalues {λi}
and eigenvectors {ψi} are

λi = 2h−1
j (1− cos(iπhj)) and (ψi)k = (2hj)

1/2 sin(kπihj).

The two dimensional subspaces Span〈ψi, ψNj+1−i〉 remain invariant under the coarse
grid correction. Thus, with respect to the eigenvector basis, the process reduces to
the study of 2× 2 error propagation matrices. See Douglas [10] for more details.

Let xi = (1−cos(iπhj))/2. With respect to the eigenvector basis the transformed
matrices Ā, B̄, . . . have the form

Āi = 4h−1
j

(
xi 0
0 1− xi

)
B̄i = 4h−1

j

(
1 0
0 1

)
R̄i =

(
1− xi xi

)
S̄i =

(
1− xi 0

0 xi

)
C̄i =

(
xi −(xi(1− xi))1/2

−(xi(1− xi))1/2 1− xi

)
S̄
m/2
i C̄iS̄

m/2
i =

(
xi(1− xi)m −(xi(1− xi))m+1/2

−(xi(1− xi))m+1/2 xmi (1− xi)

)

The spectral radius ρ(S̄
m/2
i C̄iS̄

m/2
i ) can be computed exactly:

ρ(S̄
m/2
i C̄iS̄

m/2
i ) = xi(1− xi)m + xmi (1− xi).

Hence,

ρ(S̄
m/2
i C̄iS̄

m/2
i ) = max

i
xi(1− xi)m + xmi (1− xi)

≤ sup
x∈[0,1]

x(1− x)m + xm(1− x).

The part of the two dimensional invariant subspace corresponding toMj−1 is Span〈[1−
xi, xi]

T 〉 and the part corresponding to M⊥j−1 is Span〈[1,−1]T 〉. In this case, we can

11



take α = 1 and

κ = sup
v∈M⊥

j−1

|||v|||20/|||v|||2 = 2.

The corresponding estimate for ρ(S̄
m/2
i C̄iS̄

m/2
i ) obtained from Theorem 2.3 is

ρ(S̄
m/2
i C̄iS̄

m/2
i ) ≤

{
.5 if m = 1
2 supx∈[0,1] x(1− x)m if m > 1

For m = 1 the estimate is sharp, while for large m it is an overestimate by a factor
of 2. The crossover point for the two forms of γ in Theorem 2.3 is predicted to be

at m ≥ κ − 1 = 1. However, direct computation shows ρ(S̄
m/2
i C̄iS̄

m/2
i ) behaves like

2−m for 1 ≤ m ≤ 3. For 1 ≤ m ≤ 5 we have

Two Levels W Cycle V Cycle
m ρ γ γ/ρ γ̄ γ̂
1 .50000 .50000 1.0000 .66667 .66667
2 .25000 .29630 1.1852 .42105 .50000
3 .12500 .21094 1.6875 .26733 .40000
4 .083333 .16384 1.9661 .19594 .33333
5 .067088 .13414 1.9995 .15480 .28571

(γ is from Theorem 2.3, γ̄ is from Corollary 2.7, and γ̂ is from Theorem 2.6.)

Now consider the two dimensional Poisson equation (3.2). This is a problem
which we do advocate using a multigrid algorithm to solve. We discretize this prob-
lem by either central finite differences on a uniform mesh or by finite elements on a
uniform triangulation using C0 piecewise linear polynomials and the usual nodal basis
functions. In either case, the matrices Aj are block tridiagonal [22]:

Aj = [−I, T,−I],

where T = [−1, 4,−1] is tridiagonal. As a smoother, we use the damped Jacobi
scheme

Bj = 8I.

Analogous to the one dimensional case, the problem can be reduced to the study of
4× 4 matrices.

Āij = 4


2− xi − xj 0 0 0

0 1− xi + xj 0 0
0 0 1 + xi − xj 0
0 0 0 xi + xj


S̄i, C̄i, and S̄

m/2
i C̄iS̄

m/2
i can be computed from these matrices above. Once again we

can take α = 1 and compute

κ = sup
v∈M⊥

j−1

|||v|||20/|||v|||2 = 4 + 2
√

2.

The crossover point for the two forms of γ in Theorem 2.3 is predicted to be at m = 5.
For 1 ≤ m ≤ 5 we have

12



Two Levels W Cycle V Cycle
m ρ γ γ/ρ γ̄ γ̂
1 .75000 .75000 1.0000 .80000 .80000
2 .56250 .56250 1.0000 .66667 .66667
3 .42188 .42188 1.0000 .57143 .57143
4 .31641 .32768 1.0356 .48739 .50000
5 .23730 .26792 1.1290 .36597 .44444

(γ is from Theorem 2.3, γ̄ is from Corollary 2.7, and γ̂ is from Theorem 2.6.)

We note that for 1 ≤ m ≤ 7, the V Cycle Theorem 2.6 estimates a faster con-
vergence rate than the W Cycle Theorem 2.4. The ratio γ/ρ reaches its maximum at
m = 5 and then decreases to its asymptotic limit (4 + 2

√
2)/5 ≈ 1.37.

Theorem 2.3 can yield reasonably sharp estimates provided good estimates of κ
are available. However, obtaining good estimates in specific cases appears to be a
hard problem. The last example shows how the existence of κ can be proven without
necessarily obtaining a meaningful estimate of its size.

Consider the two dimensional linear elliptic boundary value problem

−∇ · (a∇u) + bu = f in Ω; un = 0 on ∂Ω,(3.3)

where Ω is a polygonal domain in IR2. We assume that a ∈ C1(Ω̄), b ∈ C(Ω̄), and that
there exist positive constants amin, amax, bmin, bmax, such that

0 < amin ≤ a(x) ≤ amax and 0 < bmin ≤ b(x) ≤ bmax for all x ∈ Ω̄.

Hk(Ω) are the usual Sobolev spaces equipped with norms ||(||·)k and H = H1(Ω). We
seek a weak form solution of (3.3): find u ∈ H(Ω) such that for all v ∈ H(Ω),

a(u, v) =

∫
Ω

a∇u · ∇v + buv dx = (f, v) =

∫
Ω

fv dx.

We discretize 3.3 using a finite element formulation. Let Tj , j ≥ 1, be a nested
sequence of triangulations of Ω. Take T1 to be a fixed triangulation. We construct
Tj , j > 1, inductively: divide every T ∈ Tj−1 into 4 congruent triangles by pairwise
connecting the midpoints of the edges. Let Mj be the space of C0 piecewise linear
polynomials associated with Tj . Because of the refinement scheme used, Nj ∼ 4j−1N1

and hj = 2−jh1. The computational basis for Mj are the usual nodal basis and the
smoother will again be the damped Jacobi scheme. If Dj is the diagonal of the stiffness
matrix Aj , then

Bj = τjDj , where τj = max
X∈IRN

XTAjX/X
TDjX.

τj is bounded by a constant which is independent of j. In order to prove the existence
of κ, and thus establish Theorem 2.3, we will use the following three facts:

1. There exists a constant 0 < α ≤ 1, such that for all f ∈ H1−α there exists a
unique solution u ∈ H1−α and

||u||1+α ≤ C2||f ||α−1,(3.4)

where C2 = C(a, b,Ω).

13



2. The spaces Mj satisfy the following standard approximation property: for
v ∈ H1+α, 0 ≤ α ≤ 1,

inf
χ∈Mj

||v − χ||0 + hj ||v − χ||1 ≤ C3h
1+α
j ||v||1+α,(3.5)

where C3 = C(Ω, T1).
3. Since the mesh is shape regular and quasi uniform, the discrete norms ||| ·
|||θ,j) = ||| · |||θ and || · ||θ, θ ∈ [0, 1], are comparable in the following sense: for
v ∈Mj ,

h1−θ
j C−1

4 |||v|||θ ≤ ||v||θ ≤ h
1−θ
j C4|||v|||θ,(3.6)

where C4 = C(a, b,Ω, T1). Inequality (3.6) (or its equivalent) is relatively
easy to prove for Jacobi-like smoothers, which explains their popularity in
theoretical analyses of multigrid methods.

To prove the existence of κ, we will bound |||v|||1−α, v ∈ M⊥j−1, for α ∈ (0, 1] as
given by (3.4). First note that by (3.6),

|||v|||1−α ≤ C4h
−α
j ||v||1−α.(3.7)

To estimate ||v||1−α, we use a standard duality argument. Let z ∈ H be the solution
of

a(z, w) = (µ,w) for all w ∈ H,

where µ ∈ Hα−1(Ω). Take w = v ∈M⊥j−1 to see that for any χ ∈Mj−1,

(µ, v) = a(z − χ, v)

≤ |||z − χ||| · |||v|||
≤ C3C4h

α
j−1||z||1+α|||v|||

≤ C2C3C4h
α
j−1||µ||α−1|||v|||

from which it follows that

||v||1−α ≤ C2C3C4h
α
j−1|||v|||.

Combining with (3.7) and using hj−1 = 2hj gives us

|||v|||1−α ≤ (2αC2C3C
2
4 ) · |||v|||(3.8)

and the corresponding estimate

κα = 2αC2C3C
2
4 .(3.9)

An estimate like (3.8) is the heart of many multigrid convergence proofs. The bound
is of the right form, but the constant is usually rather pessimistic.

4. Acceleration. In this section, we investigate the effect accelerating the smooth-
ing scheme has on the overall convergence rate. In particular, we consider the Cheby-
shev, conjugate gradient, and conjugate residual schemes as smoothers and compare
the convergence rates of Algorithm MG using these smoothers with the rates proven
in Section 2.
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We want to take some initial guess z0 ∈ Mj to a final guess zm = Sm(z0) ∈ Mj

by replacing m steps of (2.4) by

b(zµ − zµ−1, v) = τ−1
µ (g(v)− a(zµ−1, v) for all v ∈Mj , τµ ∈ (0, 1], 1 ≤ µ ≤ m.

If e0 =
∑N
i=1 ciψi, then em =

∑N
i=1 ciψipm(λi), where

pm(x) =

m∏
µ=1

(1− τ−1
µ x).

The error propagation matrix,

Sm =

m∏
µ=1

(I − τ−1
µ A1/2B−1A1/2),

may be indefinite, so it is convenient to modify our proof of Theorem 2.3.
Theorem 4.1. Suppose there exist κ ≥ 1 and α > 0, both independent of j, such

that for u ∈M⊥j−1 ∩Mj,

|||u|||1−α ≤ κα/2|||u|||.

Then

|||C1/2(Sm(C1/2(v)))||| ≤ γ|||v|||, for all v ∈Mj ,

where

γ = καf̂(m,α) and f̂(m,α) = sup
x∈[0,1]

|xαpm(x)|.

Proof. The coarse grid corrector C is a symmetric orthogonal projector, so C1/2 =
C. Thus, it is sufficient to show

|||C(Sm(C(v)))||| ≤ γ|||v|||, for all v ∈Mj .

Let v̄ = Sm(C(v)). Then

|||C(v̄)|||2 = a(C(v̄), C(v̄)) = a(C(v̄), v̄)(4.1)

≤ |||C(v̄)|||1−α · |||v̄|||1+α ≤ κα/2|||C(v̄)||| · |||v̄|||1+α

and

|||v̄|||1+α ≤ f̂(m,α)|||C(v)|||1−α ≤ κα/2f̂(m,α)|||v|||.

Combining the last two inequalities gives the desired result.
This proof does not extend in a straightforward fashion to the W and V Cycles

since C̃ is not necessarily a projector. If we had norm estimates for the nonsymmetric
operators SmC (SmC) and CSm (CSm), such extensions would be straightforward.
While it is true that

(SmC)rSm = Sm(CSm)r = Sm/2(Sm/2CSm/2)rSm/2

= SmC1/2(C1/2SmC1/2)r−1C1/2Sm

15



so that convergence rates obtained for any one of SmC, CSm, Sm/2CSm/2, or C1/2SmC1/2

are asymptotically valid for all, a judicious choice of which operator norm to estimate
can greatly simplify the argument.

We now consider the problem of picking the τµ to minimize f̂(m,α). For the
important case of α = 1 the problem can be solved analytically in terms of Chebyshev
polynomials. In particular, the solution is qm+1(x), a multiple of Tm+1(cos θ) =
cos(m+ 1)θ mapped to an interval [−δ, 1]. The conditions that determine δ and the
normalization constant are qm+1(0) = 0 and q′m+1(0) = 1. The solution is

qm+1(x) = {cos[(m+ 1)θ] sin η}/{(m+ 1)(1 + cos η)},
where η = π/(2m+ 2)

δ = (1− cos η)/(1 + cos η)

cos θ = (2x+ δ − 1) · (δ + 1)−1

Finally,

τµ = (cos((2µ+ 1)η) + cos η)/(1 + cos η), 1 ≤ µ ≤ m
f̂(m, 1) ≤ q̂m+1 = sup

x∈[0,1]

|qm+1(x)| = sin η/[(m+ 1)(1 + cos η)].

For large m,

q̂m+1 ∼ π · (4m2)−1 while f(m, 1) ∼ (em)−1.

Even for small m the advantage is appreciable, as is illustrated below:

m f(m, 1)/q̂m+1

1 1.207
2 1.659
3 2.121
4 2.586
5 3.053

In most situations the object of Algorithm MG is to reduce the error by a factor
of 4 − 10. Usually m and the number of iterations r of MG is small, e.g., between 1
and 4 each. By accelerating the smoothing iteration it may be possible to reduce the
number of smoothing iterations or correction cycles required to achieve the desired
error reduction. Even if the number is reduced by 1 or 2, this may be a substantial
portion of the total work.

A related issue is whether a fixed sequence τµ should be used or an adaptive
acceleration scheme like either conjugate gradients or conjugate residuals. One worry
is that an adaptive scheme might waste time reducing smooth components of the error
and be ill suited to the specialized requirements of a smoothing iteration. Quite the
contrary, these schemes have been found to be quite robust and cost effective.

We end this section by estimating the convergence rate when either the conjugate
residual or conjugate gradient algorithm is used as a smoother.

Theorem 4.2. Suppose there exist κ ≥ 1, independent of j, such that for u ∈
M⊥j−1 ∩Mj,

|||u|||0 ≤ κ1/2|||u|||.
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Let SCRm be generated by the conjugate residual algorithm. Then

|||C1/2(SCRm (C1/2(v)))||| ≤ γCR|||v|||,

where

γCR = κ inf
pm(x),pm(0)=1

f̂(m, 1)

and f̂(m, 1) is defined as in Theorem 4.1.
Proof. The proof follows the one for Theorem 4.1. As in (4.1) with α = 1,

|||C(v̄)||| ≤ κ1/2|||v̄|||2 where v̄ = SCRm (C1/2(v)).

Since the ||| · |||2 norm is minimized by the conjugate residual algorithm,

|||v̄|||2 ≤ inf
Ŝm
|||Ŝm(C(v))|||

≤ inf
pm(x),pm(0)=1

f̂(m, 1)|||C(v)|||0(4.2)

≤ κ1/2 inf
pm(x),p(0)=1

f̂(m, 1)|||C(v)|||

≤ κ1/2 inf
pm(x),pm(0)=1

f̂(m, 1)|||v|||

Combining the last two inequalities gives the result for conjugate residuals.
The corresponding theorem for conjugate gradients is probably not optimal, how-

ever. For conjugate gradients, the left hand side of (4.2) must be evaluated in the one
norm instead of the two norm. Our analysis leads to a suboptimal estimate.

Theorem 4.3. Suppose there exist κ ≥ 1, independent of j, such that for u ∈
M⊥j−1 ∩Mj,

|||u|||0 ≤ κ1/2|||u|||.

Let SCGm be generated by the conjugate gradient algorithm. Then

|||C1/2(SCGm (C1/2(v)))||| ≤ γCG|||v|||,

where

γCG = κ1/2 inf
pm(x),pm(0)=1

f̂(m, 1/2)

and f̂(m, 1/2) is defined as in Theorem 4.1.
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