AN EFFICIENT IMPLEMENTATION FOR SSOR AND
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Abstract. We investigate methods for efficiently implementing a class of incomplete factoriza-
tion preconditioners which includes Symmetric Gauss Seidel [9], SSOR [9], generalized SSOR [1],
Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6]. Our techniques can be extended to
similar methods for nonsymmetric matrices.

1. Symmetric Matrices. We consider the solution of the linear system
(1) Az =b,

where A is an N x N symmetric, positive definite matrix and A = D — L — LT, where
D is diagonal and L is strictly lower triangular. Such linear systems are often solved
by iterative methods, for example, Symmetric Gauss Seidel [9], SSOR. [9], generalized
SSOR [1], Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6].

A single step of a basic (unaccelerated) iterative method, starting from an initial
guess & can be written as

(2) Solve Bd =r =b— AzZ.

(3) Set & = & + 4.

For the iterative methods cited before, B is symmetric, positive definite and can be
written as

(4) B=(D-L)D ' (D-L").

Since A and B are symmetric and positive definite, the underlying iterative scheme
(2)-(3) can be accelerated by standard techniques such as Chebyshev, conjugate gra-
dients, and conjugate residuals.

Let F = D — D be a diagonal matrix and let M denote the computational
cost (in floating point multiplies) of forming the matrix-vector product Az. The
obvious approach to implementing the basic iterative step (2) apparently requires
2M + O(N) multiplies. Our goal is to reduce this to M + O(N). See Eisenstat [5] for
a different solution to the same problem. We note that the case F' = 0-I (unaccelerated
Symmetric Gauss-Seidel) is of particular interest since we can reduce the number of
multiplies per iteration to M + N.

The basic idea for accomplishing this reduction in cost is embodied in the following
procedure for solving

(5) Bz = a(r + Lv),
where r and v are input vectors and « is a scalar. This is solved using the process
(6) Dw = ar+ Llaw + w) = ¢,
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(7) (D—-L")z=q,

(8) r—Az=r—q+ Fz+ Lz.

Despite the apparently implicit nature of (6), it can be solved easily for w using
forward substitution. In fact, w itself need not be saved in any form since ¢ is the
important vector computed in this equation. Computing ¢ and z, given r and v,
requires M + 3N multiplies (multiplies and divides). Computing r — Az requires N
multiplications if we represent the vector implicitly in terms of r — g+ F'z and z.
The basic algorithm, using fixed acceleration parameters 7;, 1<i<m, is given by

ALGORITHM 1: (Fixed Acceleration Parameters - Preliminary)
(1) To = b — A.TO
(2) Fori=1tom
(a) Bz, = 7'717’1'_1
(b) Ty = Tj—1 + Zi
(C) Ti:Ti,1+AZZ‘

Straightforward implementation of Algorithm 1 requires 2M + N multiplies. Using
the process in (6)-(8) we can reformulate this algorithm as

ALGORITHM 2: (Fixed Acceleration Parameters - Final)
(1) ro=b— Dxy+ LT.TQ
(2) Fori=1tom
(a) Dw; = 7’711“1‘_1 + L(Tﬁll’i_l + ’LUZ) =q;
(b) (D-LNzi=a
() ri=rio1—q+Fz
(d) T =1+ 2
(3) Fm=rm+Le,=b— Az,

The computational cost of the inner loops of Algorithm 2 is at most M +4N multiplies.
If we do not accelerate at all (7; = 1), the cost is reduced to at most M +2N multiplies.
Algorithm 2 requires one additional N-vector for storing ¢; and z; (which may share
the same space). The vector r; can be stored over the original right hand side b.

This technique is not limited to fixed acceleration parameters. For instance, the
preconditioned conjugate gradient algorithm is given by

ALGORITHM 3: (PCG - Preliminary)

(1) ro = b— ACEO

(2) po=0

(3) Fori=1tom

(a) BZZ =Ti—1

(b) vi=2zlric; Bi=7i/vi-i; Bi=0
(¢) pi=zi+Bipi1
(d) = %‘/piTApi
(€) mi=mi1+ ap;
(f) ri=ri1—a;Ap;

In order to reduce the number of matrix multiplies to one, we implicitly represent Ap;

as well as the residual. Thus, we set Ap; = v; — Lp;. Then we can reformulate this
algorithm as



ALGORITHM 4: (PCG - Final)

(1) ro=b— Dzxg + LT.”L'()

(2) Po = Vg = 0

(3) Fori=1tom

(a) Dw;=ri-1+ L(zisi+w;) =¢;

b) vi=qlws; Bi=7i/vi-1; B1=0
) (Q - LT)Zi =4
) vi=qi + Bivic1 + Fz
) Di =2+ Bipi-1
) i =/(pf (vi +vi — Dpy))

) Ty = Ti—1 — Q4

(h) o =21 +auip;

(4) rhaty, =1y + Lry, =b— Az,

To implement Algorithm 4, we need three temporary vectors of length N, one each
for v;, p;, and ¢;. The vector z; can share the space of ¢;. As before, r; can be stored
over the right hand side b. The inner loops of Algorithm 4 requires at most M + 8N
multiplies per iteration.

2. Nonsymmetric Matrices. Assume A is an N XN nonsymmetric stiffness
matrix and A = D — L — U, where D is diagonal, L is strictly lower triangular, and
U is strictly upper triangular. Then the matrix B corresponding to the incomplete
LDU factorization class of smoothers is

(9) B=(T-L)S ' (D-U),

where D, S, and T are diagonal.
The algorithms of the last section can be extended to handle B of the form (9).
Given the linear system (5), we replace (6)-(8) by

(10) Tw = ar + L(av + w),
(11) q = Sw,

(12) (D-U)z=q,

(13) r—Az=r—-q+ Fz+ Lz

The generalization of Algorithm 2 requires M + O(N) multiplies. Unfortunately,
some adaptive schemes, like Orthomin(1) [8] or Orthodir(1) [10], appear to require
1.5M 4+ O(N) multiplies (assuming the cost of multiplying by L and U are the same).
This is because the identity

2T Le =a2TL%x,

which is implicitly used in Algorithm 4, line 3f, does not necessarily hold when U
replaces LT. Thus, it appears we need an extra half matrix multiply to form the
equivalent of Ap for purposes of computing inner products.



TABLE 1
Inner Loop Operation Counts for the Preconditionings

Algorithm/Form: | Preliminary Final Final with F' = 0 cdot I
Unaccelerated 2M+ N | M +2N M+ N
Accelerated/Fixed | 2M +2N | M +4N M + 3N
PCG 2M +5N | M +8N M+ 7N

3. Final Remarks. Table 1 contains a summary of the cost of each algorithm.
The column in Table 1 corresponding to the special case of F' = 0-I is important since
it corresponds to the Symmetric Gauss Seidel preconditioner. In practice, variants of
the Gauss Seidel iteration are among the most popular smoothing iterations used in
multigrid codes [2], [3]. Since the cost of smoothing is usually a major expense in a
multigrid code, reducing the number of matrix multiplies can significantly reduce the
overall computational cost.

Although the cost of the adaptive acceleration in Algorithm 4 is somewhat higher
than the cost for the fixed acceleration in Algorithm 2 in terms of multiplications, the
actual cost may not be that much greater. In particular, if A is stored in a general
sparse format, then the effective cost of floating point operations of a matrix multiply
is normally somewhat higher than those for inner products or scalar vector multiplies,
because operations corresponding to matrix multiplication are usually done in N short
loops and accessing each nonzero of A involves some sort of indirect addressing.
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