AN EFFICIENT IMPLEMENTATION FOR SSOR AND
INCOMPLETE FACTORIZATION PRECONDITIONINGS*

RANDOLPH E. BANKf AND CRAIG C. DOUGLAS?!

Abstract. We investigate methods for efficiently implementing a class of incomplete factoriza-
tion preconditioners which includes Symmetric Gauss Seidel [9], SSOR [9], generalized SSOR [1],
Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6]. Our techniques can be extended to
similar methods for nonsymmetric matrices.

1. Symmetric Matrices. We consider the solution of the linear system
(1) Az =b,

where A is an N x N symmetric, positive definite matrix and A = D — L — LT, where
D is diagonal and L is strictly lower triangular. Such linear systems are often solved
by iterative methods, for example, Symmetric Gauss Seidel [9], SSOR. [9], generalized
SSOR [1], Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6].

A single step of a basic (unaccelerated) iterative method, starting from an initial
guess & can be written as

(2) Solve Bd =r =b— AzZ.

(3) Set & = & + 4.

For the iterative methods cited before, B is symmetric, positive definite and can be
written as

(4) B=(D-L)D ' (D-L").

Since A and B are symmetric and positive definite, the underlying iterative scheme
(2)-(3) can be accelerated by standard techniques such as Chebyshev, conjugate gra-
dients, and conjugate residuals.

Let F = D — D be a diagonal matrix and let M denote the computational
cost (in floating point multiplies) of forming the matrix-vector product Az. The
obvious approach to implementing the basic iterative step (2) apparently requires
2M + O(N) multiplies. Our goal is to reduce this to M + O(N). See Eisenstat [5] for
a different solution to the same problem. We note that the case F' = 0-I (unaccelerated
Symmetric Gauss-Seidel) is of particular interest since we can reduce the number of
multiplies per iteration to M + N.

The basic idea for accomplishing this reduction in cost is embodied in the following
procedure for solving

(5) Bz = a(r + Lv),
where r and v are input vectors and « is a scalar. This is solved using the process
(6) Dw = ar+ Llaw + w) = ¢,

* This research was supported in part by ONR Grant N00014-82-K-0197, ONR Grant N00014-
82-K-0184, FSU-ONR Grant F1.N00014-80-C-0076, and NSF MCS-8106181. This work was begun
while the second author was at the Yale University Department of Computer Science.

T Department of Mathematics, University of California at San Diego

t Department of Computer Science, Duke University

1

(7) (D—-L")z=q,

(8) r—Az=r—q+ Fz+ Lz.

Despite the apparently implicit nature of (6), it can be solved easily for w using
forward substitution. In fact, w itself need not be saved in any form since ¢ is the
important vector computed in this equation. Computing ¢ and z, given r and v,
requires M + 3N multiplies (multiplies and divides). Computing r — Az requires N
multiplications if we represent the vector implicitly in terms of r — g+ F'z and z.
The basic algorithm, using fixed acceleration parameters 7;, 1<i<m, is given by

ALGORITHM 1: (Fixed Acceleration Parameters - Preliminary)
(1) To = b — A.TO
(2) Fori=1tom
(a) Bz, = 7'717’1'_1
(b) Ty = Tj—1 + Zi
(C) Ti:Ti,1+AZZ‘

Straightforward implementation of Algorithm 1 requires 2M + N multiplies. Using
the process in (6)-(8) we can reformulate this algorithm as

ALGORITHM 2: (Fixed Acceleration Parameters - Final)
(1) ro=b— Dxy+ LT.TQ
(2) Fori=1tom
(a) Dw; = 7’711“1‘_1 + L(Tﬁll’i_l + ’LUZ) =q;
(b) (D-LNzi=a
() ri=rio1—q+Fz
(d) T =1+ 2
(3) Fm=rm+Le,=b— Az,

The computational cost of the inner loops of Algorithm 2 is at most M +4N multiplies.
If we do not accelerate at all (7; = 1), the cost is reduced to at most M +2N multiplies.
Algorithm 2 requires one additional N-vector for storing ¢; and z; (which may share
the same space). The vector r; can be stored over the original right hand side b.

This technique is not limited to fixed acceleration parameters. For instance, the
preconditioned conjugate gradient algorithm is given by

ALGORITHM 3: (PCG - Preliminary)

(1) ro = b— ACEO

(2) po=0

(3) Fori=1tom

(a) BZZ =Ti—1

(b) vi=2zlric; Bi=7i/vi-i; Bi=0
(¢) pi=zi+Bipi1
(d) = %‘/piTApi
(€) mi=mi1+ ap;
(f) ri=ri1—a;Ap;

In order to reduce the number of matrix multiplies to one, we implicitly represent Ap;

as well as the residual. Thus, we set Ap; = v; — Lp;. Then we can reformulate this
algorithm as

ALGORITHM 4: (PCG - Final)

(1) ro=b— Dzxg + LT.”L'()

(2) Po = Vg = 0

(3) Fori=1tom

(a) Dw;=ri-1+ L(zisi+w;) =¢;

b) vi=qlws; Bi=7i/vi-1; B1=0
) (Q - LT)Zi =4
) vi=qi + Bivic1 + Fz
) Di =2+ Bipi-1
) i =/(pf (vi +vi — Dpy))

) Ty = Ti—1 — Q4

(h) o =21 +auip;

(4) rhaty, =1y + Lry, =b— Az,

To implement Algorithm 4, we need three temporary vectors of length N, one each
for v;, p;, and ¢;. The vector z; can share the space of ¢;. As before, r; can be stored
over the right hand side b. The inner loops of Algorithm 4 requires at most M + 8N
multiplies per iteration.

2. Nonsymmetric Matrices. Assume A is an N XN nonsymmetric stiffness
matrix and A = D — L — U, where D is diagonal, L is strictly lower triangular, and
U is strictly upper triangular. Then the matrix B corresponding to the incomplete
LDU factorization class of smoothers is

(9) B=(T-L)S ' (D-U),

where D, S, and T are diagonal.
The algorithms of the last section can be extended to handle B of the form (9).
Given the linear system (5), we replace (6)-(8) by

(10) Tw = ar + L(av + w),
(11) q = Sw,

(12) (D-U)z=q,

(13) r—Az=r—-q+ Fz+ Lz

The generalization of Algorithm 2 requires M + O(N) multiplies. Unfortunately,
some adaptive schemes, like Orthomin(1) [8] or Orthodir(1) [10], appear to require
1.5M 4+ O(N) multiplies (assuming the cost of multiplying by L and U are the same).
This is because the identity

2T Le =a2TL%x,

which is implicitly used in Algorithm 4, line 3f, does not necessarily hold when U
replaces LT. Thus, it appears we need an extra half matrix multiply to form the
equivalent of Ap for purposes of computing inner products.

TABLE 1
Inner Loop Operation Counts for the Preconditionings

Algorithm/Form: | Preliminary Final Final with F' = 0 cdot I
Unaccelerated 2M+ N | M +2N M+ N
Accelerated/Fixed | 2M +2N | M +4N M + 3N
PCG 2M +5N | M +8N M+ 7N

3. Final Remarks. Table 1 contains a summary of the cost of each algorithm.
The column in Table 1 corresponding to the special case of F' = 0-I is important since
it corresponds to the Symmetric Gauss Seidel preconditioner. In practice, variants of
the Gauss Seidel iteration are among the most popular smoothing iterations used in
multigrid codes [2], [3]. Since the cost of smoothing is usually a major expense in a
multigrid code, reducing the number of matrix multiplies can significantly reduce the
overall computational cost.

Although the cost of the adaptive acceleration in Algorithm 4 is somewhat higher
than the cost for the fixed acceleration in Algorithm 2 in terms of multiplications, the
actual cost may not be that much greater. In particular, if A is stored in a general
sparse format, then the effective cost of floating point operations of a matrix multiply
is normally somewhat higher than those for inner products or scalar vector multiplies,
because operations corresponding to matrix multiplication are usually done in N short
loops and accessing each nonzero of A involves some sort of indirect addressing.

REFERENCES

[1] O. AXELSSON, A generalized SSOR, BIT, 13 (1972), pp. 443-467.

[2] R. E. BANK, Pltmg user’s guide, tech. rep., Univeristy of California at San Diego, San Diego,
1981.

[3] C. C. DoucLAs, A multigrid optimal order solver for elliptic boundary value problems: the
finite difference case, in Advances in Computer Methods for Partial Differential Equations
— V, R. Vichnevetsky and R. S. Stepleman, eds., New Brunswick, NJ, 1984, IMACS,
pp- 369-374.

[4] T. DupronT, R. P. KENDALL, AND J. H. H. RACHFORD, An approzimate factorization procedure
for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968),
pp. 559-573.

[5] S. C. EISENSTAT, Efficient implementation of a class of conjugate gradient methods, SIAM J.
Sci. Stat. Comp., 2 (1981), pp. 1-4.

[6] I. GUSTAFSSON, A class of first order factorization methods, BIT, 18 (1978), pp. 142-156.

[7] J. A. MEUERINK AND H. A. VORST, An iterative solution method for linear systems of which
the the coefficient matriz is a symmetric m—matriz, Math. Comp., 31 (1977), pp. 148-162.

[8] P. K. W. VINSOME, Orthomin, an iterative method for solving sparse sets of simultaneous linear
equations, in Proceedings of the Fourth Symposium on Reservoir Simulation, Society of
Petroleum Engineers of AIME, 1976, pp. 149-159.

[9] D. M. YOUNG, lterative Solution of Large Linear Systems, Academic Press, New York, 1971.

[10] D. M. Youna AND K. C. JEA, Generalized conjugate gradient acceleration of nonsymmetrizable
iterative methods, Linear Algebra and Its Applications, 24 (1980), pp. 159-194.

