
AN EFFICIENT IMPLEMENTATION FOR SSOR AND
INCOMPLETE FACTORIZATION PRECONDITIONINGS∗

RANDOLPH E. BANK† AND CRAIG C. DOUGLAS‡

Abstract. We investigate methods for efficiently implementing a class of incomplete factoriza-
tion preconditioners which includes Symmetric Gauss Seidel [9], SSOR [9], generalized SSOR [1],
Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6]. Our techniques can be extended to
similar methods for nonsymmetric matrices.

1. Symmetric Matrices. We consider the solution of the linear system

Ax = b,(1)

where A is an N×N symmetric, positive definite matrix and A = D−L−LT , where
D is diagonal and L is strictly lower triangular. Such linear systems are often solved
by iterative methods, for example, Symmetric Gauss Seidel [9], SSOR [9], generalized
SSOR [1], Dupont Kendall Rachford [4], ICCG(0) [7], and MICCG(0) [6].

A single step of a basic (unaccelerated) iterative method, starting from an initial
guess x̂ can be written as

Solve Bδ = r ≡ b−Ax̂.(2)

Set x̂ = x̂+ δ.(3)

For the iterative methods cited before, B is symmetric, positive definite and can be
written as

B = (D − L)D−1(D − LT ).(4)

Since A and B are symmetric and positive definite, the underlying iterative scheme
(2)-(3) can be accelerated by standard techniques such as Chebyshev, conjugate gra-
dients, and conjugate residuals.

Let F = D − D be a diagonal matrix and let M denote the computational
cost (in floating point multiplies) of forming the matrix-vector product Ax. The
obvious approach to implementing the basic iterative step (2) apparently requires
2M +O(N) multiplies. Our goal is to reduce this to M +O(N). See Eisenstat [5] for
a different solution to the same problem. We note that the case F = 0·I (unaccelerated
Symmetric Gauss-Seidel) is of particular interest since we can reduce the number of
multiplies per iteration to M +N .

The basic idea for accomplishing this reduction in cost is embodied in the following
procedure for solving

Bz = α(r + Lv),(5)

where r and v are input vectors and α is a scalar. This is solved using the process

Dw = αr + L(αv + w) ≡ q,(6)

∗ This research was supported in part by ONR Grant N00014-82-K-0197, ONR Grant N00014-
82-K-0184, FSU-ONR Grant F1.N00014-80-C-0076, and NSF MCS-8106181. This work was begun
while the second author was at the Yale University Department of Computer Science.
† Department of Mathematics, University of California at San Diego
‡ Department of Computer Science, Duke University

1



(D − LT )z = q,(7)

r −Az = r − q + Fz + Lz.(8)

Despite the apparently implicit nature of (6), it can be solved easily for w using
forward substitution. In fact, w itself need not be saved in any form since q is the
important vector computed in this equation. Computing q and z, given r and v,
requires M + 3N multiplies (multiplies and divides). Computing r − Az requires N
multiplications if we represent the vector implicitly in terms of r − q + Fz and z.

The basic algorithm, using fixed acceleration parameters τi, 1≤i≤m, is given by

Algorithm 1: (Fixed Acceleration Parameters - Preliminary)
(1) r0 = b−Ax0
(2) For i = 1 to m

(a) Bzi = τ−1ri−1

(b) xi = xi−1 + zi
(c) ri = ri−1 +Azi

Straightforward implementation of Algorithm 1 requires 2M + N multiplies. Using
the process in (6)-(8) we can reformulate this algorithm as

Algorithm 2: (Fixed Acceleration Parameters - Final)
(1) r0 = b−Dx0 + LTx0
(2) For i = 1 to m

(a) Dwi = τ−1ri−1 + L(τ−1xi−1 + wi) ≡ qi
(b) (D − LT )zi = qi
(c) ri = ri−1 − qi + Fzi
(d) xi = xi−1 + zi

(3) r̂m = rm + Lxm ≡ b−Axm

The computational cost of the inner loops of Algorithm 2 is at most M+4N multiplies.
If we do not accelerate at all (τi = 1), the cost is reduced to at most M+2N multiplies.
Algorithm 2 requires one additional N -vector for storing qi and zi (which may share
the same space). The vector ri can be stored over the original right hand side b.

This technique is not limited to fixed acceleration parameters. For instance, the
preconditioned conjugate gradient algorithm is given by

Algorithm 3: (PCG - Preliminary)
(1) r0 = b−Ax0
(2) p0 = 0
(3) For i = 1 to m

(a) Bzi = ri−1

(b) γi = zTi ri−1; βi = γi/γi−1; β1 = 0
(c) pi = zi + βipi−1

(d) αi = γi/p
T
i Api

(e) xi = xi−1 + αipi
(f) ri = ri−1 − αiApi

In order to reduce the number of matrix multiplies to one, we implicitly represent Api
as well as the residual. Thus, we set Api = vi − Lpi. Then we can reformulate this
algorithm as

2



Algorithm 4: (PCG - Final)
(1) r0 = b−Dx0 + LTx0
(2) p0 = v0 = 0
(3) For i = 1 to m

(a) Dwi = ri−1 + L(xi−1 + wi) ≡ qi
(b) γi = qTi wi; βi = γi/γi−1; β1 = 0
(c) (D − LT )zi = qi
(d) vi = qi + βivi−1 + Fzi
(e) pi = zi + βipi−1

(f) αi = γi/(p
T
i (vi + vi −Dpi))

(g) ri = ri−1 − αivi
(h) xi = xi−1 + αipi

(4) rhatm = rm + Lxm ≡ b−Axm

To implement Algorithm 4, we need three temporary vectors of length N , one each
for vi, pi, and qi. The vector zi can share the space of qi. As before, ri can be stored
over the right hand side b. The inner loops of Algorithm 4 requires at most M + 8N
multiplies per iteration.

2. Nonsymmetric Matrices. Assume A is an N×N nonsymmetric stiffness
matrix and A = D − L − U , where D is diagonal, L is strictly lower triangular, and
U is strictly upper triangular. Then the matrix B corresponding to the incomplete
LDU factorization class of smoothers is

B = (T − L)S−1(D − U),(9)

where D, S, and T are diagonal.
The algorithms of the last section can be extended to handle B of the form (9).

Given the linear system (5), we replace (6)-(8) by

Tw = αr + L(αv + w),(10)

q = Sw,(11)

(D − U)z = q,(12)

r −Az = r − q + Fz + Lz.(13)

The generalization of Algorithm 2 requires M + O(N) multiplies. Unfortunately,
some adaptive schemes, like Orthomin(1) [8] or Orthodir(1) [10], appear to require
1.5M +O(N) multiplies (assuming the cost of multiplying by L and U are the same).
This is because the identity

xTLx = xTLTx,

which is implicitly used in Algorithm 4, line 3f, does not necessarily hold when U
replaces LT . Thus, it appears we need an extra half matrix multiply to form the
equivalent of Ap for purposes of computing inner products.

3



Table 1
Inner Loop Operation Counts for the Preconditionings

Algorithm/Form: Preliminary Final Final with F = 0 cdot I
Unaccelerated 2M + N M + 2N M + N
Accelerated/Fixed 2M + 2N M + 4N M + 3N
PCG 2M + 5N M + 8N M + 7N

3. Final Remarks. Table 1 contains a summary of the cost of each algorithm.
The column in Table 1 corresponding to the special case of F = 0·I is important since
it corresponds to the Symmetric Gauss Seidel preconditioner. In practice, variants of
the Gauss Seidel iteration are among the most popular smoothing iterations used in
multigrid codes [2], [3]. Since the cost of smoothing is usually a major expense in a
multigrid code, reducing the number of matrix multiplies can significantly reduce the
overall computational cost.

Although the cost of the adaptive acceleration in Algorithm 4 is somewhat higher
than the cost for the fixed acceleration in Algorithm 2 in terms of multiplications, the
actual cost may not be that much greater. In particular, if A is stored in a general
sparse format, then the effective cost of floating point operations of a matrix multiply
is normally somewhat higher than those for inner products or scalar vector multiplies,
because operations corresponding to matrix multiplication are usually done in N short
loops and accessing each nonzero of A involves some sort of indirect addressing.

REFERENCES

[1] O. Axelsson, A generalized SSOR, BIT, 13 (1972), pp. 443–467.
[2] R. E. Bank, Pltmg user’s guide, tech. rep., Univeristy of California at San Diego, San Diego,

1981.
[3] C. C. Douglas, A multigrid optimal order solver for elliptic boundary value problems: the

finite difference case, in Advances in Computer Methods for Partial Differential Equations
– V, R. Vichnevetsky and R. S. Stepleman, eds., New Brunswick, NJ, 1984, IMACS,
pp. 369–374.

[4] T. Dupont, R. P. Kendall, and J. H. H. Rachford, An approximate factorization procedure
for solving self–adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968),
pp. 559–573.

[5] S. C. Eisenstat, Efficient implementation of a class of conjugate gradient methods, SIAM J.
Sci. Stat. Comp., 2 (1981), pp. 1–4.

[6] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–156.
[7] J. A. Meijerink and H. A. Vorst, An iterative solution method for linear systems of which

the the coefficient matrix is a symmetric m–matrix, Math. Comp., 31 (1977), pp. 148–162.
[8] P. K. W. Vinsome, Orthomin, an iterative method for solving sparse sets of simultaneous linear

equations, in Proceedings of the Fourth Symposium on Reservoir Simulation, Society of
Petroleum Engineers of AIME, 1976, pp. 149–159.

[9] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
[10] D. M. Young and K. C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable

iterative methods, Linear Algebra and Its Applications, 24 (1980), pp. 159–194.

4


