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Abstract

We derive and analyze the hierarchical basis-multigrid method for solving
discretizations of self-adjoint, elliptic boundary value problems using piece-
wise linear triangular finite elements. The method is analyzed as a block
symmetric Gauß-Seidel iteration with inner iterations, but it is strongly re-
lated to 2-level methods, to the standard multigrid V-cycle, and to earlier
Jacobi-like hierarchical basis methods. The method is very robust, and has
a nearly optimal convergence rate and work estimate. It is especially well
suited to difficult problems with rough solutions, discretized using highly
nonuniform, adaptively refined meshes.

Keywords: hierarchical basis, multigrid, finite elements, adaptive mesh
refinement, preconditioned conjugate gradients, symmetric Gauß-Seidel.

Subject Classification: AMS(MOS): 65F10, 65F35, 65N20, 65N30

1



1. Introduction

In this work we describe and analyse the hierarchical basis multigrid method
for solving selfadjoint, positive definite, elliptic boundary value problems.
This method is related to standard multigrid methods [5, 9], to the 2–level
scheme of [1, 3, 6, 11], and the hierarchical basis method in [14, 15, 16, 17].

The method can be formulated as a standard multi-grid V–cycle [9], ex-
cept that a smaller than normal subset of unknowns are updated during the
smoothing phase at a given level. In particular, each unknown on the given
finest level is uniquely associated with exactly one level, not several, and is
updated only at that level. This formulation of the hierarchical basis method
is especially useful when considering questions of implementation, since these
aspects of multigrid methods are now well understood.

Although the multigrid–like viewpoint gives the appearance of a recur-
sively defined algorithm, the hierarchical basis method can be mathematically
formulated as a standard block iteration, albeit using the somewhat nonstan-
dard hierarchical basis. In this respect, it resembles the 2–level scheme. The
algebraic theory of block iteration, and in particular, the block symmetric
Gauß-Seidel iteration considered here, is relatively straightforward. One in-
teresting feature is that we allow for “inner” iterations to solve linear systems
involving the diagonal blocks. In any event, a fairly complete algebraic analy-
sis can be developed using only the assumptions that the matrix is symmetric
and positive definite.

While we ultimately return to and use the properties of the finite element
subspaces, in order to make our final estimates, the assumptions we need are
all very weak and are almost always satisfied in practice. In particular, we
assume shape regularity (e.g. a small angle condition) for each element but
do not assume quasiuniformity of the global mesh. Our estimates involve
only local ellipticity; we use no global regularity for the solution beyond the
minimal H1–regularity required for the standard weak formulation. Finally,
we use local properties of piecewise polynomials.

Within this framework, we are able to show the hierarchical basis methods
used as preconditioners have generalized condition numbers which grow like
j2, where j is the number of levels. This is slightly suboptimal in comparison
with standard multigrid methods, where the condition numbers are uniformly
bounded, and it introduces a logarithmic–like factor into the overall work
estimate.

The hierarchical basis method requires O(n) operations per iteration,
where n is the number of unknowns on the finest level. This is the same as
for standard multigrid methods. However, because of their recursive nature,
one often requires geometric growth in the dimensions of the subspaces to
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insure that the work on coarse levels will not dominate the overall work per
cycle. Because our hierarchical basis method is just a symmetric block Gauß-
Seidel iteration, its work estimate remains valid for any allowable distribution
of unknowns among the levels; it relies only on the usual and normal sparsity
of the global stiffness matrix for the nodal basis, (i.e. O(1) nonzeroes per
row).

The overall complexity of the hierarchical basis multigrid method, used
as a preconditioner for the conjugate gradient iteration, is thus O(nj| log ε|)
operations required to reduce the initial error by the factor ε. In the realm
of smooth model problems on rectangular regions, solved using a sequence of
uniform and uniformly refined meshes, it is fair to say that the hierarchical
basis method is just another pretty face in a big crowd of very good optimal or
nearly optimal methods [1, 9]. On the other hand, for geometrically complex
regions, involving highly nonuniform and adaptively refined meshes, and/or
problems with rough coefficients and solutions, there are far fewer good can-
didates for a simple but effective iterative method [7, 8, 14, 15, 16, 17]. It is
in this regime that the hierarchical basis multigrid method looks very attrac-
tive. Since its theory is based on only weak assumptions, its performance
and work estimate remain essentially stable over an extremely broad range
of problems. We remark that the theory developed here can be extended in
straightforward fashion to other finite elements (e.g. quadrilaterals as well
as triangles), other types of refinements procedures (e.g. [12]) and to higher
degree polynomial spaces. We also mention that the method works well for
many strongly indefinite and highly nonsymmetric problems (e.g. singular
perturbation problems) but our theory does not cover such cases. Thus,
as a general purpose, robust, elliptic solver, the hierarchical basis multigrid
method has a lot to recommend it, and we believe its future is bright.

The remainder of this paper is organized as follows: In Section 2, we
discuss the finite element discretization, introduce the nodal and hierarchical
bases and derive the linear algebra problem to be solved. In Section 3, we
present and analyze the block symmetric Gauß-Seidel iteration for a general
symmetric, positive definite matrix. We analyze three possibilities for solv-
ing linear systems involving the diagonal blocks: direct solution, and point
Gauß-Seidel and point symmetric Gauß-Seidel inner iterations. The theory
developed here is strictly algebraic; the generalized condition numbers for
the three cases are estimated in terms of a few constants, which ultimately
are bounded, in Section 4, using the properties of the finite element space.
In Section 5, we outline the precise relationship between the hierarchical ba-
sis method and the standard multigrid V-cycle, and present some numerical
illustrations.
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2. The Finite Element Discretization

We assume that Ω ⊆ R2 is a bounded polygonal domain. As a model problem
we consider the differential equation

−
2∑

i,j=1

Dj(aijDiu) = f (2.1)

on Ω with Dirichlet boundary conditions

u = 0 (2.2)

on the boundary piece Γ and natural boundary conditions

2∑
i=1

(
2∑

j=1

aij~n|j)Diu = 0 (2.3)

on the remaining part ∂Ω\Γ of the boundary of Ω. ~n denotes the outward
unit normal vector. The appropriate solution space of this boundary value
problem is

H(Ω) = {u ∈ W 1,2(Ω) | u = 0 on Γ} (2.4)

where Γ is assumed to be composed of some or all edges of the polygonal
domain Ω and the zero boundary conditions have to be understood in the
sense of the trace operator. The seminorm

|u|21,2;Ω =
2∑

i=1

∫
Ω
|(Diu)(x)|2dx (2.5)

is a norm on H(Ω). The weak formulation of our boundary value problem is
to find a function u ∈ H(Ω) satisfying

B(u, v) = f ∗(v), v ∈ H(Ω), (2.6)

where f ∗ is a given bounded linear functional on H(Ω) and the bilinear form
B is defined by

B(u, v) =
∫

Ω

2∑
i,j=1

aijDiuDjvdx . (2.7)

We assume that the aij are measurable and bounded functions satisfying

aij = aji, i, j = 1, 2 (2.8)

and

δ
2∑

i=1

η2
i ≤

2∑
i,j=1

aij(x)ηiηj ≤M
2∑

i=1

η2
i (2.9)
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for almost all x ∈ Ω and all η ∈ R2. δ and M are positive constants
independent of x and η.

By (2.8) and (2.9) B is a symmetric bounded and coercive bilinear form
on H(Ω).

‖u‖2 = B(u, u) (2.10)

defines a norm on H(Ω), the energy norm. This norm is equivalent to the
norm (2.5). Since H(Ω) is a Hilbert space under this norm, the Riesz repre-
sentation theorem guarantees that the boundary value problem (2.6) has a
unique solution. In this paper we consider only the weak formulation (2.6)
and not the classical formulation given above.

By a triangulation T of the polygonal domain Ω we mean a set of triangles
such that the union of these triangles is Ω̄ and such that the intersection of
two triangles of T either consists of a common side or a common vertex of
both triangles or is empty. Here we start with an intentionally coarse initial
triangulation T1 of Ω. For every triangle T ∈ T1 let δ(T ) and M(T ) be
positive constants with

δ(T )
2∑

i=1

η2
i ≤

2∑
i,j=1

aij(x)ηiηj ≤M(T )
2∑

i=1

η2
i (2.11)

for almost all x ∈ T and all η ∈ R2. Let

M(T )

δ(T )
≤ σ, T ∈ T1. (2.12)

This constant σ and not the global ratio M/δ with the constants M and δ
from (2.9) enters into our estimates.

To produce a sufficiently accurate solution we refine T1 several times,
giving a family of nested triangulations T1, T2, T3, . . .. A triangle of Tk+1

is either a triangle of the triangulation Tk to be refined or is generated by
subdividing a triangle of Tk into four congruent subtriangles as shown in Fig.
1a or into two triangles as shown in Fig. 1b. The two triangles in Fig. 1b
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Figure 1

are obtained by connecting a given vertex of the original triangle with the
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midpoint of the opposite side. The situation described by Fig. 1a we call a
regular refinement, and the resulting triangles as well as the triangles of the
initial triangulation are regular triangles. A refinement as in Fig. 1b is an
irregular refinement and results in two irregular triangles.

The irregular refinement is potentially dangerous because interior angles
of the resulting irregular elements might be reduced. Therefore we add the
rule that irregular triangles may not be further refined. This rule insures that
every triangle of any triangulation Tk is geometrically similar to a triangle of
the initial triangulation T1 or an irregular refinement of a triangle of T1.

The triangles of T1 are called level 1 elements, and the regular and irregu-
lar triangles created by the refinement of level k− 1 triangles are called level
k elements. The vertices of the mesh T1 are the level 1 vertices or nodes and
those vertices created by the refinement of a level k − 1 element are level k
vertices. It is important to recognize that not all elements in Tk−1 need to
be refined in creating Tk. In particular, the mesh Tk may contain unrefined
elements from all lower levels, and thus it may be a highly nonuniform mesh.

Algorithms for adaptively generating meshes Tk satisfying the rules given
here are described in [5] and have been implemented in the finite element
package PLTMG [2]. The details are unimportant for our considerations but
one should note that the levels introduced here do not necessarily reflect the
dynamic refinement process.

Corresponding to the triangulations Tk we have finite element spaces Sk.
Sk consists of all functions which are continuous on Ω̄ and linear on the
triangles T ∈ Tk and which vanish on the boundary piece Γ. Clearly Sk is a
subspace of Sl for l ≥ k.

For each space Sk there are two sets of basis functions which play im-
portant roles in our discussion: the nodal basis ψ̂

(k)
i , i = 1, . . . , nk, and the

hierarchical basis ψi, i = 1, . . . , nk. The nodal basis is the standard basis
used in practical computation. The basis function ψ̂

(k)
i ∈ Sk is defined by

ψ̂
(k)
i (xl) = δil (2.13)

where the xl runs over the vertices of the triangles of Tk not lying on Γ. The
hierarchical basis, on the other hand is defined as follows:

1. The hierarchical basis of S1 is ψi := ψ̂
(1)
i , i = 1, . . . , n1.

2. For k = 2, 3, . . . the hierarchical basis of Sk consists of the hierarchical
basis functions

ψi, i = 1, . . . , nk−1

of Sk−1 and the nodal basis functions

ψi := ψ̂
(k)
i , i = nk−1 + 1, . . . , nk.
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In other words the hierarchical basis for Sk is built from that of Sk−1 by
adding the nodal basis functions of Sk associated with the level k nodes not
lying on Γ, namely with xi, i = nk−1 + 1, . . . , nk. The hierarchical basis of
Sk induces a natural partitioning of the finite element space. Let

Vk = span {ψi | xi is a level k vertex} (2.14)

Then one has the decomposition

Sk = V1 ⊕ V2 ⊕ · · · ⊕ Vk (2.15)

For convenience we fix a finite element space S = Sj. Every function u ∈ S
can uniquely be written as

u =
j∑

i=1

ui, ui ∈ Vi (2.16)

We now define the interpolation operators

Jk : S → Sk, k = 1, . . . , j (2.17)

by

Jku =
k∑

i=1

ui (2.18)

Jku is the uniquely given function of Sk interpolating u ∈ S at the vertices
of the triangles of Tk. The finite element space Sk is the range of Jk and for
k = 2, . . . , j the space Vk is the range of Jk − Jk−1.

Our final aim is to solve the linear system

Âx̂ = b̂ (2.19)

corresponding to the boundary value problem (2.6) and the discrete solution
space S represented in terms of the nodal basis. The components of the
solution vector x̂ are the values of the discrete solution at the nodal points.
To solve (2.19) we implicitly switch to the hierarchical basis formulation

Ax = b (2.20)

of the system (2.19). This system is solved by a preconditioned conjugate
gradient method. As preconditioners we use relaxation procedures associated
with the blocking of the matrix A induced by the splitting (2.15) of the
finite element space Sj = S. A complete description of the preconditioning
procedures is given in the next section.

Algorithmically the preconditioners are realized exactly as V -cycle multi-
grid methods with Gauß-Seidel smoothers, except that only unknowns corre-
sponding to Vk (and not to Sk) are smoothed at level k. Therefore the amount
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of work per iteration step is proportional to the number of unknowns, but un-
like standard multigrid methods, it is unnecessary to assume geometrically
increasing dimensions of the subspaces Sk to achieve this bound. This feature
makes the method especially attractive for adaptively refined grids.

In the next two sections we show that the growth of the condition number
of the preconditioned matrices is bounded by O(j2), with j the number of
levels. This is slightly suboptimal and leads to an O(jn) algorithm. Prac-
tically this represents logarithmic growth in the number of iterations as a
function of n, but contrary to usual multigrid methods this estimate does not
require the usual strong elliptic regularity assumptions or the quasiuniformity
of the family of triangulations.
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3. The Block Gauß-Seidel Iteration

Let A be arbitrary symmetric positive definite (n×n)-matrix written in block
form as

A =


A11 · · · A1j

...
. . .

...

Aj1 · · · Ajj

 (3.1)

with the Aii square matrices, remaining fixed in this section. We use the
decomposition

A = L+D + LT (3.2)

of A into its block lower triangular part

L =



0 · · · · 0

A21 0 ·
...

. . . . . .
...

Aj1 · · · Aj,j−1 0

 (3.3)

its symmetric, positive definite block diagonal part

D =


A11 · · · 0

...
. . .

...

0 · · · Ajj

 (3.4)

and its corresponding upper triangular part LT .
We consider the solution of

Ax = b (3.5)

by the symmetric block Gauß-Seidel iteration

x(i+1/2) = x(i) + (L+D)−T (b− Ax(i)) (3.6)

x(i+1) = x(i+1/2) + (L+D)−1(b− Ax(i+1/2)) (3.7)

In each step (3.6), (3.7) one must solve 2j linear systems with the coeffi-
cient matrices Ajj, . . . , A11 and A11, . . . , Ajj. In many applications, such as
ours, the cost of direct solution is prohibitively large. Therefore we replace
the block diagonal matrix D in (3.6) and (3.7) by another nonsingular, but
not necessarily symmetric, block diagonal matrix D̃ obtaining the modified
iteration

x(i+1/2) = x(i) + (L+ D̃)−T (b− Ax(i)) (3.8)

x(i+1) = x(i+1/2) + (L+ D̃)−1(b− Ax(i+1/2)) (3.9)

We begin our analysis with:
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Theorem 3.1 Let the symmetric matrix

X = D̃ + D̃T −D (3.10)

be positive definite. Then the iteration (3.8), (3.9) can be written as

x(i+1) = x(i) +B−1(b− Ax(i)) (3.11)

with the symmetric and positive definite matrix

B = (L+ D̃)TX−1(L+ D̃) (3.12)

Proof: Let
r(i) = b− Ax(i), r(i+1/2) = b− Ax(i+1/2)

The definition of x(i+1/2) leads to

r(i+1/2) = r(i) − A(x(i+1/2) − x(i))

= r(i) − (L+D + LT )(x(i+1/2) − x(i))

= r(i) − (L+ D̃)T (x(i+1/2) − x(i)) + (D̃T −D − L)(x(i+1/2) − x(i))

= (D̃T −D − L)(x(i+1/2) − x(i)).

Using the definitions of x(i+1) and x(i+1/2) we obtain

(L+ D̃)(x(i+1) − x(i))

= (L+ D̃)(x(i+1) − x(i+1/2)) + (L+ D̃)(x(i+1/2) − x(i))

= r(i+1/2) + (L+ D̃)(x(i+1/2) − x(i))

= (D̃T −D − L)(x(i+1/2) − x(i)) + (L+ D̃)(x(i+1/2) − x(i))

= (D̃ + D̃T −D)(x(i+1/2) − x(i))

= (D̃ + D̃T −D)(L+ D̃)−T (b− Ax(i))

As D̃ + D̃T −D = X is positive definite this is the proposition.

The matrix B−1 can be regarded as an approximate inverse of A. The effi-
ciency of the positive definite matrix B as a preconditioner for A is largely
described by the generalized condition number

κ =
µ2

µ1

(3.13)

where µ1 and µ2 are defined by

1

µ1

= max
x 6=0

(x,Bx)

(x,Ax)
(3.14)
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and

µ2 = max
x6=0

(x,Ax)

(x,Bx)
(3.15)

The brackets denote the Euclidean inner product.
We consider three different choices for D̃. The first one is

Case 1: D̃ = D (3.16)

which corresponds to the original block Gauß-Seidel method (3.6), (3.7). The
other two choices are described in terms of the decomposition

D = l + d+ lT (3.17)

of the block diagonal matrix (3.4). Here

d =



A11 · · · · 0

· diag (A22) ·
...

. . .
...

0 · · · · diag (Ajj)

 (3.18)

is a pointwise diagonal matrix except for the (1, 1)–block and l is a strictly
lower–triangular matrix. Now we can define

Case 2: D̃ = l + d (3.19)

Case 3: D̃ = (l + d)Td−1(l + d) (3.20)

Case 2 corresponds to using one Gauß-Seidel step for all diagonal blocks
except for the first one where the corresponding system is solved exactly. In
Case 3 each of the diagonal blocks with exception of the first one is treated
by one symmetric Gauß-Seidel step; compare Theorem 3.1. In all three cases
the matrix (3.10) is positive definite: We have for

Case 1: X = D (3.21)

Case 2: X = d (3.22)

Case 3: X = D + 2lTd−1l (3.23)

Therefore Theorem 3.1 applies.
For all three cases the constant µ2 in (3.15) is explicitly known:

Theorem 3.2 For all three cases defined above

µ2 = max
x 6=0

(x,Ax)

(x,Bx)
= 1 (3.24)
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Proof: The proof that µ2 is bounded by 1 requires only the hypothesis of
Theorem 3.1. Let Y = D̃ −D. Because D̃ = X − Y T we have

B = (L+X − Y T )TX−1(L+X − Y T )

Using the identities XT = X and D = X − Y − Y T we obtain

B = ((L− Y T )T +X)X−1((L− Y T ) +X)

= L+ (X − Y − Y T ) + LT + (L− Y T )TX−1(L− Y T )

= A+ F

where F is the symmetric, positive semidefinite matrix

F = (L+D − D̃T )TX−1(L+D − D̃T )

An immediate consequence of this representation is

(x,Ax)

(x,Bx)
=

(x,Ax)

(x,Ax) + (x, Fx)
≤ (x,Ax)

(x,Ax)
= 1

for all vectors x 6= 0 or µ2 ≤ 1.
Therefore the proof is completed by showing that for each choice of D̃

there exists a vector x∗ 6= 0 satisfying

Fx∗ = 0

or equivalently
(L+D − D̃T )x∗ = 0

We have for

Case 1: L+D − D̃T = L

Case 2: L+D − D̃T = L+ l

Case 3: L+D − D̃T = L− lTd−1l

The last column x∗ = (0, . . . , 0, 1)T of the identity matrix satisfies

Lx∗ = 0, lx∗ = 0

and therefore in all three cases Fx∗ = 0.

By Theorem 3.2 for all three choices of D̃, the generalized condition number
(3.13) is given by

κ = max
x 6=0

(x,Bx)

(x,Ax)
(3.25)
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In the following we use the Euclidean norm

|x| = (x, x)1/2 (3.26)

its associated matrix norm

|M | = max
x 6=0

|Mx|
|x|

(3.27)

which is the spectral norm, the energy norm

‖x‖ = (x,Ax)1/2 (3.28)

and its associated matrix norm

‖M‖ = max
x 6=0

‖Mx‖
‖x‖

(3.29)

which is given by
‖M‖ = |A1/2MA−1/2| (3.30)

The rate of convergence of a stationary iterative method

x(i+1) = x(i) +M−1(b− Ax(i)) (3.31)

with respect to the energy norm is

‖E −M−1A‖ = |E − A1/2M−1A1/2| (3.32)

E denotes the identity matrix.

Theorem 3.3 For all three choices of the block diagonal matrix D̃ the mod-
ified symmetric block Gauß-Seidel iteration (3.8), (3.9) has the convergence
rate

1− 1

κ

Proof: By definition µ1 is the smallest and µ2 the largest eigenvalue of the
matrix B−1/2AB−1/2 which is similar to the symmetric matrix A1/2B−1A1/2.
Using Theorem 3.2, (3.14) and (3.25), we obtain

|E − A1/2B−1A1/2| = 1− 1

κ

We note that the convergence rates of the modified forward block Gauß-Seidel
iteration

x(i+1) = x(i) + (L+ D̃)−1(b− Ax(i)) (3.33)

and the corresponding backward iteration

x(i+1) = x(i) + (L+ D̃)−T (b− Ax(i)) (3.34)

can be expressed in terms of the generalized condition number (3.13). This
is shown following [13].
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Theorem 3.4 For all three choices of D̃ the rate of convergence of the iter-
ations (3.33), (3.34) with respect to the energy norm is

(1− 1

κ
)1/2

Thus two steps of the iterations (3.33) or (3.34) have approximately the same
effect as one step of the symmetrized iteration (3.8), (3.9).

Proof: The convergence rate of the first method is

|E − A1/2(L+ D̃)−1A1/2|
and the convergence rate of the second iteration

|E − A1/2(L+ D̃)−TA1/2|
As the spectral norm of a matrix and its transpose coincide both norms are
equal and given by the squareroot of the largest eigenvalue of the matrix

[E − A1/2(L+ D̃)−TA1/2][E − A1/2(L+ D̃)−1A1/2] = E − A1/2B−1A1/2

As we have stated in the proof of Theorem 3.3 this eigenvalue is

1− 1

κ

We are left with the problem of bounding the constant (3.14). This cannot
be done without using further properties of the matrix A. In the remainder
of this section we develop some estimates that can be applied to our finite
element equations.

We define the following constants:

α2
0 = max

x 6=0

(x, (L+D)TD−1(L+D)x)

(x,Ax)
(3.35)

α2
1 = max

x 6=0

(x,Dx)

(x,Ax)
(3.36)

β2 = max
x 6=0

(x, lTd−1lx)

(x, dx)
(3.37)

γ2
1 = max

x 6=0

(x, dx)

(x,Dx)
(3.38)

γ2
2 = max

x 6=0

(x,Dx)

(x, dx)
(3.39)

The constants α0 and α1 are invariant under any block diagonal scaling of A
and β, γ1 and γ2 under any diagonal scaling of A.

Lemma 3.5 For the block Gauß-Seidel method (3.6), (3.7) (Case 1),

1

µ1

= α2
0 (3.40)
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Proof: The matrix (3.12) of Theorem 3.1 is given by

B = (L+D)TD−1(L+D)

By Theorem 3.2 and Lemma 3.5

κ1 = α2
0 (3.41)

is the generalized condition number corresponding to Case 1.
1/α2

1 is the smallest eigenvalue of the symmetric matrix

D−1/2AD−1/2 (3.42)

This corresponds to the original matrix A preconditioned by its block diag-
onal part D. Note that the maximum eigenvalue

α2
2 = max

x 6=0

(x,Ax)

(x,Dx)
(3.43)

of the matrix (3.42) does not enter into our estimates.
1/γ2

1 is the minimum and γ2
2 the maximum eigenvalue of the scaled block

diagonal part
d−1/2Dd−1/2 (3.44)

of the matrix A.
Using the spectral norm the constants can be written as follows:

α0 = |D−1/2(L+D)A−1/2| (3.45)

α1 = |D1/2A−1/2| (3.46)

β = |d−1/2ld−1/2| (3.47)

γ1 = |d1/2D−1/2| (3.48)

γ2 = |D1/2d−1/2| (3.49)

As the spectral norm of a matrix and of its transpose coincide in addition
we have

β = |d−1/2lTd−1/2| (3.50)

γ1 = |D−1/2d1/2| (3.51)

γ2 = |d−1/2D1/2| (3.52)

Lemma 3.6 For Case 2 the constant (3.14) satisfies

1

µ1

≤ (γ2α0 + βγ1α1)2 (3.53)
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Proof: The matrix B is given by

B = (L+ l + d)Td−1(L+ l + d)

and therefore we have

1

µ1

= |d−1/2(L+ l + d)A−1/2|2

Using (3.45), (3.46), (3.48), (3.50) and (3.52) we obtain

|d−1/2(L+ l + d)A−1/2|
= |d−1/2(L+D)A−1/2 − d−1/2lTA−1/2|
≤ |d−1/2D1/2| |D−1/2(L+D)A−1/2|+

+|d−1/2lTd−1/2| |d1/2D−1/2| |D1/2A−1/2|
≤ γ2α0 + βγ1α1

Lemma 3.7 For Case 3 the constant (3.14) satisfies

1

µ1

≤ (α0 +
1√
2
βγ1α1)2 (3.54)

Proof: For this calculation only, let

Z = lTd−1l

Then the matrix B has the representation

B = (L+D + Z)T (D + 2Z)−1(L+D + Z),

and therefore we have

(
1

µ1

)1/2 = |(D + 2Z)−1/2(L+D + Z)A−1/2|

≤ |(D + 2Z)−1/2D1/2| |D−1/2(L+D)A−1/2|+
+|(D + 2Z)−1/2ZD−1/2| |D1/2A−1/2|

Using the positive semidefinite symmetric matrix

Q = D−1/2ZD−1/2

one obtains

[(D + 2Z)−1/2D1/2]T [(D + 2Z)−1/2D1/2] = D1/2(D + 2Z)−1D1/2

= (E + 2Q)−1
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and
[(D + 2Z)−1/2ZD−1/2]T [(D + 2Z)−1ZD−1/2]

= D−1/2Z(D + 2Z)−1ZD−1/2

= Q(E + 2Q)−1Q

If Λ denotes the set of eigenvalues of Q,

1

1 + 2λ
, λ ∈ Λ,

is the set of eigenvalues of (E + 2Q)−1. As Q is a positive semidefinite and
singular matrix this means

|(D + 2Z)−1/2D1/2| = 1.

The set of eigenvalues of the matrix Q(E + 2Q)−1Q is

λ2

1 + 2λ
, λ ∈ Λ.

Since
λ2

1 + 2λ
≤ λ

2
, λ ≥ 0,

we get

|(D + 2Z)−1/2ZD−1/2|2 ≤ 1

2
|D−1/2ZD−1/2|

Inserted above we obtain the estimate

(
1

µ1

)1/2 ≤ |D−1/2(L+D)A−1/2|+ 1√
2
|D−1/2ZD−1/2|1/2|D1/2A−1/2|

Now, using (3.51), (3.50), (3.47), (3.48)

|D−1/2ZD−1/2| = |D−1/2lTd−1lD−1/2|
≤ |D−1/2d1/2| |d−1/2lTd−1/2| |d−1/2ld−1/2| |d1/2D−1/2|
≤ γ1ββγ1

Combining this with (3.45) and (3.46) completes the proof.

Theorem 3.2 and Lemma 3.6 and 3.7 lead immediately to the following esti-
mates for the generalized condition number (3.13):

Case 2: κ2 ≤ (γ2α0 + βγ1α1)2 (3.55)

Case 3: κ3 ≤ (α0 +
1√
2
βγ1α1)2 (3.56)

We conjecture
κ1 ≤ κ3 ≤ κ2 (3.57)
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Because of γ2 ≥ 1 our estimates reflect this supposed behaviour.
Our next task is to obtain simple bounds for the constants α0 and α1.

For this purpose let

Ik =



E11 · · · · · · · · · 0
...

. . .
...

... Ekk
...

...
. . .

...

0 · · · · · · · · · 0


(3.58)

be the block–diagonal matrix the first k block–diagonal entries of which are
the identity matrices Eii and all other blocks are zero. In our application the
matrices Ik, k = 1, . . . , j, can be interpreted as the finite element interpola-
tion operators of Section 2.

Lemma 3.8 For all n−dimensional vectors x,

|D−1/2(L+D)A−1/2x|2 ≤
j∑

k=1

|A1/2IkA
−1/2x|2 (3.59)

and

|D1/2A−1/2x|2 ≤ 4
j∑

k=1

|A1/2IkA
−1/2x|2 (3.60)

Proof: The first proposition holds if and only if one has for any fixed vector
x

|x|2 ≤
j∑

k=1

|A1/2Ik(L+D)−1D1/2x|2 (3.61)

Let y = (L+D)−1D1/2x and define the matrices

P1 = I1, Pk = Ik − Ik−1, k = 2, . . . , j .

Because of the block structure of the matrices L and D we have

D1/2I1y = P1x

Since
I1DI1 = I1AI1

we obtain
|P1x| = |A1/2I1y| (3.62)

For estimating |Pkx| for k = 2, . . . , j we introduce the decomposition

Iky = v + w,
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where

v = Ik(L+D)−1D1/2Pkx

w = Ik(L+D)−1D1/2Ik−1x

Since Ik(L+D)−1D1/2Pk is zero except for its k−th diagonal block, we obtain
from a simple computation

v = Pkv = PkD
−1/2Pkx, (3.63)

and because
PkAPk = PkDPk,

as a first consequence
|Pkx| = |A1/2v|. (3.64)

Now, since
PkAIk = Pk(L+D),

we get

PkAw = PkAIk(L+D)−1D1/2Ik−1x

= PkD
1/2Ik−1x

= 0

Using (3.63)
(v, Aw) = (Pkv,Aw) = (v, PkAw) = 0

and hence

|A1/2Iky|2 = |A1/2(v + w)|2 = |A1/2v|2 + |A1/2w|2.

Thus from (3.64)
|Pkx| ≤ |A1/2Iky|. (3.65)

Combining (3.62) and (3.65) we finally obtain

|x|2 =
j∑

k=1

|Pkx|2 ≤
j∑

k=1

|A1/2Iky|2

which is (3.61) and completes the proof of (3.59). The proof of the second
estimate is less tricky. Using the triangle and Cauchy-Schwarz inequalities
for all vectors x we obtain

|D1/2x|2 = (x,Dx)

=
j∑

k=1

(Pkx,APkx)
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=
j∑

k=1

|A1/2Pkx|2

= |A1/2I1x|2 +
j∑

k=2

|A1/2(Ik − Ik−1)x|2

≤ |A1/2I1x|2 +
j∑

k=2

(|A1/2Ikx|+ |A1/2Ik−1x|)2

≤ 4
j∑

k=1

|A1/2Ikx|2

which implies (3.60).

An immediate consequence of Lemma 3.8 and the representations (3.45) and
(3.46) are the bounds

α2
0 ≤

j∑
k=1

‖Ik‖2 (3.66)

α2
1 ≤ 4

j∑
k=1

‖Ik‖2 (3.67)

for the constants (3.35) and (3.36) in terms of the energy norms of the ma-
trices Ik. We remark that since

(x, (L+ D̃)TX−1(L+ D̃)x) ≥ |I1X
−1/2(L+ D̃)x|2

= |I1D
1/2x|2

= (I1x,AI1x),

for all three choices of D̃ we obtain the lower bounds

κ ≥ ‖I1‖2 (3.68)

for the condition numbers κ = κ1, κ2, κ3.
In the next lemma we derive simple estimates for β and γ2 of (3.47) and

(3.49), respectively.

Lemma 3.9 Suppose the Akk, k = 2, . . . , j, have at most m + 1 nonzeros
per row. Then

β = |d−1/2ld−1/2| ≤ m (3.69)

and
γ2 = |D1/2d−1/2| ≤

√
m+ 1 (3.70)
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Proof: By the Cauchy-Schwarz inequality the entries qij of any symmetric
positive definite matrix satisfy

|qij| ≤
√
qiiqjj

Therefore all entries of the scaled matrix

d−1/2Dd−1/2

are bounded by 1. Remembering that the (1, 1)–block of this matrix is an
identity matrix, simple Gershgorin estimates show that the eigenvalues of
the matrices

(d−1/2ld−1/2)T (d−1/2ld−1/2)

and
(D1/2d−1/2)T (D1/2d−1/2)

are bounded by m2 and m+ 1, respectively.

Finally, we note that the estimates of this section (with a small and obvious
modification of Lemma 3.9) remain unchanged if one replaces the matrix d
from (3.18) by the diagonal of D.

In the next section we derive estimates for

‖Ik‖, k = 1, . . . , j, (3.71)

and for the constant γ1 of (3.48). For these estimates we must return to the
finite element discretization and use the properties that it implies for A.
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4. Condition Number Estimates

In this section let A be the discretization matrix corresponding to the model
problem (2.20) of Section 2. Assume that the blocking (3.1) of A is induced by
the partition (2.15) of the finite element space into different refinement levels.
Within this framework, we derive bounds for the growth of the condition
numbers (3.13) as a function of the number of levels j.

First we observe that the matrices (3.58) correspond to the interpolation
operator (2.17): If u ∈ S is the function represented by the hierarchical
basis coefficient vector x, the function Jku is represented by Ikx. For finding
bounds for the norms of the interpolation operators Jk we utilize one of the
key results of [14]. This result is restricted to two space dimensions. One
obtains more rapid growth rates for three–dimensional problems; compare
the remarks in the introduction of [14] concerning this topic.

Lemma 4.1 There exists a constant K1 such that

|Jku|21,2;T ≤ K1(j − k + 1) |u|21,2;T (4.1)

for k = 1, . . . , j, all triangles T of the initial triangulation T1 and all functions
u ∈ S. K1 depends only on a lower bound for the interior angles of the
triangles in T1 but not on k or j.

Proof: The proposition is an immediate consequence of Lemma 2.2 of [14].

Remark: By Lemma 2.3 of [14] one gets the estimate

‖Jku‖2
0,2;T ≤ K∗1(j − k + 1) {‖u‖2

0,2;T + (2−kH)2 |u|21,2;T} (4.2)

for the L2−norm of Jku. H denotes the diameter of the triangle T ∈ T1.

Lemma 4.2 For k = 1, . . . , j and all functions u ∈ S one has

‖Jku‖2 ≤ K1σ(j − k + 1)‖u‖2 (4.3)

where K1 is the constant from Lemma 4.1 and σ the constant (2.12) describing
the local ellipticity of the boundary value problem.
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Proof: By (2.11), (2.12) and Lemma 4.1 one has

‖Jku‖2 ≤
∑
T∈T1

M(T )|Jku|21,2;T

≤
∑
T∈T1

M(T )K1(j − k + 1)|u|21,2;T

≤ K1σ(j − k + 1)
∑
T∈T1

δ(T )|u|21,2;T

≤ K1σ(j − k + 1)‖u‖2

As a consequence of Lemma 4.2 and the estimates (3.66) and (3.67) one
obtains the bounds

α2
0 ≤

1

2
K1σj(j + 1) (4.4)

α2
1 ≤ 2K1σj(j + 1) (4.5)

for the constants (3.35) and(3.36).
We remark that estimates for α0 and α1 can also be derived from strengthed

Cauchy-Schwarz inequalities. The inequalities appropriate here are

|B(vk, wk)| ≤ εk‖vk‖ ‖wk‖, k = 1, . . . , j − 1,

0 ≤ εk ≤ 1− c

j − k
< 1,

which hold for all vk ∈ V1 ⊕ V2 ⊕ · · · ⊕ Vk, wk ∈ Vk+1 ⊕ · · · ⊕ Vj. These can
be established using techniques similar to those in [3, 14]. The estimates

‖Jk‖2 ≤ 1

1− εk
are then immediate from the decomposition

u = vk + wk, Jku = vk,

and establish Lemma 4.2.
As second step we have to derive a bound for the constant γ1 given by

(3.38).

Lemma 4.3 Let ψi = ψ̂
(k)
i , i = nk−1 + 1, . . . , nk, be the nodal basis of Vk

with the associated level k nodes xi, i = nk−1 + 1, . . . , nk, as introduced in
Section 2. Then there exists a constant K2 such that

nk∑
i=nk−1+1

xi∈T

|ψi|21,2;T |v(xi)|2 ≤ K2|v|21,2;T (4.6)

for all functions v ∈ Vk and all triangles T ∈ T1. This constant depends
only on a lower bound for the interior angles of the triangles in the initial
triangulation T1 but not on the choice of k = 2, . . . , j.
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Proof: First we observe that it is sufficient to prove the proposition for
the level k − 1 triangles T of Tk−1 containing a level k node instead for the
triangles of T1. Here one has to distinguish the two types of triangles shown
in Fig. 2a,b. In the first case T contains three level k nodes and in the second
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a b

Figure 2

case one. The functions v ∈ Vk are piecewise linear on the dashed triangles
in Fig. 2a,b. They vanish at the vertices of T . Therefore nk∑

i=nk−1+1

xi∈T

|ψi|21,2;T |v(xi)|2


1/2

and
|v|1,2:T

are norms on the space of all functions v ∈ Vk restricted to T . These norms
are uniformly equivalent as one can see by transforming T to a fixed reference
triangle. In the second case one has

nk∑
i=nk−1+1

xi∈T

|ψi|21,2;T |v(xi)|2 = |v|21,2;T .

Remark: Similarly one can prove the estimate
nk∑

i=nk−1+1

xi∈T

‖ψi‖2
0,2;T |v(xi)|2 ≤ K∗2‖v‖2

0,2;T (4.7)

with the seminorms (2.5) replaced by the L2−norm.

Lemma 4.4 For k = 2, . . . , j and all functions v ∈ Vk one has
nk∑

i=nk−1+1

‖ψi‖2|v(xi)|2 ≤ K2σ‖v‖2 (4.8)

where K2 is the constant from Lemma 4.3 and σ the constant (2.12).
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Proof: By (2.11), (2.12) and Lemma 4.1 one has∑
xi

‖ψi‖2|v(xi)|2

≤
∑
T∈T1

M(T )
∑
xi∈T
|ψi|21,2;T |v(xi)|2

≤
∑
T∈T1

M(T )K2|v|21,2;T

≤ K2σ
∑
T∈T1

δ(T )|v|21,2;T

≤ K2σ‖v‖2

Because the diagonal blocks of D can be treated separately and the (1,1)-
block of d−1/2Dd−1/2 is an identity matrix, Lemma 4.3 gives the bound

γ2
1 ≤ K2σ (4.9)

for the constant (3.38). Here we see why the (1,1)–block of the matrix (3.18)
cannot be replaced by its diagonal: Otherwise the lowest eigenvalue of the
scaled level 1 discretization matrix would enter into our estimates, and γ1

would no longer be independent of the global structure of the problem.
By construction for k = 2, . . . , j every level k node has at most four level

k neighbours. Therefore by Lemma 3.9 one gets the bounds

β ≤ 4 (4.10)

γ2 ≤
√

5 (4.11)

for the constants (3.37) and (3.39). For many cases these estimates will not
be very sharp. If, for example, the scaled matrix (3.44) is weakly diagonally
dominant one has β ≤ 1 and γ2 ≤

√
2.

We can now state our final theorem on the condition numbers κ1, κ2 and
κ3 corresponding to the three iterative methods:

Theorem 4.5 There exist positive constants C1, C2 and C3, which depend
only on the lower bound for the interior angles of the triangles in the initial
triangulation, such that

κ1 ≤ C1σj
2 (4.12)

κ2 ≤ C2σ
2j2 (4.13)

κ3 ≤ C3σ
2j2 (4.14)
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Proof: By (3.41) and (4.4) one obtains

κ1 ≤
1

2
K1σj(j + 1).

(3.55), (4.11), (4.4), (4.10), (4.9) and (4.5) lead to

κ2 ≤

√5

2
+ 4
√

2
√
K2σ

2

K1σj(j + 1),

and by (3.56), (4.4), (4.10), (4.9) and (4.5) one obtains

κ3 ≤
(

1√
2

+ 4
√
K2σ

)2

K1σj(j + 1)

Using σ ≥ 1 the proposition follows.

Through examples given in Section 5 of [14] one can see that ‖I1‖2 = ‖J1‖2

usually grows like O(j). As a consequence of this fact and (3.68), the condi-
tion numbers κ1, κ2 and κ3 cannot be excepted to be bounded uniformly in
the number j of levels.

We remark that for the spectral condition number κ0 of the scaled hier-
archical basis discretization matrix

d−1/2Ad−1/2 (4.15)

our estimate of the same type as in Theorem 4.5 holds: Using the constant
(3.43) one gets

κ0 ≤ (γ1α1γ2α2)2, (4.16)

and using a bound like
α2

2 ≤ K3σ , (4.17)

which has been derived in [14, 15], we obtain κ0 ≤ Cσ3j2 what can be
improved to

κ0 ≤ C0σ
2j2 . (4.18)

We now turn to work estimates for our procedures. By Theorem 3.3 the
modified symmetric block Gauß-Seidel iterations here denoted as Case 2 and
Case 3 have the convergence rate

1− 1

κ
(4.19)

with respect to the energy norm. After

k ≤ κ| log ε|+ 1 (4.20)
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iteration steps the energy norm of the initial error is reduced by the factor
0 < ε < 1. The estimates for κ of Theorem 4.5 lead to the upper bounds

1− 1

Cσ2j2
(4.21)

for the convergence rate and to the upper bounds

Cσ2j2| log ε|+ 1 (4.22)

for the number of iteration steps necessary to reach the given accuracy. Using
Theorem 3.4 a similar result is found for the forward and backward modified
block Gauß-Seidel methods. We recommend our Gauß-Seidel iterations as
preconditioners for the conjugate gradient method. k conjugate gradient
steps reduce the energy norm of the initial error by at least the factor

2qk

1 + q2k
(4.23)

where

q =

√
κ− 1√
κ+ 1

; (4.24)

see [1, 10]. After

k ≤ 1

2

√
κ| log(

ε

2
)|+ 1 (4.25)

steps the energy norm of the initial error has been reduced by at least the
factor ε. In our application not more than

k ≤ 1

2

√
Cσj| log(

ε

2
)|+ 1 (4.26)

steps are needed to reach this accuracy. As each iteration step requires O(n)
operations a total of O(jn| log ε|) operations are required to reduce the energy
norm of the initial error by the factor ε.
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5. Implementation and Numerical Results

We begin this section with a brief discussion of the hierarchical basis method
and its relationship to multigrid methods. For convenience we will limit the
presentation to the case of j = 2 levels. As we noted in Section 2 we wish
to solve the linear system (2.19), corresponding to the nodal basis, which we
now write in block form as Â11 Â12

Â21 Â22

 x̂1

x̂2

 =

 b̂1

b̂2

 (5.1)

The system (5.1) is related to the hierarchical basis system A11 A12

A21 A22

 x1

x2

 =

 b1

b2

 (5.2)

via a nonsingular matrix S which transforms the representation of a finite
element function with respect to the hierarchical basis into its representation
with respect to a nodal basis. S has the block structure

S =

 E 0

R E

 (5.3)

The off-diagonal entries of S are zero except for at most two nonzeroes in
each row of R, whose values are 1

2
. In particular, if vertex xi was created

during the refinement process as the midpoint of the edge with endpoints xl
and xr then Sil = Sir = 1

2
; see Fig. 3a,b. Using (5.3) we relate the matrices

A and Â by
A = ST ÂS, (5.4)

the right hand sides b and b̂ by

b = ST b̂ (5.5)

and the solutions x̂ and x by
x̂ = Sx. (5.6)

Blockwise this gives

A11 = Â11 +RT Â21 + Â12R +RT Â22R

A12 = Â12 +RT Â22

A21 = Â21 + Â22R

A22 = Â22
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Figure 3

and

b1 = b̂1 +RT b̂2

b2 = b̂2

x̂1 = x1

x̂2 = Rx1 + x2

A single iteration cycle of the hierarchical basis method, Case 3, giving

x = B−1b, x̂ = SB−1ST b̂, (5.7)

B as in (3.12), is reformulated in the current notation as:

Procedure HB/MG

1. smooth A22y2 = b2

using symmetric Gauß-Seidel; denote approximate solution by y2

2. form r1 = b1 − A12y2 as

(a) r̂1 = b̂1 − Â12y2

(b) r̂2 = b̂2 − Â22y2

(c) r1 = r̂1 +RT r̂2

3. solve A11y1 = r1

set x1 = y1, x̂1 = x1
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4. form r2 = b2 − A21x1 − A22y2 = r̂2 as

(a) t̂2 = Rx1 + y2

(b) r̂2 = b̂2 − Â21x̂1 − Â22t̂2

5. smooth A22(x2 − y2) = r2

using symmetric Gauß-Seidel; denote approximate solution by x2 − y2

set x̂2 = t̂2 + (x2 − y2).

Procedure HB/MG is just a standard multigrid V-cycle with j = 2 lev-
els. Steps (1) and (5) are the traditional multigrid smoothing steps, except
that only the level-2 unknowns (y2 and x2) are smoothed, rather than all
unknowns. Step (3) is the standard multigrid coarse grid correction, done by
direct elimination for j = 2 (or inductively for j > 2). In step (2), the vector
(r̂T1 , r̂

T
2 ) is just the fine grid residual after smoothing, while forming r1 is the

standard finite element version of the fine–to–coarse grid residual transfer.
Step (4) updates the fine grid solution as (x̂T1 , t̂

T
2 ) using the standard finite

element coarse–to–fine grid interpolation.
At this point, we briefly reflect on the mathematic aspects of the method

developed in Sections 2–4. It seems clear that the only essential difference
between Procedure HB/MG and standard multigrid methods is the restric-
tion on which points are smoothed in steps (1) and (5). Since only some of
the fine grid points are smoothed, HB/MG should converge more slowly than
a comparable V-cycle in which all grid points are smoothed. The logarithmic
growth in condition number is thus foreshadowed.

In order to carry out Procedure HB/MG, one needs the fine grid subma-
trices A22 = Â22, Â21 and Â12 = ÂT

21, and the coarse grid matrix A11. R
is not stored since the action Rx is always computed in the usual multigrid
fashion. Â22 has at most 5 nonzeroes per row corresponding to a vertex xi
as in Fig. 3a and at most 3 nonzeroes per row corresponding to a vertex xi
as in 3b. The corresponding rows of Â21 contain at most 2 and 3 nonzeroes,
respectively. Thus the matrix storage is at most 7 nonzeroes per vertex of
level 2, and because of the symmetry of Â22 a further reduction is possible.

For any number of levels the amount of work and storage per level (except
for the initial level) is a small constant multiple of the number of vertices
on this level. As the initial level is fixed, the overall cost of the algorithm
becomes asymptotically proportional to the number of unknowns, regardless
the distribution of the vertices to the different levels.

As a numerical illustration, we consider the solution of Laplace’s equation
on a circle of radius one centered at the origin; the domain has a crack along
the positive x axis. Homogeneous Dirichlet (Neumann) boundary conditions
are imposed on the top (bottom) of the crack, allowing a singular solution
with leading term

u = r1/4 sin(θ/4) (5.8)
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Equation (5.8) is imposed as a Dirichlet boundary condition on the remainder
of the boundary, making (5.8) the exact solution.

The problem was solved using a posteriori error estimates and adaptive
local mesh refinement, starting from a uniform coarse mesh with 8 elements
and 10 vertices (Fig. 4.a) and ending with a nonuniform mesh including
28 levels of refinement and 2560 vertices (Fig. 4.b). The calculation was

Figure 4 a,b

made using an updated version of the package PLTMG [2], in which the
hierarchical basis multigrid method, Case 3 from Section 3, was implemented.
This implementation used ORTHOMIN acceleration, similar to minimum
residual-conjugate gradient acceleration [10]. The distribution of vertices
among the refinement levels is given in Table 1. These are approximately the

level 1 2 3 4 5 6 7 8 9 10

vertices 10 17 58 212 328 219 204 173 135 141

level 11 12 13 14 15 16 17 18 19 20

vertices 149 139 118 96 110 95 80 42 33 31

level 21 22 23 24 25 26 27 28

vertices 31 29 29 27 23 19 9 3

Table 1

dimensions of the spaces Vk of Section 3, except for the inclusion of Dirichlet
boundary vertices. The meshes are nearly optimal for this problem and they
illustrate the fact that local mesh refinement tends to generate subspaces
which do not increase geometrically in dimension.

To illustrate the efficiency of the hierarchical basis multigrid method, we
took the discrete solution x̂ (in the nodal basis), formed

b̂ = Âx̂,
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and resolved the system using b̂ as data and initial guess zero. The number
of correct digits in the energy norm is given by

digits = − log(‖x̂(i) − x̂‖/‖x̂‖)

The results of the calculation are given in Table 2. Note x̂ has about 1.44

cycle 1 2 3 4 5 6 7 8 9 10

digits .44 .76 1.17 1.54 1.90 2.31 2.74 3.11 3.58 4.33

Table 2

digits of accuracy as a solution to the continuous problem, so only 4 cycles
were required to reduce the initial error to the level of discretization error.
Within the dynamic framework of an adaptive local mesh refinement pro-
cedure, initial guesses substantially better than zero are usually available,
further reducing the number of cycles required at any particular step of the
adaptive procedure.

From Table 2, we see that the average error reduction per iteration was

10−.433 ∼= .37 = δ.

If we assume

δ ∼=
√
κ− 1√
κ+ 1

,

then we can estimate the size of the generalized condition number κ by

κ ∼=
(

1 + δ

1− δ

)2

∼= 4.7.
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6. Appendix: Arbitrarily Many Inner

Iterations

We use the notation of Section 3.

Theorem 6.1 Let A = L + D + LT be a positive definite and symmetric
matrix as in Section 3. Let

B = (L+D)TD−1(L+D).

Set x(0) = 0 and let

x(i+1) = x(i) +B−1(b− Ax(i)).

Then
(A+ Zi)x

(i) = b,

where Zi is a positive semidefinite symmetric matrix having the same kernel
as L. Zi satisfies

∣∣∣A−1/2ZiA
−1/2

∣∣∣ =

(
1− 1

1+|Q|

)i
1−

(
1− 1

1+|Q|

)i
where Q is given by

Q = A−1/2LTD−1LA−1/2.

Proof: Using the exact solution x = A−1b one has

x(i+1) − x = (E −B−1A)(x(i) − x)

and therefore because x(0) = 0,

x(i) = (E − (E −B−1A)i)x.

Bt Theorem 3.3 one obtains

||(E −B−1A)i|| ≤ ||E −B−1A||i < 1.

This means that E − (E −B−1A)i is nonsingular.

A(E − (E −B−1A)i)−1x(i) = b

follows. Now
A(E − (E −B−1A)i)−1 = A+ Zi
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if and only if

Zi = A(E −B−1A)i(E − (E −B−1A)i)−1

= A(A−1/2RA1/2)i(E − (A−1/2RA1/2)i)−1

= A1/2Ri(E −Ri)−1A1/2

where R is given by
R = E − A1/2B−1A1/2.

Using
B = A+ LTD−1L = A1/2(E +Q)A1/2,

one gets
R = E − (E +Q)−1.

Q is a positive semidefinite singular symmetric matrix. Therefore, the eigen-
values of Q range from zero to |Q| and the eigenvalues of R from zero to

|R| = 1− 1

1 + |Q|
< 1.

The function

λ→ λi

1− λi
, 0 ≤ λ < 1,

is monotonely increasing. Therefore we can conclude that the eigenvalues of
the symmetric matrix

A−1/2ZiA
−1/2 = Ri(E −Ri)−1

range from zero to

|R|i

1− |R|i
=

(
1− 1

1+|Q|

)i
1−

(
1− 1

1+|Q|

)i .
Using the given representations one sees that the symmetric matrices Q, R
and A−1/2ZiA

−1/2 have the same eigenspaces and kernels. Therefore, the
kernel of Zi is nothing else than the kernel of LTD−1L, which is the kernel
of L.

Now we can generalize Case 3 by allowing for an arbitrary number of
symmetric Gauß-Seidel steps for solving the equations.

Theorem 6.2 If one solves the inner equations by m steps of the symmetric
Gauß-Seidel method, one has

1

µ1

≤ (α0 + c(m)α1)2
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with

c(m)2 =

(
1− 1

1+q

)2m

1−
(
1− 1

1+q

)2m

and
q = |D−1/2`Td−1`D−1/2|.

Proof: By Theorem 6.1, applied to the inner equations, the matrix D̃ has
the representation

D̃ = D + Z

with a positive semidefinite singular symmetric matrix Z satisfying

|D−1/2ZD−1/2| =

(
1− 1

1+q

)m
1−

(
1− 1

1+q

)m (6.1)

Now we can proceed as in the proof of Lemma 3.7. The matrix B has the
representation

B = (L+D + Z)T (D + 2Z)−1(L+D + Z)

and therefore we have(
1

µ1

)1/2

= |(D + 2Z)−1/2(L+D + Z)A−1/2| (6.2)

≤ |(D + 2Z)−1/2D1/2| |D−1/2(L+D)A−1/2|+
|(D + 2Z)−1/2ZD−1/2| |D1/2A−1/2|

As in the proof of Lemma 3.7 one obtains

|(D + 2Z)−1/2D1/2| = 1. (6.3)

If Λ denotes the set of eigenvalues of the positive semidefinite singular
symmetric matrix

Q = D−1/2ZD−1/2,

as in the proof of Lemma 3.7, the set of eigenvalues of the matrix[
(D + 2Z)−1/2ZD1/2

]T [
(D + 2Z)−1/2ZD1/2

]
is

λ2

1 + 2λ
, λ ∈ Λ.

As the function

λ→ λ2

1 + 2λ
, λ ≥ 0,
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is monotonically increasing, one obtains

∣∣∣(D + 2Z)−1/2ZD−1/2
∣∣∣ =

|Q|2

1 + 2|Q|
.

Substituting (6.1) for |Q| = |D−1/2ZD−1/2|, one gets

|(D + 2Z)−1/2ZD−1/2| = c(m). (6.4)

Inserting (6.3) and (6.4) into (6.2) and using (3.45)-(3.46)

1

µ1

≤ (α0 + c(m)α1)2

follows.

Applying Theorem 6.1 to the inner equations and using an argument as
in the proof of Theorem 3.2 one gets

µ2 = 1.

Therefore
κ ≤ (α0 + c(m)α1)2.

Because of
q =

∣∣∣D−1/2`Td−1`D−1/2
∣∣∣ ≤ (βγ1)2

this is a generalization of the condition number estimate (3.56).
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