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Abstract. We consider the numerical solution of indefinite systems of linear equations arising in
the calculation of saddle points. We are mainly concerned with sparse systems of this type resulting
from certain discretizations of partial differential equations. We present an iterative method involving
two levels of iteration, similar in some respects to the Uzawa algorithm. We relate the rates of
convergence of the outer and inner iterations, proving that, under natural hypotheses, the outer
iteration achieves the rate of convergence of the inner iteration. The technique is applied to finite
element approximations of the Stokes equations.
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1. Introduction. In this paper, we consider the solution of the system of linear
equations [

A Bt

B 0

] [
x
y

]
=

[
f
g

]
(1.1)

Here A is a symmetric, positive definite n×n matrix, and B is an m×n matrix. We
assume that the (n+m)× (n+m) coefficient matrix

M =

[
A Bt

B 0

]
(1.2)

is nonsingular. Linear systems such as (1.1) correspond to saddle point problems,
and can arise, for example, from mixed finite element formulations for second order
elliptic problems or from Lagrange multiplier methods. Our main application will be
to the numerical solution of the Stokes equations.

The linear system (1.1) may be reformulated as

Ax+Bty = f(1.3)

BA−1Bty = BA−1f − g(1.4)

This system is uniquely solvable and the matrix (1.2) is nonsingular if and only if the
symmetric matrix

C = BA−1Bt(1.5)
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is positive definite. Clearly m ≤ n is a necessary condition for C to be positive
definite.

The matrix M can be factored as

M =

[
A 0
B I

] [
A−1 0

0 −C

] [
A Bt

0 I

]
(1.6)

Sylvester’s law of inertia then implies that M has n positive and m negative eigen-
values, and thus is strongly indefinite.

There are several approaches to the iterative solution of (1.1). First we mention
multigrid methods; see for example, [11] [12] [13] [15] [16] [17], or for later develop-
ments using alternative splittings [18] [19]. A comprehensive bibliography is contained
in [13]. Among the more classical methods, the most prominent is the Uzawa method
[12], which is a Jacobi or gradient-type iteration for the solution of (1.4). This scheme
requires that A−1x can be computed exactly. Verfürth [14] replaces the computation
of A−1x by an approximate multigrid solution of the corresponding linear system,
improving the accuracy of this inner iteration as the outer iteration proceeds to fi-
nally get a solution of (1.4). Bramble and Pasciak [5] discuss a procedure for directly
preconditioning M given a preconditioning matrix for A. Other preconditionings were
proposed by Axelsson [7] and by Dyn and Ferguson [8].

Our approach shares some features with several of these schemes. We replace
the matrices A and C in (1.6) by the symmetric, positive definite matrices Â and Ĉ
corresponding to the iterations

x← x+ Â−1(b−Ax)(1.7)

for the solution of

Ax = b(1.8)

and

y ← y + Ĉ−1(c−BÂ−1Bty)(1.9)

for the solution of

Hy = BÂ−1Bty = c(1.10)

Each iteration of (1.7) or (1.9) may in fact correspond to several steps of a given
iterative method. This leads to the approximation of M given by

M̂ =

[
Â 0
B I

] [
Â−1 0

0 −Ĉ

] [
Â Bt

0 I

]
(1.11)

=

[
Â Bt

B D̂

]
(1.12)

with

D̂ = BÂ−1Bt − Ĉ(1.13)

As with the original matrix M , M̂ will have n positive and m negative eigenvalues.
Our iterative scheme can be summarized as[

xi+1

yi+1

]
=

[
xi
yi

]
+

[
Â Bt

B D̂

]−1{[
f
g

]
−
[
A Bt

B 0

] [
xi
yi

]}
(1.14)
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Our iterative method involves two nested iterations, an outer iteration (1.14) for
M and two inner iterations (1.7) and (1.9). In this respect it is similar to many other
approaches to this problem. However, it is important to note that the iteration (1.9)
is directed towards the solution of a linear system of the form (1.10) rather than one
of the form (1.4). Had we chosen to solve (1.4), at each iteration step the required
multiplication by C would typically introduce another level of iteration. Our use of
H rather than C is an explicit recognition that such a third level of iteration would
probably be very expensive, and thus unlikely to be iterated to completion. See [10]
for a recent study of inner and outer iterations.

Typically, we expect that Â will correspond to a small number of iterations (e.g.,
one) of some iterative method for solving (1.8). In the example of the Stokes equations,
Â might represent one cycle of the hierarchical basis multigrid method for the Poisson
equation [3] [4] [20]. In this case one iteration is the most efficient choice, and we
expect that this will most often be the case. However, since the choice of Â has some
secondary effects on the condition number of H, and hence on the choice of Ĉ, it is
possible that more than one iteration may be useful in some situations.

We expect that Ĉ will also correspond to the application of several iterations of
some iterative method for solving (1.10). Unlike Â, where choosing one iteration is
usually most efficient, controlling the number of inner iterations for Ĉ is much more
subtle. From a purely theoretical point of view, we will see in sections 2 and 4 that if
the convergence rate for (1.7) is α, then by taking sufficiently many inner iterations
that the rate of convergence for Ĉ is bounded by α/(2+α), we can guarantee that the
overall convergence rate for (1.14) will be bounded by α. This is shown for a stationary
iterative method for (1.10) in section 2. In section 4, we prove a similar result for the
case where Ĉ corresponds to a preconditioned conjugate gradient iteration, and thus
Ĉ = Ĉi for each outer iteration.

In one of the more interesting twists in this algorithm, it turns out that forcing
Ĉ to more closely approximate H (e.g., by taking more inner iterations) might dra-
matically increase the rate of convergence, even though (1.10) is the ”wrong” linear
system. Indeed, in section 3, we will give an example where solving (1.10) exactly
guarantees convergence of (1.14) in 2 iterations, for any symmetric, positive definite
Â and independently of the rate of convergence α for (1.7). In this extreme case our
algorithm essentially becomes a direct method.

In the practical example of the Stokes equations ( section 5 ), we are not quite
fortunate, but there we do encounter convergence rates significantly faster than those
predicted by our norm estimates, although they apparently are not independent of
α.

2. Analysis of the Convergence Rate. Let (x, y) denote the Euclidean inner
product, ‖x‖ = (x, x)1/2 the corresponding vector norm, and ‖F‖ the spectral norm
of the matrix F . If F is symmetric and positive definite, we will define the F norm
of a vector by

‖x‖2F = (x, Fx)

The rates of convergence of the basic iterations (1.7) and (1.9) with respect to
the norms ‖x‖A and ‖y‖H , respectively, are

α = ‖I − Ā‖(2.1)

β = ‖I − B̄B̄t‖(2.2)
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where the matrices Ā and B̄ are defined by

Ā = Â−1/2AÂ−1/2(2.3)

B̄ = Ĉ−1/2BÂ−1/2(2.4)

Our aim in this section is to estimate the rate of convergence for the iteration
(1.14) with respect to the norm

‖v‖2∗ = ‖x‖2A + ‖y‖2G v =

[
x
y

]
∈ Rn ×Rm(2.5)

in terms of α and β. Here G is a given symmetric positive definite m ×m matrix.
For finite element discretizations of the Stokes equation, ‖x‖A can be interpreted as a
scaled H1-norm of the finite element function corresponding to the coefficient vector
x, and ‖y‖G is a scaled L2-norm of the function represented by y.

We assume that there are positive constants µ1 and µ2 satisfying

inf
y 6=0

sup
x 6=0

(Bx, y)

‖x‖A‖y‖G
≥ √µ1(2.6)

and

|(Bx, y)| ≤ √µ2 ‖x‖A‖y‖G(2.7)

for all x ∈ Rn and all y ∈ Rm.
Theorem 2.1. Let 0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξm be the eigenvalues of

G−1/2CG−1/2 = (G−1/2BA−1/2)(G−1/2BA−1/2)t(2.8)

Then the best possible constants in (2.6) and (2.7) are µ1 = ξ1 and µ2 = ξm.
Proof. Consider the singular value decomposition

G−1/2BA−1/2 = XSY t(2.9)

Then

inf
y 6=0

sup
x 6=0

(Bx, y)

‖x‖A‖y‖G
= inf
y 6=0

sup
x 6=0

(x,A−1/2BtG−1/2y)

‖x‖ ‖y‖

= inf
y 6=0

‖A−1/2BtG−1/2y‖
‖y‖

= inf
y 6=0

‖Y StXty‖
‖y‖

= inf
y 6=0

‖StXty‖
‖Xty‖

=
√
ξ1

Inequality (2.7) holds if and only if for all x and y

(G−1/2BA−1/2x, y) ≤ √µ2 ‖x‖ ‖y‖
4



Using the singular value decomposition in a fashion similar to the argument above,
we see that the optimal choice for µ2 is ξm.

As a consequence of Theorem 1 we have µ1 ≤ ξi ≤ µ2 for 1 ≤ i ≤ m, or
equivalently

µ1‖y‖2G ≤ ‖y‖2C ≤ µ2‖y‖2G(2.10)

for y ∈ Rm. Inequalities (2.10) correspond to Lemma 3.1 of [14].
We remark that using the singular value decomposition (2.9), the matrix[

A1/2 0
0 G1/2

] [
A Bt

B 0

]−1 [
A1/2 0

0 G1/2

]
(2.11)

is similar to [
I St

S 0

]−1

Therefore, its spectral norm is{
max(1, 1/c) if m < n
1/c if m = n

(2.12)

with

c =

√
1 + 4ξ1 − 1

2
≥
√

1 + 4µ1 − 1

2
(2.13)

In the finite element context, the spectral norm (2.12) of the matrix (2.11) is the norm
of the operator projecting the continuous solution onto the discrete solution. Thus
(2.6) characterizes the stability of the discretization. This is the famous Babuška-
Brezzi condition [2] [6] [9].

In our analysis, we ultimately will state convergence estimates using the ‖ · ‖∗
norm, since this is a natural norm associated with the problem, and in the finite
element setting, it is the norm in which discretization errors are estimated. However,
in deriving estimates for the rate of convergence, other norms will prove more useful.
Let ‖| · ‖| be a norm on Rn ×Rm which is comparable to the norm (2.5) in the sense
that there are positive constants κ1 and κ2 of reasonable size with

κ1‖v‖2∗ ≤ ‖|v‖|2 ≤ κ2‖v‖2∗(2.14)

for v ∈ Rn × Rm. Assume that the induced matrix norm of the error propagation
matrix

I − M̂−1M =

[
Â Bt

B D̂

]−1 [
Â−A 0

0 D̂

]
(2.15)

of the iterative method (1.14) satisfies the estimate

‖|I − M̂−1M‖| ≤ δ(2.16)

Then with respect to the original norm (2.5) one gets the error reduction

‖ei‖∗ ≤ κ−1/2
1 ‖|ei‖|

≤ κ−1/2
1 δi ‖|e0‖|

≤ (κ2/κ1)1/2 δi ‖e0‖∗
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after i iterations. Good candidates for the ‖| · ‖| norm are norms behaving like

‖|v‖|2 ∼ ‖x‖2
Â

+ ‖y‖2H v =

[
x
y

]
Lemma 2.2. For all x ∈ Rn,

(1 + α)−1‖x‖2A ≤ ‖x‖2Â ≤ (1− α)−1‖x‖2A(2.17)

and for all y ∈ Rm,

(1− α)‖y‖2C ≤ ‖y‖2H ≤ (1 + α)‖y‖2C(2.18)

Proof. Because of (2.1), the eigenvalues of the matrix (2.3) range between 1− α
and 1 + α. Inequalities (2.17) and

(1− α)‖x‖2A−1 ≤ ‖x‖2Â−1 ≤ (1 + α)‖x‖2A−1(2.19)

follow. From (2.19),

‖(BA−1Bt)1/2y‖ = ‖A−1/2Bty‖ = ‖Bty‖A−1

and

‖(BÂ−1Bt)1/2y‖ = ‖Â−1/2Bty‖ = ‖Bty‖Â−1

one obtains (2.18).
To construct vector norms for which an estimate like (2.16) can be proven, let

B̄ = UΣV t(2.20)

be the singular value decomposition of the matrix (2.4). As usual, U is an orthogonal
m×m matrix and V is an orthogonal n× n matrix. The diagonal elements σi ≥ 0 of

Σ =

 σ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · σm 0 · · · 0

 =
[

Σ0 0
]

(2.21)

are the singular values of B̄. The diagonal matrix Σ0 is m ×m. The eigenvalues of
the error propagation matrix of the iteration (1.9)

I − Ĉ−1(BÂ−1Bt) = I − Ĉ−1H(2.22)

can be expressed in terms of these singular values and are given by

λi = 1− σ2
i 1 ≤ i ≤ m(2.23)

The rate of convergence (2.2) is

β = max
1≤i≤m

|λi|(2.24)
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Theorem 2.3. Let Γ be an m×m diagonal matrix with diagonal elements γi > 0,
1 ≤ i ≤ m. Let the norm ‖| · ‖| be defined by

‖|v‖|2 = ‖x‖2
Â

+ ‖ΓU tĈ1/2y‖2 v =

[
x
y

]
(2.25)

Then the induced norm of the error propagation matrix (2.15) satisfies

‖|I − M̂−1M‖| ≤ δ(2.26)

with

δ =

{
max(α, ρ) if m < n
ρ if m = n

(2.27)

where ρ is given by

ρ = max
1≤i≤m

∣∣∣∣∣∣∣∣[ αλi −λiγ−1
i

√
1− λi

αγi
√

1− λi λi

]∣∣∣∣∣∣∣∣(2.28)

Proof. Let

F =

[
Â1/2 0

0 Ĉ1/2

] [
Â Bt

B D̂

]−1 [
Â−A 0

0 D̂

] [
Â−1/2 0

0 Ĉ−1/2

]
Because of[

Â−1/2 0

0 Ĉ−1/2

] [
Â Bt

B D̂

] [
Â−1/2 0

0 Ĉ−1/2

]
=

[
I B̄t

B̄ B̄B̄t − I

]
[
Â−1/2 0

0 Ĉ−1/2

] [
Â−A 0

0 D̂

] [
Â−1/2 0

0 Ĉ−1/2

]
=

[
I − Ā 0

0 B̄B̄t − I

]
and [

I B̄t

B̄ B̄B̄t − I

]−1

=

[
I − B̄tB̄ B̄t

B̄ −I

]
the representation

F =

[
I − B̄tB̄ B̄tB̄B̄t − B̄t

B̄ I − B̄B̄t
] [

I − Ā 0
0 I

]
follows. Using the singular value decomposition (2.20), one gets

F =

[
V (I − ΣtΣ)V t V (ΣtΣΣt − Σt)U t

UΣV t U(I − ΣΣt)U t

] [
I − Ā 0

0 I

]

=

[
V 0
0 U

] [
I − ΣtΣ ΣtΣΣt − Σt

Σ I − ΣΣt

] [
V t(I − Ā)V 0

0 I

] [
V t 0
0 U t

]
Equivalently,[

V tÂ1/2 0

0 ΓU tĈ1/2

] [
Â Bt

B D̂

]−1 [
Â−A 0

0 D̂

] [
Â−1/2V 0

0 Ĉ−1/2UΓ−1

]

=

[
α(I − ΣtΣ) (ΣtΣΣt − Σt)Γ−1

αΓΣ I − ΣΣt

] [
α−1V t(I − Ā)V 0

0 I

]
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The spectral norm of the matrix on the left hand side of this equation is equal to
‖|I − M̂−1M‖|. Using (2.1), one can easily see that∣∣∣∣∣∣∣∣[ α−1V t(I − Ā)V 0

0 I

]∣∣∣∣∣∣∣∣ = 1

The last equation leads to ‖|I − M̂−1M‖| ≤ δ with

δ =

∣∣∣∣∣∣∣∣[ α(I − ΣtΣ) (ΣtΣΣt − Σt)Γ−1

αΓΣ I − ΣΣt

]∣∣∣∣∣∣∣∣
For m < n ,it follows that δ is the spectral norm of the matrix α(I − Σ2

0) 0 (Σ3
0 − Σ0)Γ−1

0 αI 0
αΓΣ0 0 I − Σ2

0


where Σ0 is defined in (2.21). Therefore, for m < n

δ = max(α, ρ)

with

ρ = max
1≤i≤m

∣∣∣∣∣∣∣∣[ α(1− σ2
i ) (σ3

i − σi)γ
−1
i

ασiγi 1− σ2
i

]∣∣∣∣∣∣∣∣
For m = n, one has Σ0 = Σ and δ = ρ. With 1 − σ2

i = λi, the representation is
proved.

Note that for Â = (1− α)−1A, we have I − Ā = αI and

‖|I − M̂−1M‖| = δ

Thus, for this choice of Â, our estimate is sharp.
To estimate the constant ρ in (2.28), the following lemma is useful
Lemma 2.4. For λ < 1 and 0 < γ2 < 1 + λ,∣∣∣∣∣∣∣∣[ αλ −λγ−1

√
1− λ

αγ
√

1− λ λ

]∣∣∣∣∣∣∣∣ ≤ max

(
α,

√
λ2

γ2(1 + λ− γ2)

)
(2.29)

Proof. For all ξ, η ∈ R, and all ε 6= 0, one has∣∣∣∣∣∣∣∣[ αλ −λγ−1
√

1− λ
αγ
√

1− λ λ

] [
ξ
η

]∣∣∣∣∣∣∣∣2
= (λ2 − γ2λ+ γ2)(αξ)2 + 2εαξ (γ−γ−1λ)λ

√
1−λ

ε η + (γ−2λ2(1− λ) + λ2)η2

≤ (λ2 − γ2λ+ γ2 + ε2)(αξ)2 + (γ−2λ2(1− λ) + λ2 + (γ−γ−1λ)2λ2(1−λ)
ε2 )η2

Because λ < 1 and γ2 < 1 + λ, we can choose

ε2 = (1 + λ− γ2)(1− λ)
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yielding the estimate∣∣∣∣∣∣∣∣[ αλ −λγ−1
√

1− λ
αγ
√

1− λ λ

] [
ξ
η

]∣∣∣∣∣∣∣∣2 ≤ α2ξ2 +
λ2

γ2(1 + λ− γ2)
η2

This proves the lemma.
In the next theorem, we consider a particular choice for the norm (2.25).
Theorem 2.5. Let

θ =
1

2

1− β
1 + β

(2.30)

‖|v‖|2 = ‖x‖2
Â

+ θ‖y‖2H v =

[
x
y

]
(2.31)

Then, with respect to the induced matrix norm

‖|I − M̂−1M‖| ≤ δ(2.32)

with

δ = max

(
α,

2β

1− β

)
(2.33)

Furthermore, the norms (2.5) and (2.31) satisfy

κ1‖v‖2∗ ≤ ‖|v‖|2 ≤ κ2‖v‖2∗(2.34)

with

κ2

κ1
=

1 + α

1− α
max(1, θ(1− α2)µ2)

min(1, θ(1− α2)µ1)
(2.35)

Proof. Fix a constant c > 0 and set

Γ = (cΣΣt)1/2 = c1/2Σ0

Then

(ΓU tĈ1/2)t(ΓU tĈ1/2) = cBÂ−1Bt = cH(2.36)

so that for all y ∈ Rm

c‖y‖2H = ‖ΓU tĈ1/2y‖2

Therefore the norm

‖|v‖|2 = ‖x‖2
Â

+ c‖y‖2H v =

[
x
y

]
fits into the framework of Theorem 3. Let

γ(λ) =
√
c(1− λ)

9



Then γi ≡ γ(λi), 1 ≤ i ≤ m, are the diagonal elements of the matrix Γ introduced
above.

It is easily checked that the hypothesis of Lemma 4,

1 + λ− γ(λ)2 > 0

holds for |λ| ≤ β if and only if

c <
1− β
1 + β

(2.37)

For these c > 0 one can apply Lemma 4 to estimate the spectral norms of the matrices[
αλ −λγ−1(λ)

√
1− λ

αγ(λ)
√

1− λ λ

]
for |λ| ≤ β. The derivative of the function

ψ(λ) ≡ λ2

γ(λ)2(1 + λ− γ(λ)2)

=
λ2

(c− c2) + 2c2λ− (c+ c2)λ2

which is related to the right hand side of inequality (2.29), is negative on the interval

1− c−1 < λ < 0

and nonnegative outside this interval (where it is defined). Therefore, for all c > 0
satisfying (2.37), ψ(λ) is monotonely decreasing on the interval −β ≤ λ ≤ 0 and
monotonely increasing on the interval 0 ≤ λ ≤ β. Because

ψ(0) = 0

< ψ(β) =
β2

(c− c2) + 2c2β − (c+ c2)β2

< ψ(−β) =
β2

(c− c2)− 2c2β − (c+ c2)β2

the estimate

ψ(λ) ≤ ψ(−β) =
β2

γ(−β)2(1− β − γ(−β)2)
(|λ| ≤ β)

follows.
ψ(−β) becomes minimal for γ(−β)2 = (1 − β)/2, corresponding to the choice

c = θ in (2.30). For this constant c

ψ(−β) =

(
2β

1− β

)2

proving (2.32)-(2.33).
The estimate (2.34)-(2.35) is an immediate consequence of (2.10) and Lemma 2.
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The estimate (2.32) guarantees that

δ < 1 for α < 1 and β < 1/3(2.38)

and that

δ ≤ α for β ≤ α

2 + α
(2.39)

For β ≤ α/(2 + α), ` iterations (1.14) reduce the norm (2.5) of the initial error
by at least the factor Kα`, with K = (κ2/κ1)1/2.

Note that the norm (2.31) is independent of the matrix Ĉ defining the iteration
(1.9), a property which becomes essential in the next section. This was due to our
special choice of Γ, which cancelled the apparent dependence of the norm (2.25) on
Ĉ, as was shown in (2.36).

In our final theorem of this section, we show that convergence can be forced
whenever the inner iterations are convergent by damping the iteration (1.9).

Theorem 2.6. Assume that all the eigenvalues λi of the error propagation matrix
(2.22) are nonnegative. Let the γi defining the norm (2.25) in Theorem 3 be given by

γi =

√
1 + λi

2
1 ≤ i ≤ m(2.40)

Then the convergence rate (2.27) can be estimated by

δ ≤ max

(
α,

2β

1 + β

)
(2.41)

The norm (2.25) corresponding to this choice of the γi and the norm (2.5) satisfy

κ1‖v‖2∗ ≤ ‖|v‖|2 ≤ κ2‖v‖2∗(2.42)

with

κ2

κ1
=

1 + α

1− α
max(2, φ(1− α2)µ2)

min(2, (1− α2)µ1)
(2.43)

with

φ =
1 + β

1− β

Proof. The square root on the right hand side of the estimate (2.29) becomes
minimal for

γ =

√
1 + λ

2

For this choice of γ

λ2

γ2(1 + λ− γ2)
=

(
2λ

1 + λ

)2

so that (2.41) follows from Theorem 3 and Lemma 4.
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As shown in the proof of Theorem 5, in (2.36)

‖y‖H = ‖Σ0U
tĈ1/2y‖

for y ∈ Rm. A straightforward calculation then shows

‖y‖2H ≤ 2‖ΓU tĈ1/2y‖2 ≤ φ‖y‖2H

This, along with (2.10) and Lemma 2, imply (2.43).
Contrary to Theorem 5, Theorem 6 guarantees convergence for all β < 1; that is,

for all converging iterative methods (1.7) and (1.9). With respect to the norm (2.25),
with Γ defined as in (2.31), we have

δ ≤ α for β ≤ α

2− α
(2.44)

which is an improvement compared with (2.39); however, one should remember that
damping may reduce the rate of convergence (2.2), often reversing this effect.

3. Some Examples. In this section we consider the behavior of the iteration
(1.14) and the associated norm estimates of Theorems 5 and 6 for some special cases.

We first consider the case Â = (1−α)−1A. This includes the limiting case α→ 0.
For this case the results of Theorem 5 are essentially sharp. We see this in

Theorem 3.1. If Â = (1 − α)−1A and if λ = −β is an eigenvalue of the error
propagation matrix (2.22), the spectral radius of the error propagation matrix (2.15)
is greater than α for β > α/(2 + α) and greater than 1 for β > 1/(1 + 2α).

Proof. For Â = (1−α)−1A, one has I − Ā = αI, so that it follows from the proof
of Theorem 3 that the error propagation matrix (2.15) is similar to[

α(I − ΣtΣ) ΣtΣΣt − Σt

αΣ I − ΣΣt

]
Therefore, for this choice of Â, the eigenvalues of the 2× 2 matrices[

α(1− σ2) σ3 − σ
ασ 1− σ2

]
for σ = σ1, . . . , σm are eigenvalues of the matrix (2.15). With λ = 1 − σ2, the
eigenvalues of these 2× 2 matrices are

µ =
(1 + α)λ±

√
(1 + α)2λ2 − 4αλ

2

For |λ| ≤ β, the maximum absolute value of µ is

µ =
(1 + α)β +

√
(1 + α)2β2 + 4αβ

2

attained for λ = −β. This value is bounded by α if and only if

β ≤ α

2 + α

and is bounded by 1 if and only if

β ≤ 1

1 + 2α
12



As a second example, we consider the case Ĉ = H = BÂ−1Bt. This is effectively
the limiting case β → 0. To analyze this case, we let

V t(I − Ā)V =

[
Q11 Q12

Qt12 Q22

]
(3.1)

(using the notation of section 2). Here Q11 is m×m and Q22 is (n−m)× (n−m).
The error propagation matrix I − M̂−1M is similar to I − Σ2

0 0 Σ3
0 − Σ0

0 αI 0
αΣ0 0 I − Σ2

0

 Q11 Q12 0
Qt12 Q22 0

0 0 I

 =

 0 0 0
Qt12 Q22 0
Q11 Q12 0


where we have used the fact that Σ0 = I for Ĉ = H. Therefore for this case,
(I − M̂−1M)k, k ≥ 2, is similar to 0 0 0

Qk−1
22 Qt12 Qk22 0

Q12Q
k−2
22 Qt12 Q12Q

k−1
22 0


and the rate of convergence is clearly governed by the matrix Q22. Without further
assumptions about A and Â, the best norm estimate that we can make is certainly
‖Q22‖ ≤ α. On the other hand, since Q22 is a proper submatrix of V t(I − Ā)V , it
is possible that ‖Q22‖ < α. Indeed, we will find convergence rates significantly less
than α for the case of the Stokes equations. Even more interesting is the case where
m = n, hence V t(I− Ā)V = Q11. In this case it is easy to see that (I−M̂−1M)2 = 0,
so that the iteration (1.14) converges in 2 steps for any symmetric, positive definite
Â, in effect becoming a direct method.

4. The Preconditioned Conjugate Gradient Method as Inner Iteration.
Every iteration step (1.14) requires the approximate solution of the linear system

Hy = c(4.1)

Generally, the coefficient matrix H = BÂ−1Bt of this system is only implicitly known.
To construct iterative methods (1.9) for solving (4.1) fast, we show that the matrix
G used in defining the norm (2.5) is not only a good preconditioner for C = BA−1Bt

but also for H. The spectral condition number of G−1/2HG−1/2 can be estimated as
follows.

Theorem 4.1.

1− α
1 + α

K(G−1/2CG−1/2) ≤ K(G−1/2HG−1/2) ≤ 1 + α

1− α
K(G−1/2CG−1/2)(4.2)

Proof. The proof relies on the fact that for all nonsingular m×m matrices R and S

K(RRt) = K(R) K(Rt) = K(RtR)

K(R−1) = K(R)

and

K(RS) ≤ K(R) K(S)
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Therefore

K(G−1/2CG−1/2) ≤ K(G−1/2BÂ−1/2) K(Â1/2A−1Â1/2) K(Â−1/2BtG−1/2)

= K(Ā) K(G−1/2HG−1/2)

and

K(G−1/2HG−1/2) ≤ K(G−1/2BA−1/2) K(A1/2Â−1A1/2) K(A−1/2BtG−1/2)

= K(Ā) K(G−1/2CG−1/2)

Since

K(Ā) ≤ 1 + α

1− α

the theorem follows.
By (2.10),

K(G−1/2CG−1/2) ≤ µ2

µ1
(4.3)

so that for reasonable sizes of α, G and every matrix Ĝ which is spectrally equivalent
to G can serve as a preconditioner for H. For finite element approximations of the
Stokes equations, G is associated with the L2 inner product, so that Ĝ can be a simple
diagonal matrix.

This means that a feasible choice for the iteration (1.9) is

y ← y + ωĜ−1(c−Hy)(4.4)

with a properly chosen ω > 0, or even better, a Chebyshev accelerated version of this
iteration. The disadvantage of this approach is that it requires good estimates for the
extremal eigenvalues of Ĝ−1H, which are often hard to obtain.

Therefore in this section, we propose to solve every system of the form (4.1)
approximately by some steps of the conjugate gradient method, using G or a spectrally
equivalent matrix Ĝ as preconditioner.

Because of

M̂−1 =

[
Â−1 −Â−1BT

0 I

] [
I 0

0 Ĉ−1

] [
I 0

BÂ−1 −I

]
(4.5)

this leads to the following algorithm.
Step 1 : Compute the components

r = f − (Ax+BT y)

s = g −Bx

of the current residual.
Step 2 : Compute

c = BÂ−1r − s
14



Step 3 : Determine an approximate solution d̂ of the linear system

Hd = c ; H = BÂ−1BT

Step 4 : Compute

v = Â−1(r −BT d̂)

and replace the old approximation by

x← x+ v

y ← y + d̂

In the next lemma, we show that independently of how d̂ is computed (by conju-
gate gradients or some other method), one can view any such algorithm in terms of a
single step of an iterative method with a particular choice of matrix Ĉ = Ĉi.

Lemma 4.2. Let H be a symmetric, positive definite m × m matrix and let
d, d̂ ∈ Rm satisfy

‖d− d̂‖H ≤ β‖d‖H(4.6)

with 0 ≤ β < 1. Then there exists a symmetric, positive definite matrix Ĉ with

Ĉd̂ = Hd(4.7)

and

‖I − Ĉ−1/2HĈ−1/2‖ ≤ β(4.8)

Proof. Set y = H1/2d, ŷ = H1/2d̂, and assume without restriction ‖y‖ = 1 and
m ≥ 2. Let u1, u2, . . . , um be an orthonormal basis of Rm with

y = u1 ŷ = au1 + bu2

Let U be the m × m orthogonal matrix with columns u1, u2, . . . , um. Define the
symmetric matrix Q by

(U tQU)ij = qij

with [
q11 q12

q21 q22

]
=

[
a b
b 2− a

]
(4.9)

and

qij = δij for i > 2 or j > 2

Then by construction

Qy = ŷ(4.10)

15



Because of

(1− a)2 + b2 = ‖y − ŷ‖2 ≤ β2‖y‖2 = β2

and β < 1, one has a > 0, 2 − a > 0, and a(2 − a) − b2 > 0. Therefore the matrices
(4.9) and Q are positive definite. Because

‖I −Q‖2 = (1− a)2 + b2

one obtains

‖I −Q‖ ≤ β(4.11)

Consider

Ĉ ≡ H1/2Q−1H1/2

By (4.10), Ĉd̂ = Hd follows, and by (4.11) one gets

‖I −H1/2Ĉ−1H1/2‖ ≤ β

As the matrices H1/2Ĉ−1H1/2 and Ĉ−1/2HĈ−1/2 are similar, this proves the lemma.

Applying Theorem 5, the proof of our final result is completed
Theorem 4.3. Provided that in Step 3 of the algorithm described above

‖d− d̂‖H ≤ β‖d‖H (β < 1/3)(4.12)

is guaranteed, the norm of (2.31) of the error is reduced by at least the factor

δ = max

(
α,

2β

1− β

)
< 1(4.13)

As a consequence, for β ≤ α/(2 + α), ` iterations reduce the norm (2.5) of the
initial error by at least the factor Kα`, with K = (κ2/κ1)1/2 as in (2.35). Therefore,
the rate of convergence of the basic iteration (1.7) for solving (1.8) is achieved.

From the practical point of view the condition (4.12) is somewhat subtle because

there is no immediate access to the quotient ‖d− d̂‖H/‖d‖H . Alternatively one could

fix the number of conjugate gradient steps to determine d̂, or one could use the
preconditioned residual to test for convergence.

Finally we remark that with a proper rearrangement of the computations one
can save the application of Â−1 at the end of every iteration step. This can greatly
improve the efficiency of the algorithm. Our operation counts in section 5 take into
consideration this fact.

We finish this section with a work estimate. Assume that the application of Â−1

consists of ` multigrid steps, for example. The corresponding rate of convergence is

α = η`

for some η ∈ (0, 1). By Theorem 8, for small η, the condition number of the cor-
responding matrix G−1/2HG−1/2 is roughly independent of `, and one can assume
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that the number of preconditioned conjugate gradient steps necessary to compute d̂
sufficiently accurate behaves like

γ̃| logα| = γ̃| log η`| = γ`

for some positive constants γ̃ and γ. Each conjugate gradient step requires ` applica-
tions of Â−1, so that the total number of multigrid steps per iteration is

γ`2 + `(4.14)

The same error reduction by the factor α can be achieved by ` iteration cycles with
one multigrid step to evaluate A−1x approximately. The corresponding number of
multigrid steps is

`(γ + 1)(4.15)

Obviously, (4.15) is superior to (4.14). Therefore, we conclude that ` = 1 multi-
grid step is the optimal choice, and that one should not invest too much work to
evaluate A−1x very precisely.

5. An Application to a Finite Element Discretization of the Stokes
Equations. In this section we consider the mini-element approximation [1] [9] of the
following Stokes problem :

−∆u +∇p = f in Ω(5.1)

∇ · u = 0 in Ω(5.2)

u = g on ∂Ω(5.3)

∫
Ω

p dx = 0(5.4)

in a bounded domain Ω ⊂ R2 . Here ut = (u v) denotes the velocity (two components)
and p the pressure. g has to satisfy the compatibility condition

∫
∂Ω

g · nds = 0.
In this application the matrix A consists essentially of two copies of the discrete

Laplacian corresponding to linear finite elements. Therefore we can choose the hier-
archical basis multigrid method [4] to build up the preconditioner Â. G is the mass
matrix, so that we can choose the diagonal of G as preconditioner Ĝ for H.

In our experimental code the constant α is estimated by performing a few itera-
tions of the power method on I − Â−1A before the outer iteration is initiated. The
inner conjugate gradient loop is terminated when the relative size of the residual in
pressure has either decreased by a factor β = α/(2−α) during the few inner iterations
or reached the precision wanted for the global loop.

We now present a numerical example which confirms the theory developed in
the previous sections and demonstrates the capability of our solver. We consider the
classical case of the driven cavity problem. The system to be solved is the system
(5.1)-(5.4) in a unit square. A unit tangential velocity at the top of the square
(and 0 elsewhere) is considered. These boundary conditions satisfy the compatibility
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condition
∫
∂Ω

g · nds = 0. It is well known that in this example two singularities
develop at the top corners of the square, due to the discontinuity in the boundary
conditions.

The square is triangulated using a uniform mesh of isosceles right triangles. The
tests were performed using a uniform 5× 5 mesh as the level 1 mesh for the multigrid
iteration. The number of triangles quadruples from one level to the next, so that the
level 5 mesh contains 8192 triangles and 4225 nodes. After static condensation of the
”bubble” unknowns this corresponds to 12163 unknowns.

Table 5.1 contains the values of the rates of convergence α and δ for different
values of the number of inner iterations. In this table, N denotes the number of
vertices in the mesh. The line corresponding to the level 1 mesh gives an idea of the
influence of the conjugate gradient iteration since the systems with the matrix A are
solved exactly on this level, except for the effects of roundoff error (α ≈ 0).

level N δ1 δ2 δ3 δ4 δ∞ α α/δ∞

1 25 0.82 0.50 0.22 0.12 1.2 10−7 1.2 10−7 −

2 81 0.88 0.54 0.35 0.35 0.347 0.466 1.34

3 289 0.89 0.58 0.51 0.51 0.523 0.638 1.22

4 1089 0.89 0.62 0.61 0.61 0.622 0.731 1.17

5 4225 0.90 0.68 0.68 0.68 0.694 0.792 1.14

Table 5.1. Comparison between the rate of convergence α and the actual

rate of convergence δ using a given number of inner iterations.

In table 5.1, δi (i = 1, 2, 3, 4) was computed using i CG iterations and 200 outer
iterations, as δ∞ was computed using 20 CG iterations and 1000 outer iterations
(except for level 1). The outer iteration was the power method

vj+1 = (I − M̂−1M)vj

(plus appropriate normalization). Because the conjugate gradient inner iteration is
not stationary (properly speaking, M̂ = M̂j) the values of δi and δ∞ appearing in the
table are averages (‖vj‖/‖v0‖)1/j . These results agree with our theory, i.e. the overall
rate of convergence is effectively somewhat smaller than the rate of convergence of
the iteration for solving a system with the matrix A. However the ratio α/δ∞ seems
to tend to 1 as the size of the problem increases. It is expected that for large scale
problems, like those arising in the industrial environment, the rate of convergence of
the global iteration may be close to α.

We can also note in that table that only a few conjugate gradient iterations
suffice to achieve this rate of convergence. Also, as the problem size increases, fewer
conjugate gradient iterations are needed to achieve the asymptotic rate.

In the next table we present a few results concerning the number of iterations
required to achieve convergence under more realistic operating conditions. Here we
solve the problem using nested iteration; that is, we sequentially solve all five prob-
lems, starting from the 5× 5 mesh and working towards the 65× 65 mesh. The level
1 problem is solved exactly (to the order of the machine epsilon); for j > 1, the level
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j − 1 solution is used as initial guess for the level j problem, and the initial error is
reduced by a fixed factor ε. We chose ε = 10−2, although any factor less than .25
would have been possible. Included are the total number of inner iterations (inner
iter), the maximum number of these iterations in all outer iterations (max inner) and
the total number of outer iterations (outer iter), at each level. The average number
of inner iterations per outer iteration is also listed. The inner conjugate gradient it-
eration was terminated when the residual norm was reduced by α, or to the precision
required by the outer iteration, whichever was achieved first. Normally this results in
α governing the termination in the early and middle stages of the calculation, with
the precision of the outer iteration becoming dominant in the later stages.

level inner iter max inner outer iter average

1 31 31 1 31

2 9 3 4 2.25

3 10 3 6 1.67

4 10 3 6 1.67

5 11 3 7 1.57

Table 5.2. Number of inner and outer iterations for the

Stokes problem on the 65× 65 grid (ε = 10−2).

We note that for the level 1 problem α ≈ 0, so that only 1 outer iteration was
used, with comparatively many inner iterations. After the first level, the total number
of inner iterations and the number of outer iterations grow slowly, reflecting the
dependence of α on logN ; see [20] [4].

Since the case of uniform refinement is the most unfavorable for the hierarchical
basis multigrid method (in terms of its convergence rate α), we expect that this
method will perform comparably or even better on an adaptive, locally refined grids. A
posteriori error estimates and adaptively refined grids and solutions will be presented
in a forthcoming paper.
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