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Abstract. We first derive the statically condensed form of the mini-element formulation for the
generalized Stokes equations, then present a Petrov-Galerkin-like formulation for the same problem.
We show that the two are closely related.
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1. Introduction. We consider the generalized Stokes problem
αu− ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = g on ∂Ω

(1)

where Ω is a bounded domain in R2. The function f = (f1, f2) is a smooth
function, g is piecewise linear and satisfies the compatibility condition

∫
∂Ω

g ·nds = 0.
Furthermore

∫
Ω
p dΩ is assumed to be 0. The constant ν is a viscosity parameter.

The term αu typically comes from a classical Euler time discretization of the full
Navier-Stokes equations (α being proportional to the inverse of the time step ∆t) in
conjunction with the use of a θ-scheme. Both ν and α are positive.

A mixed formulation of (1) is given by the finding of (u, p) ∈ H1
g(Ω)×L2

0(Ω) such
that {

α(u,v) + ν(∇u,∇v)− (p,∇v) = (f,v) v ∈ H1
0(Ω)

−(q,∇ · u) = 0 p ∈ L2
0(Ω)

(2)

where H1
g(Ω) ≡ {u ∈ (H1)2,u = g on ∂Ω}. (·, ·) represents the usual L2 inner

product.
In this work we will compare two popular discretizations for (1), the mini-element

discretization of Arnold, Brezzi and Fortin [1] and the Petrov-Galerkin scheme of
Hughes, Franca and Balestra [4] [3]. Although initially dissimilar in approach, we
show that the two discretizations lead to strikingly similar sets of linear equations
when the bubble unknowns of the mini-element formulation are statically condensed,
and when piecewise linear velocities and pressures are chosen for the Petrov-Galerkin
scheme.
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In particular, when α = 0 (Stokes equations) the matrices are identical, for a
proper choice of the elementwise stability constants in the Petrov-Galerkin scheme.
The right-hand sides differ only in terms formally of order O(h2

τ ). When α > 0, the
matrices are no longer identical, but differ by only a small amount.

In sections 2 and 3 we will discuss the mini-element and the Petrov-Galerkin dis-
cretizations respectivelly. In section 4 we will analyze the similarities and differences
between the two formulations.

Let T be a triangulation of Ω such that any two triangles in T share at most a
vertex or an edge. For τ ∈ T let hτ be the diameter of τ . Let h = max

τ∈T
hτ .

For τ ∈ T let also ψi(τ), i = 1, 3 be the barycentric coordinates (nodal basis
functions). In the following ψi(τ) will be replaced by ψi for simplicity and when no
confusion is possible.

In the following we suppose without loss of generality that g = 0. Then we define
the spaces

Lτ ≡ span{ψi, 1 ≤ i ≤ 3}

Kτ ≡ span{ψb = ψ1ψ2ψ3}

and the corresponding global spaces

L =
∏
τ∈T
Lτ , K =

∏
τ∈T
Kτ and L0 = L ∩H1

0

L0 is the space of continuous piecewise linear functions on T and K is the space of
cubic ”bubble” functions on T .

2. The mini-element formulation. The solution (u, p) of (2) is approximated
by the solution (uh, ph) ∈ (L0 ⊕K)2 × L of the discrete equivalent of (2):

{
α(uh,v) + ν(∇uh,∇v)− (ph,∇ · v) = (f,v) v ∈ (L0 ⊕K)2

−(q,∇ · uh) = 0 q ∈ L
(3)

This formulation is known to satisfy a Babǔska-Brezzi condition and thus to
produce a unique and stable solution (uh, ph). This solution can be uniquely decom-
posed into its linear part (uh,l, ph) and its bubble part (uh,b, 0). In practice (uh,l, ph)
is considered a better solution than (uh, ph) itself [2] [5].

Using elementwise integration, the contribution of a triangle τ ∈ T is then defined
by the following 11× 11 matrix Mτ (4 unknowns for each component of the velocity
and 3 for the pressure):

Mτ = |τ |


Aτ eτ 0 0 Btτ,x
etτ σ′τ 0 0 wt

τ,x

0 0 Aτ eτ Bty,τ
0 0 etτ σ′τ wt

τ,y

Bτ,x wτ,x Bτ,y wτ,y 0

(4)

Here |τ | is the area of the triangle τ , the 3×3 matrices Aτ , Bτ,x, and Bτ,y correspond
to inner products involving linear basis function for the velocity and the pressure, the
scalar σ′τ is the contribution to the H1 inner product from the cubic bubble functions
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for the velocity, and the 3-vectors wτ,x and wτ,y correspond to contributions to the
divergence term for bump velocity basis functions and linear pressure basis functions.

Direct calculation of the relevant integrals, along with some algebraic manipula-
tion, yields

(Aτ )i,j = ν∇ψi · ∇ψj +
α

12
(1 + δij) 1 ≤ i, j ≤ 3(5)

(Bτ,x)i,j = −1

3
ψj,x and (Bτ,y)i,j = −1

3
ψj,y 1 ≤ i, j ≤ 3(6)

wτ,x =
1

60

 ψ1,x

ψ2,x

ψ3,x

 wτ,y =
1

60

 ψ1,y

ψ2,y

ψ3,y

 eτ =
α

180

 1
1
1

(7)

and

σ′τ = στν +
α

2520
(8)

Here δij is the usual Kronecker symbol, ψi,x or y denotes the partial derivative of ψi

with respect to x or y, and the quantity στ is defined by στ =
1

|τ |
(∇ψb(τ),∇ψb(τ))τ .

The contribution of the triangle τ to the right-hand side of (3) is an 11-vector r
such that

(rτ )i =


(f1, ψi)τ 1 ≤ i ≤ 3
(f1, ψb)τ i = 4
(f2, ψi−4)τ 5 ≤ i ≤ 7
(f2, ψb)τ i = 8
0 9 ≤ i ≤ 11

A simple calculation shows that after elimination of the bubble unknowns one
gets the following 9× 9 elementary contribution for the triangle τ :

M ′τ = |τ |

 A′τ 0 B′tτ,x
0 A′τ B′tτ,y

B′τ,x B′τ,y −Sτ

(9)

where

A′τ = Aτ −
1

σ′τ
eτe

t
τ(10)

B′τ,x = Bτ,x −
1

σ′τ
wτ,xe

t
τ(11)

B′τ,y = Bτ,y −
1

σ′τ
wτ,ye

t
τ(12)

(13)

and the 3× 3 ”stability” matrix Sτ is defined by

Sτ =
1

σ′τ
(wτ,xw

t
τ,x + wτ,yw

t
τ,y) =

1

3600σ′τ
(∇ψi,∇ψj)1≤i,j≤3(14)
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In the important case of the regular Stokes equations (α = 0) the bubble functions
contribute only two diagonal terms στ in Aτ (one for each component of the velocity),
and the matrix Sτ is the only difference between the mini-element formulation and a
formulation using continuous piecewise linear functions for both velocity and pressure,
whence the name of ”stability” matrix, since the latter formulation is not admissible
and does not satisfy an inf-sup condition.

The condensed right-hand side now reads

(r′τ )i =



(f1, ψi)τ −
α

180σ′τ
(f1, ψb)τ 1 ≤ i ≤ 3

(f2, ψi−3)τ −
α

180σ′τ
(f2, ψb)τ 4 ≤ i ≤ 6

− 1

60σ′τ
(f , ψb∇ψi−6)τ 7 ≤ i ≤ 9

All elemental condensed matrices and right-hand sides are finally assembled in the
global stiffness matrix and global right-hand side. The resulting system (modulo
modifications due to the boundary conditions) has then a unique solution, which is
the nodal values of (uh,l, ph).

3. The Petrov-Galerkin formulation. T.J.Hughes et al [4] first proposed to
modify the saddlepoint problem (2) in order to forego the imposition of an inf-sup or
related condition. The idea behind the resulting Petrov-Galerkin formulation is the
introduction of some kind of ”stability” matrix to the divergence equation in (1), by
adding to it a multiple of order O(h2

τ ) of the first equation integrated against a special
test function elementwise. In this section we extend this technique to the generalized
Stokes equations. In particular, we want to find the solution (uL, pL) of the following
system, for (v, q) ∈ L0 × L0 × L:



α(uL,v) + ν(∇uL,∇v)− (pL,∇ · v)

−
∑
τ∈T

αλτ (αuL − ν∆uL +∇pL,v)τ = (f,v)−
∑
τ∈T

αλτ (f ,v)τ

v ∈ L0 × L0

−(q,∇ · uL)−
∑
τ∈T

λτ (αuL − ν∆uL +∇pL,∇q)τ

= −
∑
τ∈T

λτ (f ,∇q)τ q ∈ L

(15)

The first equation results from adding to the first equation of (3) a sum over
triangles τ of a positive multiple λτ (typically of order O(h2

τ )) of the same equation
integrated over τ . A similar manipulation is done on the second equation, with
the difference that the added part is now integrated against ∇q. Note also that
∆uL = 0. The resulting stiffness matrix is then symmetric. In the more general case
of higher degree interpolation polynomials, this term would result in a non-symmetric
contribution to the stiffness matrix.

Moreover, the bilinear form

B((u, p), (v, q)) ≡ α(u,v) + ν(∇u,∇v)− (p,∇ · v) + (q,∇ · u)

+
∑
τ∈T

λτ (∇p+ αu,∇q − αv)τ
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is coercive over L0 × L0 × L for the norm

‖(u, p)‖2∗ = α‖u‖2 + ν‖∇u‖2 +
∑
τ∈T

λτ‖∇p‖2τ

provided that αλτ < 1 for all τ ∈ T .

Because of (8) the particular case λτ =
1

3600σ′τ
satisfies this condition. With this

choice, the coercivity of B(·, ·) immediately implies the unique solvability of (15).
The corresponding element stiffness matrix results then in the following 9 × 9

matrix:

M ′′τ = |τ |

 A′′τ 0 B′tτ,x
0 A′′τ B′tτ,y

B′τ,x B′τ,y −Sτ

(16)

where the matrices B′τ,x, B
′
τ,y and Sτ were defined in section 2 and

A′′τ = Aτ −
1

σ′τ
Dτ(17)

Dτ =
α2

3600

1

12

 2 1 1
1 2 1
1 1 2

(18)

The corresponding elemental right-hand side reads:

(r′′τ )i =


(1− α

3600σ′τ
) (f1, ψi)τ 1 ≤ i ≤ 3

(1− α

3600σ′τ
) (f2, ψi−3)τ 4 ≤ i ≤ 6

− 1

3600σ′τ
(f ,∇ψi−6)τ 7 ≤ i ≤ 9

These results are very close from the quantities we obtained in section 2 for the
mini-element formulation. In the next section we compare both formulations and
derive an estimate for ‖(uh,l, ph)− (uL, pL)‖∗.

4. Comparison of the formulations. The element stiffness matrices M ′τ and
M ′′τ are very similar for the choice of λτ made in section 3. Indeed they differ only

by the quantity
1

σ′τ
eτe

t
τ (resp.

1

σ′τ
Dτ ). Furthermore, we have

eτe
t
τ =

α2

3600

1

9

 1 1 1
1 1 1
1 1 1


which corresponds to the application of the one-point (triangle’s barycenter) rule
integration, exact only for linear integrands. Thus this rule does not compute the L2

inner product (u,v)τ exactly for linear functions (since u · v is quadratic then). In
fact, the exact integration would lead to the matrix Dτ (three-point rule integration
formula based on the midpoints of the triangle’s edges). However, it provides an
exact value of (u, v̄)τ , with v̄ being the (piecewise constant) average value of v in

each triangle τ (note that ‖v̄‖2τ ≤
4

3
‖v‖2τ for v linear in τ ).
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With this notation, the mini-element and Petrov-Galerkin formulations can be
written as

B((uh,l, ph), (v, q)) = (f ,v)−
∑
τ∈T

α2

3600σ′τ
(uh,l,v − v̄)τ(19)

+
∑
τ∈T

1

60σ′τ
(f , ψb(τ)(∇q − αv̄))τ

and

B((uL, pL), (v, q)) = (f ,v) +
∑
τ∈T

1

3600σ′τ
(f ,∇q − αv)τ(20)

for (v, q) ∈ L0 × L0 × L.
Substracting (20) from (19) we get

B((uh,l, ph)− (uL, pL), (v, q)) = α2
∑
τ∈T

1

3600σ′τ
(uh,l, v̄ − v)τ

−α
∑
τ∈T

1

3600σ′τ
(f , v̄ − v)τ +

∑
τ∈T

1

3600σ′τ
(f , (60ψb(τ)− 1)(∇q − αv̄))τ

Theorem 4.1. There exist two positive constants C1 and C2 depending on the
minimal angle in the triangulation such that

‖(uh,l, ph)− (uL, pL)‖∗ ≤ C1
h2

ν
‖∇f‖+ C2

√
α

ν
√
ν
h3(α‖(uh,l, ph)‖∗ + ‖(f , 0)‖∗)

Proof. In the following C is a constant depending on the minimal angle in the

triangulation T . We recall the inequality
1

στ
≤ Ch2

τ for τ ∈ T .

We now bound each of the terms above separately; for (v, q) ∈ L0 × L0 × L, we
get:

|
∑
τ∈T

1

3600σ′τ
(uh,l, v̄ − v)τ | ≤ C

h2

ν
‖uh,l‖ ‖v̄ − v‖

≤ C
h3

ν
‖∇v‖ ‖uh,l‖

Then

|
∑
τ∈T

1

3600σ′τ
(f , v̄ − v)τ | ≤ C

h2

ν

∑
τ∈T
‖f‖τ ‖v̄ − v‖τ

≤ C
h3

ν
‖f‖ ‖∇v‖

and for the third term:

|
∑
τ∈T

1

3600σ′τ
(f , (60ψb(τ)− 1)(∇q − αv̄))τ |
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= |
∑
τ∈T

1

3600σ′τ
(f − f̄ , (60ψb(τ)− 1)(∇q − αv̄))τ |

≤ Ch
∑
τ∈T

1√
3600σ′τ

‖∇f‖τ
‖(60ψb(τ)− 1)(∇q − αv̄)‖τ√

3600σ′τ

≤ C
h2

√
ν
‖∇f‖

(∑
τ∈T

‖∇q‖2τ
3600σ′τ

)1/2

+ C
α√
ν
h‖v‖


Thus, using the coercivity of B(·, ·) over L0 × L0 × L, we get:

β‖(uh,l, ph)− (uL, pL)‖2∗ ≤ B((uh,l, ph)− (uL, pL), (uh,l, ph)− (uL, pL))

≤ C
α2

ν
h3‖∇(uh,l − uL)‖ ‖uh,l‖+ C

αh3

ν
‖f‖ ‖∇(uh,l − uL)‖

+C
h2

√
ν
‖∇f‖

(∑
τ∈T

‖∇(ph − pL)‖2τ
3600σ′τ

)1/2

+ C
α√
ν
h‖uh,l − uL‖


which yields

‖(uh,l, ph)− (uL, pL)‖∗ ≤ C
α
√
α

ν
√
ν
h3‖(uh,l, ph)‖∗ + C

α

ν
√
ν
h3‖f‖

+C
h2

√
ν
‖∇f‖(1 +

√
α√
ν
h)

≤ C

√
α

ν
√
ν
h3(α‖(uh,l, ph)‖∗ + ‖(f , 0)‖∗) + C

h2

√
ν
‖∇f‖

Thus the term αu does not create a large perturbation (order O(h3)), when
compared to the regular Stokes problem (α = 0), for which the norm of the difference
between the solutions to the two formulations is of order O(h2). However, one should
remember that in the context of the full Navier Stokes equations, α is of order O( 1

∆t ).
For smaller time steps the effect of the second term on the right-hand side in theorem
4.1 is no longer negligible compared to the second term. For a time step comparable
to the mesh size this results in an estimate of order O(h3/2) for example.

Both mini-element and Petrov-Galerkin solutions converge to the same value when
the size of the mesh becomes small. Also, the mini-element discretization can be
viewed as selecting a particular choice for triangle dependent stability constants, which
must be selected in the Petrov-Galerkin scheme.

REFERENCES

[1] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations,
Calcolo, 21 (1984), pp. 337–344.

[2] R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes problem, to appear,
(June 1989).

[3] F. Brezzi and J. J. Douglas, Stabilized mixed methods for the Stokes problem, Numer. Math.,
53 (1988), pp. 225–235.

[4] T. J. R. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for
computational fluid dynamics: V. circumventing the Babuška-Brezzi condition: A stable
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