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Abstract. We make a theoretical study of the application of a standard hierarchical basis
multigrid iteration to the convection diffusion equation, discretized using an upwind finite element
discretizations. We show behavior that in some respects is similar to the symmetric positive definite
case, but in other respects is markedly different. In particular, we find the rate of convergence
depends significantly on parameters which measure the strength of the upwinding, and the size of
the convection term. Numerical calculations illustrating some of these effects are given.
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1. Introduction. In this paper, we consider the numerical solution of the model
convection diffusion equation

−∆u+ β · ∇u = f in Ω(1)

u = 0 on ∂Ω

where Ω is a (polygonal) region in R2, and, for simplicity, β is a constant velocity
vector. We are mainly interested in the case |β| >> 1.

A weak formulation of (1) is: find u ∈ H1
0(Ω) such that

a(u, v) = (f, v)(2)

for all v ∈ H1
0(Ω). Here H1

0(Ω) is the usual subspace of the Sobolev space H1(Ω)
whose elements satisfy the homogeneous Dirichlet boundary conditions, and

a(u, v) =

∫
Ω

∇u · (∇v + βv) dx

(f, v) =

∫
Ω

fv dx

To discretize (2), we first construct a triangulation T of Ω, consisting of shape-
regular triangles characterized by a small parameter h. As is the usual case with
hierarchical basis multigrid methods, quasiuniformity of the mesh is not essential to
the proofs, so these results will typically be developed in terms of a local mesh size
ht, denoting the size of a triangle t ∈ T . The fine mesh T can be constructed in
the usual hierarchical fashion, beginning with a course mesh T1 and then inductively
creating refined meshes Tj , 2 ≤ j ≤ k, (with T ≡ Tk), by taking each triangle in Tj−1

and creating 4 triangles in Tj by pairwise connecting the midpoints. Nonuniform
refinements of the type described in [5], or implemented in [2], could be allowed, since
these types of local refinement cause only trivial changes in our convergence analysis
compared with case of uniform refinement.
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LetMj ⊂ H1
0(Ω) be a space of continuous piecewise linear polynomials associated

with the triangulation Tj , 1 ≤ j ≤ k, with M ≡ Mk. We will make use of the
hierarchical decomposition

Mj = V1 ⊕ V2 ⊕ . . .⊕ Vj

1 ≤ j ≤ k, where V1 ≡M1, and

Vj = {φ ∈Mj |φ(x) = 0 for x a vertex of Tj−1}

for j > 1. This is the usual hierarchical decomposition used in the hierarchical basis
multigrid method [5].

The hierarchical basis multigrid method extends in straightforward fashion to
higher degree polynomial spaces, using, for example, the development given in [4]
for the symmetric, positive definite case. Essentially, if Pj is the space of piecewise
polynomial of degree j > 1, we can make the decomposition Pj = M ⊕ W; the
subspace W contains the higher degree polynomials and is often characterized in
terms of nodal basis functions. This space W simply becomes a special “finest” level
k + 1 in a hierarchical basis multigrid method. The remaining k levels are composed
of piecewise linear subspaces in the usual fashion.

The standard Galerkin discretization of (2) is: find uh ∈M such that

a(uh, v) = (f, v)(3)

for all v ∈M. The standard Galerkin discretization is known to give rise to unstable
oscillations in the solution until the product |β|h becomes sufficiently small. When
the convection term is large, this restriction often precludes the use of the method for
computationally realistic meshes.

A standard approach to remedy this situation is the use of upwind finite element
discretizations such as artificial diffusion and streamline diffusion [10]. Such methods
modify the bilinear form a(·, ·) through the addition of (mesh dependent) stabilization
terms. For the artificial diffusion method, we have

ad(u, v) =

∫
Ω

∇u · {(1 + δt)∇v + βv} dx(4)

where

δt = c0ht|β|(1 + ht|β|)(5)

The inclusion of the h2
t |β|2 term is not necessary for the stability of the method,

but it turns out to be useful in our convergence analysis of the hierarchical basis
multigrid method. In this method, a mesh dependent local multiple of −∆u is added
to the convection diffusion equation (1). Because this represents a modification of the
original partial differential equation, this scheme is at most first order, regardless of
the degree of polynomial approximation.

The streamline diffusion method is a Petrov-Galerkin method in which the test
space is taken to be of the form

φ+
δt
|β|
φn

where n = β/|β| is a unit vector, φn = n · ∇φ. and δt is given by (5). The use of a
different test space changes both the left and right hand sides of (2), so the streamline
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diffusion methods allows for the possibility of higher order convergence [10]. In this
study, we are mainly concerned with solving the linear system, and thus view the
streamline diffusion method as a modification of the bilinear form for the standard
Galerkin method. This leads to the same matrix but different right hand side in the
linear system (and also to a first order discretization). However, since the analysis of
the convergence rate does not depend on the right hand side but only on the matrix,
all of our convergence results apply to the Petrov-Galerkin formulation as well. For
the streamline diffusion method, the bilinear form is:

as(u, v) =

∫
Ω

∇u · (∇v + βv) + δtunvn dx(6)

This is similar to the artificial diffusion, except that the upwinding is restricted to
just the streamline direction.

Let {φi}Ni=1 be the usual hierarchical basis forM. Then the upwind discretizations
lead to linear systems of equations of the form

Au = F(7)

where

Aij = a(φj , φi)

and a(·, ·) corresponds to either (4) or (6).
We remark that computationally it is undesirable to assemble and solve the set

of equations represented in the hierarchical basis, because the matrix is much less
sparse (although better conditioned) than the corresponding formulation using the
standard nodal basis. In practice, hierarchical basis methods are implemented using
the standard nodal basis, in combination with some recursive algorithms that are
very similar to the standard multigrid V-cycle [9] [5]. Because these computational
aspects are the same as for the symmetric, positive definite case, we will not deal
with them here, but merely refer to the appropriate literature [5] [2]. Here we are
concerned mainly with obtaining estimates for the rate of convergence for hierarchical
basis methods, and the methods we are interested in are mathematically equivalent to
standard block iterative methods for (7). Thus, for the development of our estimates,
we consider (7) as our model problem.

If we order the standard hierarchical basis functions by level, then the matrix A
has the block structure

A =


A11 A12 · · · A1k

A21 A22 A2k

...
. . .

...
Ak1 Ak2 · · · Akk

(8)

where Ajj corresponds to the subspace Vj .
For the symmetric, positive definite case (β = 0), the matrix A has a condition

number of order O(k2). In this case, many standard block iterative methods (Richard-
son, Jacobi, or symmetric Gauss-Seidel) have generalized condition numbers of the
same order. Although all these methods share similar theoretical convergence prop-
erties, practically we have implemented the symmetric Gauss-Seidel version because
it converges more rapidly due to a better constant in the O(k2) term.
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In this work, we extend these theoretical results to the nonsymmetric case. Our
goal is to gain insight into the behavior of the method as a function of the size of |β|h
of the nonsymmetric term, and the strength of the upwinding, which is governed by
the parameter c0. This is a bit unusual in comparison with most theoretical studies
in this area, where the intent is usually to demonstrate the mesh independence of
various quantities.

For nonsymmetric problems, the usual approach is to treat the lower order terms
as perturbations of a symmetric, positive definite operator, and thus obtain estimates
similar to the symmetric, positive definite case, often with an additional restriction
that h is sufficiently small, or the coarse mesh is fine enough [1] [12] [14] [15] [8]. This
approach is not useful for our situation, since it cannot be used to explain the behavior
of the method on meshes of practical size for the class of problems we consider here.
For these problems, it is in fact the upwind terms which stabilize discretization, and
also allows for the rapid convergence of the hierarchical basis method. Thus our goal
is not to eliminate the mesh dependence from our estimates, but rather to try to gain
insight into how the mesh dependent upwinding parameters affect the convergence.
Several empirical investigations of the effect have been carried out for regular multigrid
methods [6] [13].

The remainder of the paper is organized as follows: In sections 2-3, we analyze
the two level case. Here we are able to obtain very precise results, quite comparable
to those obtained for one space dimensional model problems using Fourier analysis
[3] [8]. Since the results are essentially the same for the cases of artificial diffusion
and streamline diffusion, we analyze only the latter case. In section 4, we analyze the
linear algebraic aspects of the block symmetric Gauss-Seidel iteration for matrices of
the form (8) for the case of k levels. Then in sections 5 and 6, we make estimates
for the artificial diffusion and streamline diffusion discretizations. Here our results
for artificial diffusion are stronger than for streamline diffusion, although we think
this is at least partly due to our use of less sharp estimates in the latter case. In
section 7 we present some numerical illustrations, while in section 8 we make some
concluding remarks. The reader not interested in technical details of the analysis can
skip sections 2, 5, and 6 without a significant loss in continuity.

2. Some Preliminary Results. In this section we prove some technical results
which are necessary for the analysis in subsequent sections. We begin with a simple
lemma from linear algebra.

Lemma 2.1. Let v ∈ Rn, w ∈ Rm and C = vwt ∈ Rn×m. Let A ∈ Rn×n

and B ∈ Rm×m be symmetric, positive semi-definite with v ∈ Range(A), and w ∈
Range(B). Then there exists a positive constant γ such that for every x ∈ Rn and
every y ∈ Rm

|xtCy| ≤ γ (xtAx)
1
2 (ytBy)

1
2(9)

where

γ =
√
vtA+v

√
wtB+w(10)

and A+ is the (generalized) inverse of A restricted to Range(A).
Proof. Let x ∈ Rn , y ∈ Rm .
If x ∈ Kernel(A) or y ∈ Kernel(B), then xtCy = 0 and (9) is trivially satisfied.

Thus we may assume without loss of generality that x ∈ Range(A) and y ∈ Range(B).
Hence
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γ = sup
xtAx=1
ytBy=1

xtCy

= sup
xtAx=1

xtv sup
ytBy=1

ytw

Using Lagrange multipliers, it is easy to see that

sup
xtAx=1

xtv =
√
vtA+v

sup
ytBy=1

ytw =
√
wtB+w

and the lemma follows.
Lemma 2.2. Let V and W be two subspaces of a given vector space S, and

let (·, ·)1 and (·, ·)2 be two inner products defined on S, with induced norms ‖ · ‖i,
1 ≤ i ≤ 2. Assume for all v ∈ V and for all w ∈ W that the strengthened Cauchy
inequalities

|(v, w)i| ≤ γi ‖ v ‖i‖ w ‖i

hold with γi < 1, 1 ≤ i ≤ 2. If we define a third inner product by

(v, w) = ρ (v, w)1 + η (v, w)2

ρ > 0

η > 0

with induced norm ‖ · ‖, then

|(v, w)| ≤ γ ‖ v ‖ ‖ w ‖

where

γ = max(γ1, γ2)

Proof. The proof is similar to that given in [4], and is a relatively simple algebraic
manipulation.

|(v, w)| = |ρ (v, w)1 + η (v, w)2|
≤ γ{ρ ‖ v ‖1 ‖ w ‖1 +η ‖ v ‖2 ‖ w ‖2}
≤ γ {ρ ‖ v ‖21 +η ‖ v ‖22}

1
2 {ρ ‖ w ‖21 +η ‖ w ‖22}

1
2

= γ ‖ v ‖ ‖ w ‖

We now must be a bit more specific in our choices of V and W and S.
Lemma 2.3. Let S be the space of C0 piecewise linear polynomials associated

with the triangulation T . Let S = V ⊕W be the decomposition of S in terms of the
hierarchical basis. Let

b(v, w) =
∑
t∈T

b(v, w)t
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be an inner product defined in S, with induced norm

‖ u ‖2 =
∑
t∈T

b(u, u)t

=
∑
t∈T
‖ u ‖2t

Suppose for each t ∈ T there exists 0 ≤ γt < 1 such that for all v ∈ V and for all
w ∈W

|b(v, w)t| ≤ γt ‖ v ‖t ‖ w ‖t

Then

|b(v, w)| ≤ γ ‖ v ‖ ‖ w ‖

with

γ = max
t∈T

γt

Proof. The proof here is again based on that given in [4].

|b(u, v)| ≤
∑
t∈T
|b(v, w)t|

≤ γ
∑
t∈T
‖ v ‖t ‖ w ‖t

≤ γ

{∑
t∈T
‖ v ‖2t

} 1
2
{∑

t∈T
‖ w ‖2t

} 1
2

= γ ‖ v ‖ ‖ w ‖

We now consider a coarse grid triangle t. We denote the vertices of t by pi,
1 ≤ i ≤ 3, and the midpoints of t by mi, 1 ≤ i ≤ 3. Triangle t has four son elements,
denoted by si, 0 ≤ i ≤ 3, which are triangles in the fine mesh T . This is illustrated
in figure (1).
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Fig. 1. A coarse grid triangle t

The restriction of the subspaces V to t is the space of linear functions on t, and
the hierarchical basis functions for V are just the nodal basis associated with the
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vertices. The restriction of W to t is the three dimensional space spanned by fine grid
nodal basis functions associated with the midpoints of t.

Lemma 2.4. Let bn(·, ·) be a bilinear form defined on St, given by

bn(v, w) =

∫
t

n · ∇v n · ∇wdx

=

∫
t

vnwndx

where

n =

[
n1

n2

]
=

[
cos θ
sin θ

]
is a unit vector. Let ‖ · ‖ denote the corresponding seminorm. Then for all v ∈ Vt
and for all w ∈Wt, we have the strengthened Cauchy inequality

|bn(v, w)| ≤ γt ‖ v ‖ ‖ w ‖(11)

where γ ≤
√

3/2.
Proof. Without loss of generality, we can consider t to be the reference triangle

with vertices p1 = (0, 0), p2 = (1, 0), and p3 = (0, 1). To see this, we first show that
inequality (11) cannot depend of the diameter ht of t. Consider the rescaling t → t̂
defined by

x̂ =
x− p1

ht

This maps t to a triangle with similar angles and orientation, but with one vertex at
the origin and diameter one. It is easy to see that∫

t

vnwndx =

∫
t̂

v̂nŵndx̂

showing that γ will be invariant with respect to scalings and translations. We now
map t̂ to the reference element t̃ by the linear mapping

Jx̃ = x̂

where J is a 2 × 2 matrix. J is nonsingular and has bounded inverse due to our
assumption of shape regularity for the elements in T . Let

ñ = J−1n ‖ J−1n ‖−1
`2

α = |Det J | ‖ J−1n ‖2`2

Then ∫
t̂

v̂nŵndx̂ = α

∫
t̃

ṽñw̃ñdx̃

showing that on the reference element the inequality will have the same form but
for the new unit direction ñ. However, since we are seeking a bound independent of
direction, we may disregard this effect. Thus, to simplify notation in the remainder
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of the proof, we will assume that t is the reference element. The element matrix
corresponding to the hierarchical basis is block 2× 2 with 3× 3 blocks of the form

M =
1

2

[
A −C
−Ct B

]
A = vvt

C = vvt

B = 2vvt +D

with v the 3 vector given by

v =

 −(n1 + n2)
n1

n2


and D is the diagonal matrix

D =

 n2
1 + n2

2 − (n1 + n2)2

(n1 + n2)2 + n2
2 − n2

1

(n1 + n2)2 + n2
1 − n2

2


In linear algebraic terms, the problem of computing γ is exactly the estimate (9) in
Lemma 2.1. We note that since A has rank one, vtA+v = 1, so that γ2 = vtB+v.
While B is nonsingular for most directions n, it will have rank two for n = (1, 0)t,
n = (0, 1)t, and n = (1,−1)t/

√
2. However, even in these cases v ∈ Range(B), so the

hypothesis of the lemma is satisfied.
In the case where B is nonsingular, one may compute

B−1v =
1

2vtD−1v + 1
D−1v

=
−1

4n1n2(n1 + n2)

 (n1 + n2)2

n2
1

n2
2


and

vtB−1v =
3

4

In the case B is singular

B+v =
1

2vtv
v

and

vtB+v =
1

2

Thus we have γ =
√

3/2.
Interestingly, the estimate γ =

√
3/2 was also obtained by Maitre and Musy

[11] as the worst case when γ was studied as a function of the element geometry
for the Dirichlet integral. This occurred for the degenerate triangle. The fact that
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our analysis uses only one directional derivative, while the Dirichlet integral uses
two directions which become linearly dependent as the matrix J becomes singular,
explains the similarity.

We can now prove our first main result.
Theorem 2.5. Let n = β/|β|, and let δt be given by (5). Consider the bilinear

form

b(v, w) =
∑
t∈T

∫
t

∇v · ∇w + δtvnwndx

with corresponding norm |||v|||2 = b(v, v). Then for all v ∈ V and for all w ∈ W , we
have the strengthened Cauchy inequality

|b(v, w)| ≤ γ|||v||| |||w|||

where γ is as in lemma 2.4.
Proof. Using lemma 2.3, we may reduce the estimate to the corresponding es-

timate for a single element. Defining n̂ = β⊥/|β|, we may write the bilinear form
b(v, w)t as

b(v, w)t =

∫
t

vn̂wn̂ dx+ (1 + δt)

∫
t

vnwn dx

= b1(v, w) + (1 + δt)b2(v, w)

Strengthened Cauchy inequalities for both b1(v, w) and b2(v, w) can be found using
lemma 2.4. These can then be combined using lemma 2.3 to make an estimate for
b(v, w)t, completing the proof.

We emphasize that, despite the fact that the inner product and the correspond-
ing natural norm are both mesh dependent, the bound in the strengthened Cauchy
inequality does not depend on the mesh, on the magnitude of β or its direction, or
the size of the upwinding parameter c0.

Our next lemma is concerned with estimating the size of the convection term.
Lemma 2.6. Let b(·, ·) and b(·, ·)t be defined as in theorem 2.5, and let |||v|||2t =

b(v, v)t. Then for all v ∈ Vt and all w ∈Wt, we have the estimate

|(β · ∇v, w)t| ≤ νt|||v|||t |||w|||t

where

νt ≤
Cht|β|√

1 + δt

where C depends only on the shape regularity of t.
Proof. The proof follows from the estimates

‖ β · ∇v ‖L2(t) ≤ |β|√
1 + δt

|||v|||t

‖ w ‖L2(t) ≤ Cht ‖ ∇ · w ‖L2(t)

≤ Cht|||w|||t

The second inequality can be verified by making a scaling and translation map-
ping of t to an element of diameter h = 1. This establishes the dependence on ht.
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Since a nonzero function w ∈ Wt is necessarily oscillatory, a subsequent mapping
to the reference element establishes the result. We also note that the 3 × 3 matrix
corresponding to the inner product (β · ∇v, w)t has rank one, and exact evaluation of
νt could be made using lemma 2.1.

The importance of this result is that one may control the size of νt by controlling
the size of the coefficient c0 in the upwinding term δt. In particular, for c0 sufficiently
large, one can make νt arbitrarily small, independent of the size of ht|β|.

Theorem 2.7. Let b(v, w) be defined as in theorem 2.5 Then for all v ∈ V and
all w ∈W , we have the estimates

|(β · ∇v, w)| ≤ ν|||v||| |||w|||
|(β · ∇w, v)| ≤ ν|||v||| |||w|||

where

ν = max
t∈T

νt

Proof. The first inequality is proved using lemma 2.6 and an argument entirely
analogous to that used in proving lemma 2.3. The second inequality follows by integra-
tion by parts (noting β is constant and homogeneous Dirichlet boundary conditions)
yielding

(β · ∇w, v) = −(β · ∇v, w)

3. A Two Level Iteration. In this section, we will consider the solution of the
linear system: find u ∈M2 such that

as(u, v) = f(v)(12)

for all v ∈M2. Here f is a linear functional on M2 and as(v, w) is defined in (6)
We will consider the hierarchical decomposition of M2 as M2 = V ⊕W . Our

two level iteration will be a block Gauss-Seidel iteration. Let the iterates uk ∈ M2

be decomposed as uk = vk +wk, where vk ∈ V and wk ∈W . Given u0, the remaining
iterates are defined by

as(vk+1, φ) = f(φ)− as(wk, φ)(13)

for all φ ∈ V and

as(wk+1, φ) = f(φ)− as(vk+1, φ)(14)

for all φ ∈ W . Note that block Gauss-Seidel and symmetric block Gauss-Seidel
amount to essentially the same algorithm when only two levels are used.

Let ek ∈ M2 denote the error at the kth step of (13)-(14). The error can be
decomposed as ek = ρk +ηk, where ρk ∈ V and ηk ∈W . Then the error ek propagates
as

as(ρk+1 + ηk, φ) = 0(15)

for all φ ∈ V and

as(ρk+1 + ηk+1, φ) = 0(16)
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for all φ ∈W .
We define the symmetric, positive definite bilinear form bs(v, w) by

bs(v, w) =

∫
Ω

∇ · v∇ · w + δtvnwndx(17)

This is just the symmetric part of as(v, w)

bs(v, w) =
as(v, w) + as(w, v)

2

The corresponding energy norm ||| · ||| is defined by

|||u|||2 = bs(u, u)

It is reasonably straightforward to analyze the convergence of (13)-(14). Taking φ =
ρk+1 in (15), and applying theorems 2.5 and 2.7 we have

|||ρk+1||| ≤ (γ + ν)|||ηk|||

Similarly, taking φ = ηk+1 in (16),

|||ηk+1||| ≤ (γ + ν)|||ρk+1|||

with γ and ν defined as in theorems 2.5 and 2.7, respectively.
Combining these estimates we have

|||ρk+1||| ≤ (γ + ν)2|||ρk|||
|||ηk+1||| ≤ (γ + ν)2|||ηk|||

or {
|||ρk+1|||2 + |||ηk+1|||2

} 1
2 ≤ (γ + ν)2

{
|||ρk|||2 + |||ηk|||2

} 1
2(18)

The norm used in (18) is mesh dependent, and also depends on the hierarchical
decomposition. Using theorem 2.5, we may establish the norm comparability

(1− γ)
{
|||v|||2 + |||w|||2

}
≤ |||u|||2 ≤ (1 + γ)

{
|||v|||2 + |||w|||2

}
for all u = v + w ∈M2. This implies

|||ek||| ≤
√

1 + γ

1− γ
(γ + ν)2k|||e0|||(19)

This estimate now is independent of the hierarchical decomposition, but is still mesh
dependent. We note that γ < 1 independent of the mesh, β, and the size of the
upwinding constant c0. The constant ν can be made arbitrarily small by a sufficiently
large value for c0, which is independent of ht|β|. Thus, for sufficiently strong up-
winding, we may force convergence of the two level scheme. Despite the fact that the
energy norm is mesh dependent, our bound on the convergence rate does not depend
on the mesh.
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4. The block symmetric Gauss-Seidel iteration. In this section we make a
general analysis of the behavior of the block symmetric Gauss-Seidel iteration for the
non-symmetric case. We emphasize that the hierarchical basis multigrid method is
mathematically equivalent to such an iteration [5], if the block structure of the matrix
corresponds to the hierarchical decomposition

Mk = V1 ⊕ V2 ⊕ . . .⊕ Vk

Let A = D+L+U be a block k× k matrix, with D, L, and U being block diagonal,
lower triangular, and upper triangular, respectively. We assume that the symmetric
parts of A and D are positive definite, as they are for the case we have in mind. We
define

D̂ = (D +Dt)/2

L = T + E

U = T t − Et(20)

S = (D −Dt)/2

B = (A+At)/2 = D̂ + T + T t

and

R =


0

S2

. . .

Sk−1

0


A natural norm to use in analyzing the method is the norm induced by D̂. Thus

we are led to define Â = D̂−1/2AD̂−1/2, and similarly B̂, T̂ , L̂, Û , Ŝ, Ê, and R̂.
We consider the solution of the system of equations

Au = F(21)

by the symmetric Gauss-Seidel iteration

(D + L)(uj+ 1
2
− uj) = F −Auj(22)

(D + U)(uj+1 − uj+ 1
2
) = F −Auj+ 1

2

where u0 is given.
We define the error εj by

εj = uj − u(23)

Then a straightforward calculation shows that the error propagates as

εj+1 = = {(D + L)D−1(D + U)}−1LD−1Uεj(24)

= (I +D−1U)−1(I +D−1L)−1(D−1L)(D−1U)εj

From (24) we see that

D̂1/2εj = Q(GLGU )jQ−1D̂1/2ε0(25)
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where

Q = D̂1/2(I +D−1U)−1D̂−1/2

GL = D̂1/2(I +D−1L)−1(D−1L)D̂−1/2(26)

= (I + Ŝ + L̂)−1L̂

GU = D̂1/2(I +D−1U)−1(D−1U)D̂−1/2

Our analysis fundamentally consists of estimating the norm ‖ GL ‖`2 (the es-
timates for ‖ GU ‖`2 are identical, and the proofs are quite analogous). We begin
with

Lemma 4.1. Let L̂ , Ŝ and R̂ be the block k × k matrices defined above. Then

sup
x6=0

xtL̂L̂tx

xt(I + Ŝ + L̂)(I + Ŝ + L̂)tx
≤ sup

x6=0

xtL̂L̂tx

xt(I + R̂+ L̂)(I + R̂+ L̂)tx
(27)

Proof. First, notice that since L̂ is block lower triangular, the numerator xtL̂L̂tx
is independent of the first component, x1, of x. Since Ŝ1 is skew, (In1

+ Ŝt
1) is

nonsingular. Thus, without loss of generality, we can replace the first component x
by (In1 + Ŝt

1)−1x1, which is equivalent to replacing the 1 − 1 block in the matrix
(I + Ŝt) by In1 . Thus

sup
x6=0

xtL̂L̂tx

xt(I + Ŝ + L̂)(I + Ŝ + L̂)tx
= sup

x6=0

xtL̂L̂tx

xt(I + R̄+ L̂)(I + R̄+ L̂)tx
(28)

where

R̄ =


0

S2

. . .

Sk−1

Sk


Next, by direct calculation, and noting the last block column and first block row of
L̂ are zero, we find

xt(I + R̄+ L̂)(I + R̄+ L̂)tx = xt(I + R̂+ L̂)(I + R̂+ L̂)tx+ xtkŜkŜ
t
kxk

≥ xt(I + R̂+ L̂)(I + R̂+ L̂)tx

completing the proof.
Lemma 4.2. Let Û , Ŝ and R̂ be the block k × k matrices defined above. Then

sup
x 6=0

xtÛ Û tx

xt(I + Ŝ + Û)(I + Ŝ + Û)tx
≤ sup

x6=0

xtÛ Û tx

xt(I + R̂+ Û)(I + R̂+ Û)tx
(29)

Proof. The proof is analogous to lemma 4.1.
We remark that, in the case of only two levels, R̂ = 0; this is one of the features

which simplifies the analysis in that case. Using the fact that R̂ is skew, we have

xt(I + R̂+ L̂)(I + R̂+ L̂)tx = xt(B̂ + L̂L̂t + 2Ê + 2R̂L̂t + R̂R̂t)x

≥ xt(B̂ + L̂L̂t + 2Ê + 2R̂L̂t)x

13



Thus we have

‖ GL ‖2`2≤ sup
x 6=0

xtL̂L̂tx

xt(B̂ + L̂L̂t + 2Ê + 2R̂L̂t)x
(30)

The remainder of our analysis will focus on technical estimates for the various terms
on the right hand side of (30). In particular, note that since B̂ is symmetric, positive
definite

sup
x 6=0

xtL̂L̂tx

xt(B̂ + L̂L̂t)x
< 1

Obtaining a more precise estimate for this term is very similar to the symmetric,
positive definite case [5]. The remaining terms, 2xt(Ê + R̂L̂t)x, involve matrices
whose norm can be made small by choosing a sufficiently large value of the upwinding
parameter c0.

5. Estimates For The Artificial-Diffusion Method. In this section we make
some estimates to be used in bounding the terms in (30). Let

M` = V1 ⊕ V2 ⊕ . . .⊕ V`

for 1 ≤ ` ≤ k, and let

N` = V`+1 ⊕ V`+2 ⊕ . . .⊕ Vk

for 1 ≤ ` ≤ k − 1, with Nk = ∅. Then

Mk =M` ⊕N`

for 1 ≤ ` ≤ k.
We will consider the solution of the linear system: find u ∈Mk such that

ad(u, v) = f(v)(31)

for all v ∈Mk. Here f is a linear functional on Mk and ad(v, w) is the bilinear form
given by (4) We define the bilinear form bd(·, ·) by

bd(v, w) =
ad(v, w) + ad(w, v)

2

=

∫
Ω

(1 + δ)∇v · ∇w dx

and set

|||v|||2 = bd(v, v)

We begin with
Lemma 5.1. let vi ∈ Vi and vj ∈ Vj. Let 1 ≤ 1 ≤ k and 1 ≤ j ≤ k, excluding the

case i = j = 1. Then

|(β · ∇vi, vj)| ≤
c|β|min(hi, hj)

1 + δ
|||vi||| |||vj |||(32)
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Proof. First suppose that j ≥ i. In particular, this implies j > 1. The proof
follows from the elementary estimates

‖ β · ∇vi ‖L2 ≤ c|β|√
1 + δ

|||vi|||(33)

‖ vj ‖L2 ≤ chj√
1 + δ

|||vj |||(34)

Inequality (34) follows from the necessarily oscillatory behavior of any nonzero func-
tion in Vj , and is established by an element-by-element analysis using the triangles of
level j − 1.

If j < i, then intergration by parts gives

(β · ∇vi, vj) = −(β · ∇vj , vi)

and we may repeat the argument with i and j interchanged.
Lemma 5.2. let vi ∈ Vi, i > 1 and z ∈Mk. Then

|(β · ∇z, vi)| ≤
c|β|hi
1 + δ

|||z||| |||vi|||(35)

Proof. The proof is analogous to Lemma 5.1.
We now prove a strengthened Cauchy inequality for the bilinear form bd(·, ·).
Lemma 5.3. Let v` ∈ M` and w` ∈ N`, 1 ≤ ` ≤ k − 1. Then there exists a

positive constant γ`, 1 ≤ ` ≤ k − 1 such that

|bd(v`, w`)| ≤ γ` |||v`||| |||w`|||(36)

and

γ` ≤ 1− c

k − `
(37)

where c is a positive constant depending only on shape regularity of the elements in
Tk.

Proof. It is sufficient to prove (36) triangle by triangle, for each triangle t ∈ T`.
For t ∈ T`, we note that v` restricted to t is just a linear polynomial and w` is a
piecewise linear polynomial which is zero at the vertices of t. In particular, note
that the constant function on t is contained in the space V`t and not W`t. Because
bd(c, χ)t = 0 for any constant c and and χ ∈ V`t ⊕W`t, without loss in generality, we
may assume that v` = 0 at one vertex of t, in order to exclude the constant function.

For such a function v` + w`, we have the embedding

‖ v` − w` ‖L∞(t) ≤ c

∣∣∣∣log
hk
h`

∣∣∣∣1/2

‖ v` − w` ‖H1(t)

≤ c(k − `)1/2 ‖ v` − w` ‖H1(t)

and the norm comparability

c√
1 + δ

|||v` − w`|||t ≤‖ v` − w` ‖H1(t)≤
c′√

1 + δ
|||v` − w`|||t(38)

15



Now, a straightforward calculation shows

γ` ≤ max
t∈T`

γ`t

where

γ`t = sup
|||v`|||t = 1
|||w`|||t = 1

bd(v`, w`)t

Finally, to estimate γ`t, we have

γ`t = sup
|||v`|||t = 1
|||w`|||t = 1

bd(v`, w`)t

= sup

{
1− 1

2
|||v` − w`|||2t

}
≤ sup

{
1− c(1 + δ)

k − `
‖ v` − w` ‖2L∞(t)

}

Let pj , 1 ≤ j ≤ 3 denote the vertices of t, and let v`(p3) = 0. Since w`(pj) = 0 for
1 ≤ j ≤ 3, we have

‖ v` − w` ‖L∞(t) ≥ max {|v`(p1)|, |v`(p2)|}

≥ c√
1 + δ

and finally,

γ`t ≤ 1− c

k − `

We now make an estimate for the hierarchical basis method in the symmetric,
positive definite case.

Lemma 5.4. Let T , B, D̂, T̂ and B̂ be the block k × k matrices defined above.
Then

sup
x 6=0

xtT̂ T̂ tx

xtB̂x
≤ ck2(39)

Proof. To prove (39), we begin by noting

sup
x 6=0

xtT̂ T̂ tx

xtB̂x
= sup

x6=0

xtTD̂−1T tx

xtBx

= sup
x6=0

ytD̂y

xtBx

where D̂y = T tx.

16



Let w = w1 +w2 + · · ·+wk denote the piecewise linear function corresponding to
the vector xt = (xt1, x

t
2, · · · , xtk) and v = v1 + v2 + · · ·+ vk denote the piecewise linear

function corresponding to the vector yt = (yt1, y
t
2, · · · , ytk). Furthermore, we define

zi = wi+1 + wi+2 + · · ·+ wk. Then D̂y = T tx corresponds to

bd(vi, χ) = bd(zi, χ)(40)

for 1 ≤ i ≤ k − 1, vk = 0 and χ ∈ Vi. Taking χ = vi, we have

|||vi||| ≤ |||zi|||(41)

Thus

ytD̂y =

k∑
i=1

|||vi|||2

≤
k∑

i=1

|||zi|||2

≤
k∑

i=1

1

1− γi
|||w|||2

≤ c k2 |||w|||2

= c k2 xtBx

We now generalize Lemma 5.4 to the nonsymmetric case.
Lemma 5.5. Let L, B, E, R, D̂, L̂, B̂, Ê, and R̂ be the block k × k matrices

defined above. Define θ as

θ =

√
k h1|β|
1 + δ

(42)

Then

sup
x 6=0

xtL̂L̂tx

xtB̂x
≤ c (k + θ)2(43)

sup
x 6=0

xtÊÊtx

xtB̂x
≤ c θ2(44)

sup
x6=0

xtR̂R̂tx

xtB̂x
≤ c θ2(45)

Proof. The proof is analogous to that for Lemma 5.4, and we adopt the same
notation as in that proof. We begin with a proof of (44). Following the proof for
Lemma 5.4, we have

sup
x 6=0

xtÊÊtx

xtB̂x
= sup

x 6=0

ytD̂y

xtBx

where D̂y = Etx. This corresponds to

bd(vi, χ) = (β · ∇zi, χ)

17



for 1 ≤ i ≤ k − 1, vk = 0 and χ ∈ Vi. Taking χ = vi, we have, from Lemma 5.2,

|||vi||| ≤
chi|β|
1 + δ

|||zi|||

Thus

ytD̂y =

k∑
i=1

|||vi|||2

≤
k∑

i=1

(
chi|β|
1 + δ

)2

|||zi|||2

≤
k∑

i=1

(
chi|β|
1 + δ

)2
1

1− γi
|||w|||2

≤ c θ2 |||w|||2

= c θ2 xtBx

The proof of (43) is now a simple application of Lemma 5.4 and (44). For the
proof of (45) we have

sup
x 6=0

xtR̂R̂tx

xtB̂x
= sup

x 6=0

ytD̂y

xtBx

where D̂y = Rtx. This corresponds to

bd(vi, χ) = (β · ∇wi, χ)

for 2 ≤ i ≤ k − 1. Taking χ = vi, we have, from Lemma 5.1,

|||vi||| ≤
chi|β|
1 + δ

|||wi|||

The remainder of the proof is basically the same as for (44). However, in this argu-
ment, it was important that the diagonal block S1 is excluded (by virtue of Lemmas
4.1 and 4.2), since Lemma 5.1 does not apply to the case i = j = 1. We remark
that the estimates (43)-(45) exhibit a dependence on the number of levels. In par-
ticular, the numerator c|β|h1 = O(|β|hk2k), while δ = c0O(|β|hk + |β|2h2

k). To make
such terms small requires either increasing the upwinding parameter c0 in a level-
dependent fashion (somewhat unnatural, since larger values of c0 would correspond
to more refined meshes, where presumably less upwinding should be necessary for
good approximation), or alternatively, placing a restriction on h1, e.g. requiring |β|h1

to be small in comparison with one. This amounts to the requirement that the coars-
est mesh be sufficiently fine, and is typical of restrictions arising in the analysis of
regular multigrid methods for nonsymmetric problems.

Lemma 5.6. Let B and D̂ be the block k × k matrices defined above. Then

xtBx

xtD̂x
≤ c k(46)

xtD̂x

xtBx
≤ c k2(47)
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Proof. Let w = w1 + w2 + · · · + wk denote the piecewise linear function corre-
sponding to the vector xt = (xt1, x

t
2, · · · ,+xtk). The proof of (46) is straightforward

from the following estimate

xtBx = |||w|||2

≤ c k

k∑
i=1

|||wi|||2

= c k xtD̂x

The estimate in (47) is similar to estimate (39). Let zi = w1 + w2 + · · · + wi−1.
Then

xtD̂x =

k∑
i=1

|||wi|||2

≤ 1

1− γk−1

k∑
i=1

|||zi|||2

≤ 1

1− γk−1

k∑
i=1

(
1

1− γi

)
|||w|||2

≤ c k2 xtBx

We can now make our final estimate.
Theorem 5.7. Let GL be defined as in (26). Then if θ given by (42) is sufficiently

small,

‖ GL ‖2`2≤
c1(k + θ)2

1 + c1(k + θ)2 − c2θ(k + θ)
(48)

where c1 and c2 are positive constants depending only on the geometry of the elements.
Proof. Use Lemmas 5.4, 5.5 and 5.6, to bound the various terms appearing on

the right hand side of (30).
We pause to make several remarks. First, a similar estimate to (48) holds for GU ,

‖ GU ‖2`2≤
c1(k + θ)2

1 + c1(k + θ)2 − c2θ(k + θ)

Both estimates reduce to that of the symmetric problem when θ = 0.
Second, to guarantee convergence using (48) we must require

c2 θ(k + θ) < 1(49)

We can satisfy (49) by forcing h1|β| to be small (e.g., making the coarsest mesh fine
enough) or by making the upwinding parameter c0, hence δ, sufficiently large. In
either case there is a mesh dependent term

√
k2k which must be dominated. As we

do not know if (48) is sharp, we cannot characterize for certain the dependence of the
rate of convergence on the number of levels, but one should expect at least a weak
dependence for problems of practical interest.
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6. Estimates For The Streamline-Diffusion Method. In this section, we
estimate convergence rates for the streamline diffusion method. Since most of the
proofs of the results are similar to the proofs of the estimates made in section 5, we
will only state the modifications to be made.

We define V`, M` and N` as in section 5 and we consider the solution of the
equation

as(u, v) = f(v)(50)

where as(v, w) is the bilinear form defined by (6), and f(v) is defined as in (31).
Similarly, the symmetric part of as(v, w) is given by

bs(v, w) =
as(v, w) + as(w, v)

2

=

∫
Ω

∇v · ∇w + δt vn wn dx

The differences in the results between the artificial diffusion case and the stream-
line diffusion case are due mainly to differences in the norm comparability (38). Un-
fortunately, in the streamline diffusion case the embedding is not so strong as (38).
It is replaced by the following weaker norm comparability

c√
1 + δ

|||v` − w`|||t ≤‖ v` − w` ‖H1(t)≤ c′ |||v` − w`|||t(51)

which leads to slightly weaker results.
We first begin with a lemma similar to lemma 5.1
Lemma 6.1. let vi ∈ Vi and vj ∈ Vj. Let 1 ≤ 1 ≤ k and 1 ≤ j ≤ k, excluding the

case i = j = 1. Then

|(β · ∇vi, vj)| ≤
c|β|min(hi, hj)√

1 + δ
|||vi||| |||vj |||(52)

Proof. The proof is exactly the same as lemma 5.1, except for estimate (34),
which becomes

‖ vj ‖L2 ≤ chj |||vj |||(53)

Lemma 6.2. let vi ∈ Vi, i > 1 and z ∈Mk. Then

|(β · ∇z, vi)| ≤
c|β|hi√

1 + δ
|||z||| |||vi|||(54)

Proof. The proof is analogous to Lemma 6.1. We now prove a strengthened
Cauchy inequality (similar to the one in lemma 5.3) for the bilinear form bs(·, ·).

Lemma 6.3. Let v` ∈ M` and w` ∈ N`, 1 ≤ ` ≤ k − 1. Then there exists a
positive constant γ`, 1 ≤ ` ≤ k − 1 such that

|bs(v`, w`)| ≤ γ` |||v`||| |||w`|||(55)

and

γ` ≤ 1− c

(1 + δ) (k − `)
(56)
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where c is a positive constant depending only on shape regularity of the elements in
Tk.

Proof. The proof is analogous to lemma 5.3, where the norm comparability (38)
is replaced by the norm comparability (51). In the symmetric positive definite case,
the hierarchical basis multigrid method yields the following estimate

Lemma 6.4. Let T , B, D̂, T̂ and B̂ be the block k × k matrices defined above.
Then

sup
x6=0

xtT̂ T̂ tx

xtB̂x
≤ c(1 + δ)k2(57)

Proof. The proof is analogous to lemma 5.4.
We now generalize Lemma 6.4 to the nonsymmetric case.
Lemma 6.5. Let L, B, E, R, D̂, L̂, B̂, Ê, and R̂ be the block k × k matrices

defined above. Define θ as

θ =

√
k h1|β|√
1 + δ

(58)

Then

sup
x 6=0

xtL̂L̂tx

xtB̂x
≤ c (1 + δ) (k + θ)2(59)

sup
x6=0

xtÊÊtx

xtB̂x
≤ c (1 + δ) θ2(60)

sup
x6=0

xtR̂R̂tx

xtB̂x
≤ c (1 + δ) θ2(61)

Proof. The proof is analogous to Lemma 5.5. Similarly to the artificial diffusion
case, the estimates (59)-(61) exhibit a dependence on the number of levels. However,
the terms in (60) and (61) do not depend any longer on the upwinding parameter
c0 and the term in the right hand side of (59) actually increases if we increase the
upwinding parameter. But requiring |β|h1 to be small, is still a sufficient condition
to make such terms small.

Lemma 6.6. Let B and D̂ be the block k × k matrices defined above. Then

xtBx

xtD̂x
≤ c k(62)

xtD̂x

xtBx
≤ c (1 + δ)2 k2(63)

Proof. The proof is analogous to lemma 5.6.
We can now make our final estimate.
Theorem 6.7. Let GL be defined as in (26). Then if θ given by (58) is sufficiently

small,

‖ GL ‖2`2≤
c1(1 + δ)(k + θ)2

1 + c1(1 + δ)(k + θ)2 − c2(1 + δ)θ(k + θ)− c3(1 + δ)3/2 θ
(64)
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where c1, c2 and c3 are positive constants depending only on the geometry of the
elements.

Proof. Use Lemmas 6.4, 6.5, and 6.6 to bound the various terms appearing on
the right hand side of (30).

A similar estimate to (64) holds for GU ,

‖ GU ‖2`2≤
c1(1 + δ)(k + θ)2

1 + c1(1 + δ)(k + θ)2 − c2(1 + δ)θ(k + θ)− c3(1 + δ)3/2 θ

To guarantee convergence using (64), we must require

c2(1 + δ)θ(k + θ) + c3(1 + δ)3/2 θ < 1(65)

As we have already noticed, increasing the upwinding parameter is not going to help
in this case, the only way we can satisfy (65) is by forcing h1|β| to be small (e.g.,
making the coarsest mesh fine enough).

7. Numerical Results.

7.1. The Two-Level Method. In this section we conduct numerical tests on
the two-level method. We will consider the convection-diffusion equation on the
square: {

−∆u+ β∇u = 1 in Ω ≡ (0, 1)× (0, 1)
u = 0 on ∂Ω

(66)

The discretization used is based on the streamline diffusion method.
This domain is first triangulated into 8 triangles, to form the level 1 grid. The

mesh is then uniformly refined, by subdividing each triangle into four congruent tri-
angles. The refinement is continued until we reach the level clevel grid, which will be
our coarse grid. By refining one more time we will reach level flevel, the fine grid. In
the following γ will denote the average rate of convergence of the two-level method.
The column denoted “iteration” gives the number of iterations required to achieve
the corresponding number of digits of accuracy (given in column 3), where

digits = − log10

{
‖ ε ‖1
‖ uh ‖1

}
The constant c0 is the upwinding parameter. NV is the number of vertices (roughly
the size of the problem).

We first test the dependence of the convergence rate of the method on the upwind-
ing parameter c0. The results (see tables 1 and 2) show that we can force convergence
or accelerate it, by choosing sufficiently large c0, which is predicted by (19). Notice
that the two level scheme diverges for small values of c0 (table 1).

Next we fix |β| and we vary its direction to illustrate the dependence of the
convergence rate on the direction of β. The results are shown in tables 3 and 4. As
predicted, the convergence rate appears to be essentially independent of the direction.

7.2. Multilevel Method. In this section some numerical results are given for
the multi-level method applied to (66).

We solve (66) using two discretization techniques namely the artificial diffusion
method and the streamline diffusion method. Both results seem to confirm our theory.
First we study the dependence of the performance of the multi-level method on the
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Table 1

NV = 289
c0 iterations digits γ
.02 - 0 -
.03 - 0 -
.04 38 4.07 0.781
.05 22 4.01 0.657
.06 18 4.19 0.585
.07 15 4.13 0.530
.08 13 4.03 0.489
.09 12 4.04 0.460
.10 12 4.34 0.434
.20 10 4.28 0.373
.30 10 4.33 0.368

The rate of convergence as a function of c0.

flevel = 4, clevel = 3, βt = (100, 100)t

Table 2

NV = 16641
c0 iterations digits γ
.05 70 4.02 0.876
.07 16 4.00 0.562
.09 11 4.02 0.431
.1 10 4.02 0.396
.11 10 4.17 0.382
.12 10 4.26 0.374
.13 10 4.29 0.372
.14 10 4.29 0.372

The rate of convergence as a function of c0.

flevel = 7, clevel = 6, βt = (1000, 1000)t

Table 3

NV = 16641
i iterations digits γ
0 5 4.15 0.148
1 6 4.55 0.174
2 5 4.03 0.156
3 6 4.48 0.179
4 5 4.02 0.157
5 6 4.52 0.176
6 5 4.03 0.156
7 6 4.52 0.176
8 5 4.03 0.156

The rate of convergence as a function of the direction of β.

flevel = 7, clevel = 6, βt = 100(cos θi, sin θi)
t, θi = iπ

8
, c0 = 1
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Table 4

NV = 289
i iterations digits γ
0 11 4.12 0.422
1 11 4.27 0.409
2 10 4.18 0.381
3 11 4.30 0.406
4 11 4.08 0.425
5 11 4.28 0.408
6 10 4.16 0.383
7 11 4.24 0.411
8 12 4.00 0.464

The rate of convergence as a function of the direction of β.

flevel = 4, clevel = 3, βt = 100(cos θi, sin θi)
t, θi = iπ

8
, c0 = .15

Table 5

NV = 16641
clevel iterations digits γ

1 - - -
2 - - -
3 104 4.00 0.915
4 43 4.00 0.803
5 27 409 0.705
6 23 4.11 0.662

Streamline Diffusion
Convergence rate as a function of the number of levels.

flevel = 7, βt = (1000, 1000)t, c0 = .8

coarse grid mesh. The results show a strong dependence on the size of the coarse grid
mesh (see tables 5 and 6).

The influence of the direction of β on the convergence rate is given in tables 7
and 8. In the artificial diffusion case, the independence of the direction of β is well
illustrated in table 8.

The dependence of the convergence rate on the upwinding parameter c0 is seen in
the third set of results (see tables 9 and 10). While these results seem to agree with
our theory in the case of the artificial diffusion, they out perform the result given by
theorem (6.7), which we think is not sharp and can be improved.

8. Concluding Remarks. In this section, we make a few concluding remarks.
First, we comment on the mesh dependent terms growing like 2k in the k-level es-
timates for both artificial diffusion and streamline diffusion cases. In some sense,
this is due to our construction of the hierarchical basis. We discuss this effect in the
framework of the streamline diffusion method.

In our study, we essentially began with the upwinded nodal basis functions for
the finest mesh,

φf +
δf
|β|
β · ∇φf(67)
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Table 6

NV = 16641
clevel iterations digits γ

1 33 4.11 .750
2 29 4.09 .722
3 24 4.11 0.674
4 16 4.15 0.550
5 9 4.10 0.350
6 4 4.29 0.085

Artificial Diffusion
Convergence rate as a function of the number of levels.

flevel = 7, βt = (1000, 1000)t, c0 = .8

Table 7

NV = 16641
i iterations digits γ
0 54 4.00 0.843
1 38 4.03 0.783
2 39 4.02 0.788
3 38 4.04 0.782
4 56 4.00 0.848
5 38 4.08 0.780
6 39 4.01 0.789
7 38 4.03 0.783
8 55 4.03 0.844

Streamline Diffusion
The rate of convergence as a function of the direction of β.

flevel = 7, clevel = 4, βt = 1000(cos θi, sin θi)
t, θi = iπ

8
, c0 = .8

Table 8

NV = 16641
i iterations digits γ
0 16 4.00 0.562
1 17 4.15 0.570
2 16 4.01 0.561
3 16 4.01 0.561
4 16 4.04 0.559
5 16 4.01 0.561
6 16 4.00 0.562
7 17 4.12 0.572
8 17 4.13 0.571

Artificial Diffusion
The rate of convergence as a function of the direction of β.

flevel = 7, clevel = 4, βt = 1000(cos θi, sin θi)
t, θi = iπ

8
, c0 = .8
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Table 9

NV = 16641
c0 iterations digits γ
.05 - 0 -
.1 - 0 -
.4 24 4.01 0.680
.5 20 4.08 0.625
.55 19 4.01 0.615
.6 19 4.02 0.614
.7 20 4.11 0.623
.8 20 4.05 0.627

Streamline Diffusion
The rate of convergence as a function of c0.

flevel = 7, clevel = 4, βt = (100, 100)t

Table 10

NV = 16641
c0 iterations digits γ
.05 - 0 -
.1 - 0 -
.4 19 4.06 0.609
.5 18 4.02 0.597
.55 18 4.04 0.596
.6 18 4.04 0.596
.7 18 4.05 0.595
.8 18 4.07 0.594

Artificial Diffusion
The rate of convergence as a function of c0.

flevel = 7, clevel = 4, βt = (100, 100)t

and then constructed a hierarchical basis using the standard recursive algorithm. This
results in course grid basis functions of the form

φc +
δf
|β|
β · ∇φc(68)

where the φc are standard nodal basis functions for the coarse grid, as expected. The
difficulty arises from the fact that δf was defined for the fine grid (i.e., using the fine
grid hf ) rather than the course grid hc = 2khf . This means that stabilizing effect
of the upwinding is diminished on coarser grids, resulting in the appearance of the
growth factors of 2k in our convergence rate estimates.

In the framework of regular multigrid methods, this effect is well known; see, for
example, [6]. The standard remedy to this problem in the case of standard multigrid
methods is to use upwinding appropriate for the given level, which essentially means
that in the usual case, the strength of the upwinding should grow by a factor of 2 in
proceeding to each coarser level. This introduces subtle inconsistencies between the
discretizations on different levels, but overall results in a very robust procedure. The
inconsistencies are not harmful, since all unknowns are smoothed on the finest level,
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so one expects convergence to the discrete solution on the finest level.
For the hierarchical basis method, the situation is not quite analogous. To see

this, suppose we construct a hierarchical basis in the following fashion: We begin with
coarse grid nodal basis functions

φc +
δc
|β|
β · ∇φc(69)

with upwinding terms appropriate to the coarse grid. Then, as new vertices are added,
we add new nodal basis functions for each level, with upwinding appropriate for that
level. The use of such a hierarchical basis in our analysis would certainly improve
our estimates, but unfortunately, it would also alter the fine grid discretization, as we
show below.

In the case of no unwinding, the standard hierarchical basis is transformed to
the nodal basis for the fine mesh using the inverse of the recursive algorithm used
in creating the basis in (68). However, with upwind terms present, with different
strengths on different levels, the same algorithm when applied to the functions in (69)
does not produce the functions (67). Indeed, the resulting functions are of the form
φf + ψf , where ψf can be a relatively complicated function, generally not having
compact support. In any event, this hierarchical basis leads to a non-standard fine
grid basis, and materially alters the discretization on the finest grid. Unlike standard
multigrid methods, this inconsistency cannot be ignored, since all unknowns are not
smoothed on the finest grid.

One possibility is to simply use a hierarchical basis iteration based on basis func-
tions of the form (69) as a preconditioner for a linear system constructed using the
basis (68). One hopes this will improve the estimates, and we expect to pursue this
line of investigation. However, one practical disadvantage of this approach is that
such a preconditioner cannot be constructed from the matrix elements of the fine grid
nodal stiffness matrix. In the symmetric positive definite case, and in the case of the
algorithms analyzed in this paper, all the necessary matrices are constructed from
simple algebraic recurrence relations, starting from the matrix elements of the nodal
stiffness matrix for the fine grid. We view this as a significant practical advantage of
the hierarchical basis iteration, since matrix assembly is often a costly phase of a finite
element calculation. It also makes installation of a hierarchical basis preconditioner in
an existing finite element code easier, since some representation of the stiffness matrix
for the nodal basis is usually available.

An second issue not addressed in this paper is that of inner iterations. Our anal-
ysis assumes that linear systems involving the diagonal blocks Aii of (8) are all solved
exactly. In practice, this is true only of the coarse grid matrix A11. The remainder
are solved by an inner iteration, which corresponds to the smoothing iteration in the
standard multigrid method. Generally, these diagonal blocks are well conditioned,
and several theoretical studies have analyzed the impact of inner iterations in the
symmetric, positive definite case [4] [5]. There it is seen that, while such iterations
do change the rate of convergence by changing the sizes of certain constants, the
generalized condition number remains O(k2).

We have empirically observed behavior similar to the symmetric positive definite
case for the problems studied here. Indeed, the numerical results in section 7 were
obtained using one symmetric Gauss-Siedel inner iteration rather than exact solution
for all blocks except A11. We expect that the rates of convergence of these inner
iterations will depend on the same parameters (e.g. |β|h and c0) as the outer iteration
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studied here. However, we expect, as in the symmetric positive definite case, that
well formulated inner iterations will exert only slight influence on the overall rate of
convergence.

We note that ordering of equations within a block can have a significant practical
impact on the rate of convergence of iterations like symmetric Gauss-Seidel, SSOR,
or ILU, and this effect is likely to be more important in the present setting than in
the symmetric positive definite case. In our experiments, diagonal blocks other than
A11 were ordered using a bandwidth minimization ordering similar to reverse Cuthill-
Mckee [7]. This choice of ordering, which we also recommend and use in the symmetric
positive definite case, is based mainly on empirical observation rather than theory.
However, it is probable that orderings based on the magnitudes of the matrix elements
as well as the sparsity structure of the Aii would be better, indicating another area
of future investigation. (A11 was ordered using the minimum degree algorithm, since
a sparse LDU factorization is computed).
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