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1. Introduction. A posteriori error estimates are now widely used in the so-
lution of partial differential equations [3] [7] [6]. Such estimates provide useful indi-
cations of the accuracy of a calculation and also provide the basis of adaptive local
mesh refinement or local order refinement schemes, h and p refinement, respectively.
In this paper, we do not introduce a new scheme, but rather analyze an existing class
of algorithms in a new and we think revealing way. The scheme is based on the use of
hierarchical bases of the type often used in the p version of the finite element method.
One of the earliest uses of such estimators that we know of was that of Zienkiewicz
et al. in the early 1980’s [21] [22].

For example, if one has solved a problem for a given value of p, corresponding to
a finite element space Mh, one can enrich the space to, say, order p + 1 by adding
certain hierarchical basis functions to the set of basis functions already used for Mh

[20]. If M̄h is the new space, then we have the hierarchical decomposition

M̄h =Mh ⊕Wh,

where Wh is the subspace which corresponds to the span of the additional basis
functions.

If we resolve the problem with the space M̄h using the hierarchical basis, intu-
itively one expects that the component of the new solution lying in Mh will change
very little from the previous calculation. Therefore, the component lying inWh should
be a good approximation to the error for the solution on the original space Mh.

In fact, for our error estimate, we simply solve an (approximate) problem on the
space Wh rather than M̄h to estimate the error. Since the hierarchical basis for Wh

is typically made up of highly oscillatory functions with compact support, one can
often approximate the stiffness matrix by a diagonal matrix, which further reduces
the cost of computing the error estimate.

In this paper, we prove estimates of the form

C1|||u− uh||| ≤ |||eh||| ≤ C2|||u− uh|||,
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where u is the exact solution, uh ∈ Mh is the approximate solution, eh ∈ Wh is the
computed a posteriori error estimate, and ||| · ||| is an appropriate norm. C1 and C2 are
constants of order one. We analyze three typical situations of increasing complexity:

• The case of a selfadjoint, positive definite problem.
• The case of a problem which is not selfadjoint and positive definite, but is

still linear.
• The case of a general nonlinear problem.

Some generalizations to Petrov-Galerkin methods and time dependent problems are
given in [11] and [18], respectively.

The development is at a fairly abstract level, so that with proper interpretation of
the bilinear forms, solutions, etc., the analysis applies to systems as well as to scalar
equations. An important feature of our analysis is that the proofs are not complicated,
and require only very weak assumptions about the operator. Because of this, it is easy
to explicitly see how the constants C1 and C2 depend on the underlying assumptions.

In the selfadjoint case, presented in §2, we make a saturation assumption (2.7).
This states that in the energy norm, the finite element solution ūh ∈ M̄h is a better
approximation to the solution u than uh ∈Mh. Generally, one expects that increasing
the order of the approximation will significantly reduce the error, so this is a very
natural assumption. We also assume a strengthened Cauchy inequality (2.8) for the
spacesMh andWh in the energy inner product. The existence of such an inequality is
typically a direct consequence of the construction of hierarchical basis functions, and
its verification is usually straightforward. Such inequalities have been widely used in
the analysis of iterative methods based on hierarchical bases [8] [9] [15], but have not
been used much in the present context (although see [10] and [12]).

When we consider nonselfadjoint problems in §3, we add a continuity assumption
(3.2) and an inf-sup condition (3.3) to our list of assumptions. These are standard
assumptions made for such problems, and must be satisfied in order for the finite
element formulation to be well defined [2].

In the case of nonlinear problems analyzed in §4, we assume that near the solution,
some linearization of the problem satisfies the four assumptions mentioned above, and
that the terms neglected in the linearization process are not too large (4.7)-(4.8). It
is difficult to state what the standard assumptions for this type of problem should be,
but we think the ones made here are quite reasonable. In this case, our error estimate
is computed by solving a linear problem in order to reduce computation costs.

In §§2-3 we also analyze the effect of approximating the stiffness matrix by a
matrix which is more easily inverted (e.g., the diagonal of the stiffness matrix). For
the selfadjoint case, we assume the two matrices are comparable, while for the non-
selfadjoint case, we assume continuity and inf-sup conditions.

In §5, we give some illustrative examples for scalar equations and for the Stokes
system of equations. We don’t present any numerical experiments, but this and
related methods are widely used, and many numerical illustrations already exist in
the literature [6] [21] [22] [7] [12].

2. The selfadjoint case. In this section, we consider the solution of the selfad-
joint variational equation: find u ∈ H such that

a(u, v) = f(v)(2.1)

for all v ∈ H, where H is an appropriate Hilbert space, a(·, ·) is a positive definite
bilinear form, and f(·) is a linear functional. The energy norm associated with a(·, ·)
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is denoted by

|||u|||2 = a(u, u)(2.2)

LetMh ⊂ H be a member of a family of finite dimensional subspaces, character-
ized by a small parameter h, and consider the approximate problem: find uh ∈ Mh

such that

a(uh, v) = f(v)(2.3)

for all v ∈Mh. The solution of (2.3) satisfies the best approximation property

|||u− uh||| = inf
v∈Mh

|||u− v|||(2.4)

We will assume some notion of convergence; that is

|||u− uh||| → 0

as h→ 0.
We now define a larger space Mh ⊂ M̄h ⊂ H. With this space we have an

approximate solution ūh satisfying

a(ūh, v) = f(v)(2.5)

for all v ∈ M̄h, and

|||u− ūh||| = inf
v∈M̄h

|||u− v|||(2.6)

Although we don’t explicitly compute ūh, it enters into our theoretical analysis of
the a posteriori error estimate for uh. In particular, we assume that the approximate
solutions ūh converge to u more rapidly than uh. This is expressed in terms of the
saturation assumption

|||u− ūh||| ≤ β |||u− uh|||,(2.7)

where β < 1 independent of h. (We note that since Mh ⊂ M̄h, β ≤ 1 is insured by
the best approximation property.) In a typical situation, due to the higher degree of
approximation for the space M̄h, one can anticipate that β = O(hr), for some r > 0.
In this case, β → 0 as h→ 0, which is stronger than required by our theorems.

We assume that the space M̄h has a hierarchical decomposition

M̄h =Mh ⊕Wh.

Then any function z ∈ M̄h has the unique decomposition z = v + w, where v ∈ Mh

and w ∈ Wh. Additionally, we assume a strengthened Cauchy inequality for the
decomposition; that is for all v ∈Mh and w ∈ Wh,

|a(v, w)| ≤ γ |||v||| |||w|||,(2.8)

where γ < 1 independent of h.
We seek to approximate the error u− uh in the space Wh. Our a posteriori error

estimate is defined by: find eh ∈ Wh such that

a(eh, v) = f(v)− a(uh, v)(2.9)
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for all v ∈ Wh.
We note the orthogonality relations

a(u− uh, v) = 0 for all v ∈Mh(2.10)

a(u− ūh, v) = 0 for all v ∈ M̄h(2.11)

a(ūh − uh, v) = 0 for all v ∈Mh(2.12)

a(u− uh − eh, v) = 0 for all v ∈ Wh(2.13)

a(ūh − uh − eh, v) = 0 for all v ∈ Wh(2.14)

Equations (2.10)-(2.14) are proved using various combinations of (2.1), (2.3),
(2.5), and (2.9), restricted to the indicated subspaces. We can use the orthogonality
relationships (2.10)-(2.12) to show

|||u− uh|||2 = |||u− ūh|||2 + |||ūh − uh|||2.(2.15)

Using (2.15) in conjunction with the saturation assumption (2.7) shows

(1− β2)|||u− uh|||2 ≤ |||ūh − uh|||2 ≤ |||u− uh|||2,(2.16)

demonstrating ūh − uh to be a good approximation to the error. However, our goal
is to show the easily computed function eh also yields a good approximation of the
error. This is shown in

Theorem 2.1. Let M̄h =Mh ⊕Wh as above and assume (2.7) and (2.8) hold.
Then

(1− β2)(1− γ2) |||u− uh|||2 ≤ |||eh|||2 ≤ |||u− uh|||2.(2.17)

Proof. The right inequality in (2.17) is a simple consequence of (2.13) for the
choice v = eh. Now let ūh = ûh + êh, where ûh ∈ Mh, and êh ∈ Wh. Then, using
(2.12) with v = ûh − uh and (2.14) with v = êh, we obtain

|||ūh − uh|||2 = a(ūh − uh, êh)

= a(eh, êh).(2.18)

Combining this with (2.15), we get

|||u− uh|||2 = |||u− ūh|||2 + a(êh, eh).(2.19)

To complete the proof, we must estimate |||êh||| in terms of |||eh|||. We apply the
strengthened Cauchy inequality (2.8) to obtain

|||ūh − uh|||2 ≥ |||ûh − uh|||2 + |||êh|||2 − 2γ |||ûh − uh||| |||êh|||
≥ (1− γ2)|||êh|||2.(2.20)

Combine this with (2.18) to obtain

(1− γ2)|||êh||| ≤ |||eh|||.(2.21)

Using(2.19) and (2.21), we have

|||u− uh|||2 ≤ β2|||u− uh|||2 +
1

1− γ2
|||eh|||2.
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Rearranging this inequality leads directly to the left-hand inequality in (2.17).
We next consider the effect of approximating a(·, ·) on the left hand side of (2.9),

by a bilinear form which is more easily inverted. Thus we are lead to a modified
process in which (2.9) is replaced by: find ẽh ∈ Wh such that

b(ẽh, v) = f(v)− a(uh, v)(2.22)

for all v ∈ Wh.
Theorem 2.2. Let a(·, ·) and b(·, ·) be symmetric, positive definite bilinear forms,

and let c0 and c1 be positive constants such that

c0 ≤
b(w,w)

a(w,w)
≤ c1(2.23)

for all w ∈ Wh, w 6= 0. Let eh and ẽh be defined by (2.9) and (2.22), respectively.
Then

c0 |||ẽh||| ≤ |||eh||| ≤ c1 |||ẽh|||.(2.24)

Proof. From (2.9) and (2.22) we obtain the relation

b(ẽh, v) = a(eh, v)

for all v ∈ Wh. Taking v = ẽh and using (2.23), we have

c0|||ẽh|||2 ≤ b(ẽh, ẽh)

= a(eh, ẽh)

≤ |||eh||| |||ẽh|||

Similarly, taking v = eh leads to

|||eh|||2 = a(eh, eh)

= b(ẽh, eh)

≤ c1|||eh||| |||ẽh|||.

Combining Theorems 2.1 and 2.2, we obtain the final estimate

c−2
1 (1− β2)(1− γ2) |||u− uh|||2 ≤ |||ẽh|||2 ≤ c−2

0 |||u− uh|||2.(2.25)

3. The nonselfadjoint, indefinite case. In this section, we generalize the
results of §2 to the nonselfadjoint and possibly indefinite problem: find u ∈ H such
that

A(u, v) = f(v)(3.1)

for all v ∈ H, where A(·, ·) is a bilinear form and f(·) is a linear functional. The
energy norm ||| · ||| is associated with the positive definite bilinear form a(·, ·) defined in
§2. The finite-dimensional spacesMh, M̄h, and Wh are defined as in §2. We assume
the bilinear form A(·, ·) satisfies the continuity condition

|A(φ, η)| ≤ ν |||φ||| |||η|||(3.2)
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for all φ, η ∈ H, and the inf-sup condition

inf
φ ∈ S
|||φ||| = 1

sup
η ∈ S
|||η||| ≤ 1

A(φ, η) ≥ µ > 0,(3.3)

where S = H,Mh,M̄h,Wh. This insures that all the systems of interest will have
unique solutions.

The approximate solutions uh ∈ Mh, ūh ∈ M̄h, and the a posteriori error esti-
mate eh ∈ Wh satisfy

A(uh, v) = f(v) for all v ∈Mh(3.4)

A(ūh, v) = f(v) for all v ∈ M̄h(3.5)

A(uh, v) +A(eh, v) = f(v) for all v ∈ Wh.(3.6)

As in §2, we assume that the solutions uh and ūh both converge to u and that
the saturation assumption (2.7) holds. We also assume the strengthened Cauchy
inequality (2.8) for the inner product a(·, ·).

We note the relations

A(u− uh, v) = 0 for all v ∈Mh(3.7)

A(u− ūh, v) = 0 for all v ∈ M̄h(3.8)

A(ūh − uh, v) = 0 for all v ∈Mh(3.9)

A(u− uh − eh, v) = 0 for all v ∈ Wh(3.10)

A(ūh − uh − eh, v) = 0 for all v ∈ Wh(3.11)

in analogy to (2.10)-(2.14).
Using the triangle inequality with the saturation assumption (2.7) shows

(1− β)|||u− uh||| ≤ |||ūh − uh||| ≤ (1 + β)|||u− uh|||(3.12)

in analogy to (2.16).
Theorem 3.1. Let M̄h = Mh ⊕Wh as above, and assume (3.2), (3.3), (2.7),

and (2.8) hold. Then for h sufficiently small,(µ
ν

)2

(1− β)2(1− γ2) |||u− uh|||2 ≤ |||eh|||2 ≤
(
ν

µ

)2

|||u− uh|||2.(3.13)

Proof. First let w ∈ Wh. Using (3.10), (3.2), and (3.3), we have

µ |||eh||| ≤ sup
|||w|||=1

A(eh, w)

= sup
|||w|||=1

A(u− uh, w)

≤ ν |||u− uh|||,

proving the right-hand inequality in (3.13).
Now let v ∈Mh, w ∈ Wh, with |||v + w||| = 1; then

1 = |||v + w|||2

= |||v|||2 + |||w|||2 + 2a(v, w)

≥ |||v|||2 + |||w|||2 − 2γ |||v||| |||w|||
≥ (1− γ2) |||w|||2.
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Thus, using (3.9), (3.11), (3.3), and (3.2)

µ |||ūh − uh||| ≤ sup
|||v+w|||=1

A(ūh − uh, v + w)

= sup
|||v+w|||=1

A(ūh − uh, w)

= sup
|||v+w|||=1

A(eh, w)

≤ ν√
1− γ2

|||eh|||.

This in conjunction with (3.12) establishes the left inequality in (3.13), provided h is
sufficiently small.

We next analyze the effect of approximating A(·, ·) by the (more easily inverted)
bilinear form B(·, ·) in the computation of the a posteriori error estimate. We define
ẽh ∈ Wh by

A(uh, v) +B(ẽh, v) = f(v)(3.14)

for all v ∈ Wh. We assume that B(·, ·) satisfies the continuity condition

|B(φ, η)| ≤ ν̃ |||φ||| |||η|||(3.15)

for all φ, η ∈ Wh, and the inf-sup condition

inf
φ ∈ Wh
|||φ||| = 1

sup
η ∈ Wh
|||η||| ≤ 1

B(φ, η) ≥ µ̃ > 0.(3.16)

Theorem 3.2. Let A(·, ·) and B(·, ·) be bilinear forms satisfying (3.2)-(3.3) and
(3.15)-(3.16) respectively. Let eh and ẽh be defined by (3.6) and (3.14). Then

µ̃

ν
|||ẽh||| ≤ |||eh||| ≤

ν̃

µ
|||ẽh|||.(3.17)

Proof. From (3.6) and (3.14) we obtain the relation

B(ẽh, v) = A(eh, v)

for all v ∈ Wh. The inequalities

µ̃ |||ẽh||| ≤ ν |||eh|||
µ |||eh||| ≤ ν̃ |||ẽh|||

follow immediately from the inf-sup and continuity conditions.

4. The nonlinear case. In this section we generalize the results of §§2-3 to the
nonlinear problem: find u ∈ H such that

A(u, v) = f(v)(4.1)

for all v ∈ H, where A(u, v) is nonlinear in u but still linear in v, and f(·) is a linear
functional. The finite-dimensional spacesMh, M̄h, andWh are defined as in §2. The
bilinear forms a(·, ·) and A(·, ·) and the energy norm ||| · ||| are as defined in §§2-3.
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The approximate solutions uh ∈ Mh, ūh ∈ M̄h, and the a posteriori error esti-
mate eh ∈ Wh satisfy

A(uh, v) = f(v) for all v ∈Mh(4.2)

A(ūh, v) = f(v) for all v ∈ M̄h(4.3)

A(uh, v) +A(eh, v) = f(v) for all v ∈ Wh.(4.4)

The bilinear form A(·, ·) is assumed to be related to A(·, ·) through some lin-
earization process. In particular, A(·, ·) could correspond to the Jacobian of A(·, ·)
evaluated at the discrete solution uh. Note that computing the error estimate eh
requires the solution of a linear problem. We can replace the bilinear form A(·, ·) in
(4.4) with B(·, ·), as in §3. The effect of this substitution is quantified in Theorem 3.2
and thus is not considered here.

To quantify the effect of the linearization process, and to make explicit the re-
lationship between the forms A(·, ·) and A(·, ·), we introduce the form Q(w − uh, v)
defined by

Q(w − uh, v) = A(w, v)−A(uh, v)−A(w − uh, v).

From (4.1)-(4.3) we have the relations

A(u, v)−A(uh, v) = A(u− uh, v) +Q(u− uh, v) = 0(4.5)

A(ūh, v)−A(uh, v) = A(ūh − uh, v) +Q(ūh − uh, v) = 0(4.6)

for all v ∈Mh. We assume that

|Q(u− uh, v)| ≤ δ |||u− uh||| |||v|||(4.7)

|Q(ūh − uh, v)| ≤ δ |||ūh − uh||| |||v|||(4.8)

for all v ∈ M̄h, and δ → 0 as h → 0. Normally, we anticipate that Q(·, ·) will
correspond to the (truncated) quadratic terms in the linearization process (e.g., Q(u−
uh, v) = O(|||u − uh|||2 |||v|||)), and this provides the motivation for the assumptions
(4.7)-(4.8). Also note that Q(w − uh, v) is a linear functional with respect to v.

Using (4.1)-(4.4), we obtain the relations

A(u, v)−A(ūh, v) = A(u− ūh, v) +Q(u− uh, v)−Q(ūh − uh, v) = 0(4.9)

for all v ∈ M̄h, and

A(u, v)−A(uh, v)−A(eh, v) = A(u− uh − eh, v) +Q(u− uh, v) = 0(4.10)

A(ūh, v)−A(uh, v)−A(eh, v) = A(ūh − uh − eh, v) +Q(ūh − uh, v) = 0(4.11)

for all v ∈ Wh.
We continue to make the main assumptions used in §§2-3, namely (3.2), (3.3),

(2.7), and (2.8). In particular, since now A(·, ·) depends on uh, we assume that the
constants µ and ν are uniform in some ball about the true solution u, large enough
to contain all approximate solutions of interest.

Theorem 4.1. Let M̄h = Mh ⊕Wh as above, and assume (3.2), (3.3), (2.7),
(2.8), and (4.7)-(4.8) hold. Then, for h sufficiently small,(

µ− δ
ν

)2

(1− γ2)(1− β)2 |||u− uh|||2 ≤ |||eh|||2 ≤
(
ν + δ

µ

)2

|||u− uh|||2.(4.12)
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Proof. First let w ∈ Wh. Using (4.7) and (4.10) we have

µ |||eh||| ≤ sup
|||w|||=1

A(eh, w)

= sup
|||w|||=1

A(u− uh, w) +Q(u− uh, w)

≤ (ν + δ) |||u− uh|||,

proving the second inequality in (4.12).

Now let v ∈ Mh, w ∈ Wh, with |||v + w||| = 1. Then
√

1− γ2 |||w||| ≤ 1. Using
(4.6), (4.8), and (4.11), we have

µ |||ūh − uh||| ≤ sup
|||v+w|||=1

A(ūh − uh, v + w)

= sup
|||v+w|||=1

A(ūh − uh, w)−Q(ūh − uh, v)

= sup
|||v+w|||=1

A(eh, w)−Q(ūh − uh, v + w)

≤ ν√
1− γ2

|||eh|||+ δ |||ūh − uh|||.

Now, provided h is sufficiently small, this, in conjunction with (3.12), establishes the
first inequality in (4.12).

5. Examples. In this section, we present a few examples that illustrate the use
of the error estimators developed in §§2-4.

5.1. Example 1. As our first example, we consider the solution of the Poisson
equation

−∆u = f(5.1)

in x ∈ Ω ⊂ R2, with boundary conditions

u = 0(5.2)

for x ∈ ∂Ω. For simplicity, we will assume that Ω is a polygonal region. The weak
form of (5.1)-(5.2) is: find u ∈ H1

0(Ω) such that

a(u, v) = f(v)(5.3)

for all v ∈ H1
0(Ω), where

a(u, v) =

∫
Ω

∇u · ∇v dx,

f(v) =

∫
Ω

fv dx,

and H1
0(Ω) is the usual subspace of the Sobolev space H1(Ω) whose elements satisfy

the homogeneous boundary conditions. The energy norm ||| · ||| is given by (2.2).
Let Th denote a shape regular, but not necessarily quasi uniform, triangulation of

Ω, characterized by a small parameter h. The finite element spaceMh ⊂ H1
0(Ω) is the
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space of continuous piecewise linear polynomials associated with Th. It is characterized
in terms of the standard nodal (Lagrange) basis. The space M̄h ⊂ H1

0(Ω) will be
the space of continuous piecewise quadratic polynomials associated with Th. The
hierarchical basis for M̄h will be composed of the piecewise linear nodal basis functions
associated with the vertices of Th, and the piecewise quadratic nodal basis functions
associated with the edge midpoints of Th (the so-called bump functions). With this
basis, the subspace Wh is just the span of the bump functions, that is, continuous
piecewise quadratic polynomials which are zero at the vertices of Th. This is a standard
hierarchical decomposition, and it is well known [16] [8] that for all v ∈ Mh and all
w ∈ Wh,

|a(v, w)| ≤ γ|||v||| |||w|||,

where γ < 1 depends only on the shape regularity of the triangles in Th.
Standard a priori estimates show that the finite element solution uh ∈Mh satisfies

(2.4) and

|||u− uh||| ≤ Ch ||u||H2(Ω),(5.4)

provided u ∈ H2(Ω). The finite element solution ūh ∈ M̄h satisfies (2.6) and

|||u− ūh||| ≤ C̄h2 ||u||H3(Ω),(5.5)

provided u ∈ H3(Ω). Thus, we should expect (but not require) that β = O(h) in
(2.7).

Since (2.7) and (2.8) are satisfied, Theorem 2.1 will be satisfied by the approximate
error eh ∈ Wh given in (2.9).

It is well known [8] that the stiffness matrix corresponding to (2.9), when assem-
bled using the hierarchical basis, is uniformly comparable to its diagonal in the sense
of (2.23), where c0 and c1 depend only on the shape regularity of the triangles in Th.
Therefore, we can apply Theorem 2.2 in the case where b(·, ·) in (2.22) corresponds
to the diagonal of the stiffness matrix and obtain the bound (2.25) for the resulting
error estimate ẽh ∈ Wh.

5.2. Example 2. Our second example is the convection-diffusion equation

−∆u+ ω · ∇u = f(5.6)

for x ∈ Ω, with boundary condition given by (5.2). The region Ω, the bilinear form
a(·, ·), the energy norm ||| · |||, and the finite element spaces Mh, M̄h, and Wh are all
as in the first example. We assume that the convection velocity ω is constant and
small enough that the standard Galerkin approximation is appropriate (see [11] for
the case of Petrov-Galerkin approximations). The bilinear form A(·, ·) is given by

A(u, v) =

∫
Ω

∇u · ∇v + ω · ∇uv dx(5.7)

and

f(v) =

∫
Ω

fv dx

as in Example 1.
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It is easy to check that the inf-sup condition (3.3) holds with µ = 1 and the
continuity condition (3.2) holds with ν = 1 + c|ω|. A priori estimates based on the
arguments of Schatz [19] show (5.4) and (5.5) hold for the finite element solutions
uh ∈ Mh and ūh ∈ M̄h, respectively. Again, we can suppose that β = O(h) as
h→ 0. The constant γ is the same as in Example 1. Thus, we can apply Theorem 3.1
and obtain the estimate (3.13) for the approximate error eh ∈ Wh given by (3.6). We
can approximate the stiffness matrix for the bump functions by its diagonal as in the
first example. The constants µ̃ and ν̃ in (3.15) and (3.16), respectively, will depend
on |ω| as well as the shape regularity of the elements.

5.3. Example 3. For our next example, we consider the solution of the mildly
nonlinear equation

−∆u+ f(u) = 0(5.8)

in x ∈ Ω ⊂ R2, with boundary conditions given by (5.2). We assume that the
nonlinear function f(u) is smooth, satisfying the uniform bounds

0 ≤ ∂f

∂u
≤M(5.9)

and ∣∣∣∣∂f(w)

∂u
− ∂f(v)

∂u

∣∣∣∣ ≤ L|w − v|(5.10)

The region Ω, the bilinear form a(·, ·), the energy norm ||| · |||, and the finite element
spaces Mh, M̄h, and Wh are all as in the first example. The weak formulation of
(5.8) is given by: find u ∈ H1

0(Ω) such that

A(u, v) =

∫
Ω

∇u · ∇v + f(u)v dx = 0(5.11)

for all v ∈ H1
0(Ω). The bilinear form A(·, ·) is given by

A(w, v) =

∫
Ω

∇w · ∇v +
∂f(uh)

∂u
wv dx.(5.12)

A(·, ·) satisfies the inf-sup condition (3.3) with µ = 1 and the continuity condition
(3.2) with ν ≤ 1 + cM .

The form Q(w − uh, v) is defined by

Q(w − uh, v) = A(w, v)−A(uh, v)−A(w − uh, v)

=

∫
Ω

{
f(w)− f(uh)− ∂f(uh)

∂u
(w − uh)

}
v dx(5.13)

=

∫
Ω

{
f(w)− f(uh)

w − uh
− ∂f(uh)

∂u

}
(w − uh)v dx

and satisfies (4.7)-(4.8) with δ = O(||u−uh||L∞(Ω)) as h→ 0. Thus the error estimate
eh given by (4.4) will satisfy the bounds (4.12) given in Theorem 4.1.
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5.4. Example 4. As our last example, we consider a simple elliptic system, the
Stokes equations

−∆u +∇p = f(5.14)

∇ · u = 0

in x ∈ Ω ⊂ R2, with homogeneous boundary conditions given by (5.2). Now u =
(u1, u2)t is a vector velocity field, and p is the pressure. The pressure is determined
only up to an additive constant.

We will compute a finite element approximation using the mini-element discretiza-
tion of Arnold, Brezzi, and Fortin [1]. This method uses the bilinear form

A({u, p}, {v, q}) =

∫
Ω

∇u · ∇v −∇ · v p−∇ · u q dx,(5.15)

where

∇u · ∇v =

2∑
i=1

∇ui · ∇vi,

and the linear functional

f(v, q) =

∫
Ω

f · v dx.

The energy inner product is

a({u, p}, {v, q}) =

∫
Ω

∇u · ∇v + pq dx,(5.16)

giving rise to the energy norm

|||u, p|||2 = ||∇u||2L2(Ω) + ||p||2L2(Ω).(5.17)

The triangulation Th will be as in the first three examples. The space Mh is the
usual mini-element space. The velocity components are approximated using contin-
uous piecewise linear polynomials satisfying the Dirichlet boundary conditions, plus
the cubic bubble functions associated with the barycenter of each element. The pres-
sure is approximated by a continuous piecewise linear polynomial. The pressure can
be made unique by requiring it to have average value zero. This requirement can be
easily imposed as part of the solution process and does not affect the computational
basis, which is just the span of the usual nodal basis functions. The space M̄h is the
second member of the family of mini-element spaces [1]. Each velocity component
is approximated using continuous piecewise quadratic polynomials plus the quartic
bubble functions. The pressure is continuous piecewise quadratic.

This pair of mini-element spaces is nested. The cubic bubble for a given triangle
can be expressed as a simple linear combination of the three quartic bubbles for the
same triangle. Normally, equations for the bubble functions are statically condensed
from the system of linear equations to be solved, so that the unknowns that are
actually computed correspond to the degrees of freedom associated with the linear
and quadratic basis functions only. Thus, we define Mh =M†h ⊕ Bh, where M†h are
just the piecewise linear functions and Bh are the cubic bubbles functions. Similarly,
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we have M̄h = M̄†h ⊕ B̄h, where M̄†h are the piecewise quadratic polynomials and
B̄h are the quartic bubble functions. Note Bh ⊂ B̄h. Now we have the hierarchical
decomposition M̄h = M†h ⊕ W

†
h ⊕ B̄h, where W†h is the space of quadratic bump

functions as in the other examples. We will take Wh =W†h ⊕ B̄h.
We now verify the hypotheses for Theorem 3.1. The continuity condition (3.2)

is straightforward to check. The inf-sup condition (3.3) for the spaces H ≡ H1
0(Ω)×

H1
0(Ω) × L2

0(Ω), Mh and M̄h are standard results [1]. (Note that L2
0(Ω) is the

subspace of L2(Ω) whose elements have average value zero). Thus, the solutions
{uh, ph} and {ūh, p̄h} satisfy the saturation assumption with β = O(h), provided
{u, p} is sufficiently smooth.

To prove the inf-sup condition for Wh, one can use a variation of the argument
used in [1] (§2) for the mini-element spaces themselves; one lets the space M̄h play the
role analogous to H and Wh play the role analogous to M̄h. The argument simplifies
somewhat because both spaces are finite dimensional, and one can use strengthened
Cauchy inequalities to bound the norm of the interpolation operator.

A slightly tricky technical point in the analysis concerns the strengthened Cauchy
inequality (2.8). Because Bh ⊂ B̄h, we must use the hierarchical decomposition M̄h =

M†h ⊕Wh. Let {v, q} ∈ M†h, {w, r} ∈ Wh. Then the relevant strengthened Cauchy
inequality is

|a({v, q}, {w, r})| ≤ γ |||v, q||| |||w, r|||,

which is established in the usual fashion. One can check that the argument used in
the proof of Theorem 3.1 is affected in only a trivial way by this modification.

Now, since all the hypothesis are satisfied, we can apply a slightly modified ver-
sion of Theorem 3.1 to the hierarchical basis error estimate for the mini-element
discretization.

6. Comments and concluding remarks. As one can see from the foregoing
examples, hierarchical basis a posteriori error estimators can be applied to a wide
variety of partial differential equations. In situations where it might be inconvenient
or impossible to directly verify the hypotheses, the analysis provides some intuitive
insight justifying their use. Implementation of a posteriori estimates based on hier-
archical bases is usually simple, especially in codes that employ hierarchical bases for
other purposes, as in the p version of the finite element method. The following discus-
sion is given for the case of continuous piecewise linear approximation, although many
of the remarks apply, with appropriate modification, to higher order approximations
as well.

In the authors’ experience, the cost and accuracy of the hierarchical basis error
estimates is comparable to other common a posteriori error estimation schemes in use,
for example, those based on the solution of local Neumann [10],[7] or local Dirichlet
[4] [17] problems.

Local Neumann error estimates are associated with elements and are usually
discontinuous at element boundaries. For triangular meshes, these estimates involve
solving 3× 3 linear systems of equations for the error within each element. In terms
global error estimation, under certain conditions, the local Neumann error estimator
are asymptotically exact, see Durán and Rodŕıguez [14], and Durán, Muschietti and
Rodŕıguez [13]. In practice, we have often observed somewhat better H1 and L2 norm
effectivity ratios [4] when compared to the hierarchical bases error estimates, but the
differences are usually not great.
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Local Dirichlet error estimates are associated with nodes and involve the solution
of a small problem on the patch of elements sharing a given vertex in the mesh. Since
each triangle generally participates in several such problems, one must analyze the
effect of these overlapping subregions [4], [5] in defining a global estimate based on
these local computations. Quantitative comparison in terms of effectivity ratios is
again unknown, at least to the authors, although we expect the comparison to be
similar to that between hierarchical basis estimators and Neumann estimators.

In addition to providing global error estimates, we have used the hierarchical
basis estimates to interpolate solution values at newly created vertices in an adaptive
mesh refinement algorithm. Rather than solving the large system of equations after
every refinement step, interpolated solution values are used to determine subsequent
refinements. It is important to assign function values to newly created vertices by
a more sophisticated process than simple linear interpolation, since these values will
generally influence subsequent refinement steps. Several refinement steps are then
taken until the dimension of the finite element space has increased enough to justify
the expense of resolving the global problem. Since the hierarchical basis functions are
just the quadratic bump functions associated with the edge midpoint, the error when
added to the linear interpolant of the solution provides a good function value for the
vertex. To use the local Neumann and Dirchlet estimates in this way, some average
of these errors is needed to define the midpoint solution value.
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