
MESH SMOOTHING USING A POSTERIORI ERROR ESTIMATES

RANDOLPH E. BANK∗ AND R. KENT SMITH†

Abstract. We develop a simple mesh smoothing algorithm for adaptively improving finite
element triangulations. The algorithm makes use of a posteriori error estimates which are now widely
used in finite element calculations. In this paper, we derive the method, present some numerical
illustrations, and give a brief analysis of the issue of uniqueness.

Key words. moving finite elements, adaptive refinement, a posteriori error estimates.

AMS subject classifications. 65M50, 65N50

1. Introduction. In this paper, we consider an algorithm for optimizing the
placement of nodes for triangulations used in finite element calculations. The prob-
lem we address here is fairly simple: given a finite element mesh Th with a fixed
connectivity structure, and the finite element solution uh associated with this trian-
gulation, we seek an algorithms to adjust the positions of the vertices which will result
in minimum error. That is, we seek a new triangulation T̄h with the same topology
as Th, such that the error in the new solution ūh will be minimized.

The algorithms this paper draw upon ideas from three related fields- general mesh
generation, [11], [13], [23], [14], [24], [12], [15], [16] moving meshes [1], [2], [3], [18],
[20], [19], [17], [4], and adaptive local mesh refinement using a posteriori error esti-
mates [10], [21], [7], [9], [6], [5], [26], [25], [22]. Among the problems in the area of
general mesh generation is that of computing a triangulation from some description of
the boundary of the region, a set of coordinates (xi, yi) describing the region, or some
mixture of the two. Among the techniques studied there are smoothing techniques,
notably Laplacian smoothing [15],[11], in which vertex locations are sequentially up-
dated in a Gauss-Seidel like fashion. Our algorithms also follow this Gauss-Seidel
strategy, and are closest to the smoothing algorithm used by the mesh generator
TRIGEN in the PLTMG package, which optimizes a geometric quality function.
This algorithm is briefly described in Section 2, since the quality function plays an
important role in our subsequent development. Through our use of a posteriori error
estimates, the computed solution uh also plays an important part in our smoothing
algorithm. This aspect is similar to the work of D’Azevedo and Simpson [12], and
Dyn et al [14] who compute the optimal shape of elements for a given function.

In the area of moving finite element methods, there are many schemes for evolving
a triangulation in time, through the solution of systems of differential equations,
direct use of a posteriori error estimates, and various other optimization schemes.
Our algorithms might be applied in many of the same situations and make use of
many of the same things, e.g., a posteriori error estimates, but we use these estimates
in a somewhat non standard way. In particular, our methods don’t make direct use
of the details of the partial differential equation or the a posteriori error estimates.
This should make the method easy to implement in a broad range of applications.
Indeed, in Section 4 we first develop the method using interpolation errors, and defer
the introduction of a posteriori error estimates until Section 5.

∗Department of Mathematics, University of California at San Diego, La Jolla, CA 92093. The
work of this author was supported by the Office of Naval Research under contract N00014-89J-1440.
†AT&T Bell Laboratories, Murray Hill, New Jersey 07974

1

A posteriori error estimates are now widely used in adaptive methods for solving
partial differential equations, and there are now many good a posteriori error esti-
mators available. One of the nice features of our smoothing algorithm is that it is
not linked to a particular a posteriori error estimator. In the case of linear elements,
which is what we mainly consider here, we require that the error estimator yield a
(local) error indicator as a piecewise quadratic polynomial, which can be continuous
or discontinuous. Our basic strategy is to use whatever a posteriori error estimate is
available to locally estimate the second derivatives of the true solution u, and then
holding these second derivatives fixed, solve local minimization problems for the lo-
cations of the mesh points. If one were to generalize to piecewise polynomials of
degree p, one would require an a posterior error estimator which yields a continuous
or discontinuous piecewise polynomial of degree p+ 1.

We don’t believe that a mesh smoothing algorithm, such as the one developed
here, can be the sole basis of an effective adaptive method. The main shortcoming of
such methods is that they do not change the topology (connectivity) in the triangula-
tion, and the ability make such changes is often critical to the success of an adaptive
method. We do believe that our method can be successfully employed in conjunction
with methods which allow topology changes, such as adaptive local mesh refinement
(and unrefinement). In such schemes, one begins with a coarse triangulation, and
generates a sequence of nested, refined triangulations through a process of local mesh
refinement. There are several widely used schemes, some dividing an given element
into four similar elements by pairwise connecting the midpoints of the three edges,
and others which divide an element into two triangles by bisecting a single edge ac-
cording to some geometric criteria. Such schemes can easily create highly nonuniform
meshes adapted to the singularities of a given solution. However, their chief drawback
is that, being based on element refinement, exact locations of grid points depend on
the geometry of the father element (e.g., the midpoint of an edge), and inductively,
on the structure of the initial coarse triangulation. Often this presents no problem,
but in other cases (e.g. that of a steep front), it might be the case that moving the
grid points a little (to better align the mesh with the front) can reduce the error
substantially. It is in such situations that we think mesh smoothing algorithms of
the type developed here can make a difference. That is, one should rely on other
methods, such as refinement and unrefinement to create a mesh with a proper density
of mesh points and a reasonable topology, and then use the smoothing algorithm to
“fine tune” the mesh. The mesh points won’t generally move very far, and only a few
sweeps should be required, but the effect of these small changes could be dramatic.

Although we focus exclusively on two dimensional triangular meshes, we expect
that our basic approach to smoothing should apply to other situations, such as quadri-
lateral meshes in two dimensions or tetrahedral and other types of meshes in three
dimensions. However, it is also clear that many important details will vary with each
individual situation, and remain to be worked out.

The remainder of this paper is organized as follows. In Section 2, we describe a
smoothing algorithm based on the geometric quality of the elements. In Section 3, we
extend our smoothing algorithm to minimizing the error in piecewise linear interpola-
tion. In Section 4, we show how to replace interpolation errors with a posteriori error
estimates. In Section 5, we present some numerical illustrations of the smoothing
procedure, while in Section 6, we consider the mathematical issue of uniqueness of
the solutions of the local problems in the smoothing algorithm.

2

2. A Smoothing Algorithm Based on Element Geometry. In this section
we consider a method for placing nodes based on optimizing a predefined quality
function. Consider the element t shown in Figure 1 with vertices νi = (xi, yi), 1 ≤
i ≤ 3 and area |t|. The vectors

`1 =

[
x3 − x2

y3 − y2

]
, `2 =

[
x1 − x3

y1 − y3

]
, `3 =

[
x2 − x1

y2 − y1

]
are tangent vectors with counterclockwise orientation.

%
%
%
%
%
%
%
%
%
%
%
%%

e
e
e
e
e
e
e
e
e
e
e
ee

ν1 ν2

ν3

t

`3

`2 `1

Fig. 1. Local labels and orientation of triangle t.

The shape regularity quality of t, denoted q(t) is given by

q(t) =
4
√

3|t|
|`1|2 + |`2|2 + |`3|2

.(1)

The function q(t) is normalized to equal one for an equilateral triangle and to approach
zero for triangles with small angles. In particular, q(t) is independent of the size of t.
Note that

2|t| = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1),(2)

provided the vertices are oriented counterclockwise. This is a very convenient formula
to use for computing |t|; should a triangle become reoriented during our procedure and
the vertices become ordered clockwise, the continued use of (2) will yield a negative
area, signaling the reorientation.

To understand the geometric meaning of q(t) in somewhat more detail, without
loss in generality, we assume for the moment that ν1 = (0, 0), ν2 = (1, 0), and ν3 =
(x, y) with y ≥ 0, and consider the dependence of the q(t) on the location of the vertex
ν3. Noting that 0 ≤ q(t) ≤ 1, we seek the set of points (x, y), for which q(t) = α.
From (1)

q(t) =
2
√

3y

1 + x2 + (1− x)2 + 2y2
= α.

This can be manipulated to the form(
x− 1

2

)2

+

(
y −
√

3

2α

)2

=
3

4

(
1

α2
− 1

)
= r2,(3)

3

which can be seen to be the equation of a circle.
For α = 1, one can see that the center is (1/2,

√
3/2) and the radius is r = 0;

this means that the equilateral triangle is the only triangle for which q(t) = 1. For√
3/2 ≤ α ≤ 1, we have 0 ≤ r ≤ 1/2; on this range, t cannot have any obtuse angles.

As α is further decreased, the radius r becomes larger, and the triangle geometries
with the quality α become more degenerate. Some examples are shown in Figure 2.

Fig. 2. Two triangle geometries with quality q(t) = 0.9 (left) and q(t) = 0.7 (right).

Let T be a fixed triangulation of the domain Ω. For purposes of mesh smoothing,
the vertices of the triangulation will be decomposed into the direct sum of three sets,
those with 0, 1, or 2 degrees of freedom with respect to vertex placement, which we will
call corners, boundary/interface, and interior vertices, respectively. Roughly speak-
ing, a corner is a vertex critical to defining the geometry of the region, the boundary
conditions, the interfaces, etc., whose movement would compromise the integrity of
the domain in some way. Such vertices should remain fixed. Boundary/interface
points are those points lying along boundaries and interfaces and are constrained to
move only along the boundary or interface. All other points are interior vertices, and
will have the ability to move in all directions. It should be noted that to some extent
the decision as to whether a given vertex should have 0, 1, or 2 degrees of freedom
with respect to placement is governed by user and the particular circumstances of the
application.

Let F be a family of triangulations of Ω with a fixed topology; that is, members
of F can differ from one another only by the positions of the vertices in the mesh,
but not by their connectivity structures. Additionally, the constraints for corner and
boundary/interface vertices should be applied to each member of the family F . Given
such a family of triangulations, one can seek the solution of the optimization problem:
find a triangulation T ∈ F such that

min
t∈T

q(t) = max
T ′∈F

min
t∈T ′

q(t).(4)

4

Our algorithm for computing a (generally nonunique) triangulation T is an it-
erative Gauss-Seidel like method, in which we sweep through the vertices, locally
optimizing the position of a single vertex holding all others fixed. Assume for the
moment that the local problems can be solved. Then the function

min
t
q(t)

can only be increased or unchanged by the solution of each local problem. As a
practical matter, this (outer) Gauss-Seidel iteration converges very quickly in its ini-
tial stages, and very good triangulations can be obtained by very few sweeps. This
makes the algorithm very attractive, provided that the local problems can be solved
efficiently.

We now consider the solution of these local problems. We shall describe the case
when a given vertex νi = (xi, yi) is an interior vertex; for boundary/interface vertices
we can apply essentially the same algorithms, but with the appropriate constraints.
It should be clear that moving the vertex νi can effect the quality q(t) of only those
triangles having νi as a vertex. Thus we define Ωi as the union of those elements
having νi as a vertex.

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%
%
%
%%

%
%
%
%
%
%%

e
e
e
e
e
ee

e
e
e
e
e
ee

(xi, yi)

Fig. 3. The region Ωi.

Suppose that initially we compute the qualities of the elements in Ωi, and that

α̂ = q(t̂) = min
t∈Ωi

q(t).

Suppose the vertices of t̂ are denoted ν̂a, ν̂b, νi in counterclockwise order. Note
that ν̂a and ν̂b will remain fixed as the position of νi is optimized. Let ν̂i = (x̂i, ŷi)
denote the point such that ν̂a, ν̂b, ν̂i are the vertices of an equilateral triangle given
in counterclockwise order. As we move along the straight line segment connecting
(xi, yi) and (x̂i, ŷi) the quality of t̂ will increase monotonically from α̂ to 1. On the
other hand, the qualities of some other triangles in Ωi are likely to decrease along this
line; in extreme cases, (x̂i, ŷi) may lie outside Ωi and then some elements will have
their qualities reduced to zero and then be reoriented; this is easily accounted for in
practice if (2) is used to compute the area; if a triangle becomes reoriented the quality
will become negative. In any event, one can employ a simple line search in which we
find 0 ≤ θ ≤ 1 such that at the point (θxi + (1− θ)x̂i, θyi + (1− θ)ŷi), t̂ and at least
one other element in Ωi have equal qualities, and the remaining elements have better
qualities. By replacing (xi, yi) with (θxi + (1 − θ)x̂i, θyi + (1 − θ)ŷi), the minimum

5

quality of elements contained in Ωi will generally increase (or at worst remain the
same if θ = 1). Sweeping through the mesh in this fashion will generally improve the
overall quality of the triangulation.

A more sophisticated version of this procedure, which usually avoids the necessity
of a line search, is to find two distinct elements, t̂ and t̄ satisfying

q(t̂) = min
t∈Ωi

q(t)

q(t̄) = min
t∈Ωi

t 6=t̂

q(t).

These are the two lowest quality triangles in Ωi. There is a unique point (x′i, y
′
i) where

the triangles corresponding to t̂ and t̄ with (xi, yi) replaced by (x′i, y
′
i) will have equal

qualities α′ ≥ α̂. This point is characterized as a point of tangency of the circles
for the level curve α′ for the two triangles, and can be computed directly from the
geometry of the vertices which remain fixed in t̂ and t̄. If qualities of all other triangles
are greater than α′, then this is the exact solution of the local optimization problem;
in practice this is almost always the case. When it is not the case, and the quality
of some other triangle becomes less than α′, one can then use a line search along the
line segment (θxi + (1− θ)x′i, θyi + (1− θ)y′i) as in the previous discussion.

3. A Smoothing Algorithm based on Local Interpolation Errors. In this
section we consider a method for placing nodes based on approximately minimizing

min
T ∈F

∫
Ω

|∇(u− uL)|2 dx.(5)

Here F is the family of triangulations of fixed connectivity described in Section 2,
u ∈ H1(Ω) is a given function, and uL is the continuous piecewise linear interpolant
of u defined relative to the triangulation T ∈ F . Since (5) is in general too expensive
to solve, we shall instead consider algorithms for approximately minimizing

min
T ∈F

∫
Ω

|∇(uQ − uL)|2 dx,(6)

where uQ is the continuous piecewise quadratic interpolant of u. As will be seen
below, we are effectively assuming that for each t ∈ T , the second derivatives of u are
constant.

We now consider the function ∇(uQ − uL) in some detail. Our discussion will
adopt and extend the notation of Figure 1. Let ci, 1 ≤ i ≤ 3 denote the piecewise
linear nodal basis functions (barycentric coordinates) on a given element t. Recall the
defining relation

ci(xj , yj) = δij .

The piecewise linear interpolant uL on element t can be expressed as

uL = u(x1, y1)c1(x, y) + u(x2, y2)c2(x, y) + u(x3, y3)c3(x, y)

Let Mt denote the 2× 2 matrix of second derivatives on t given by

Mt = −1

2

[
uxx uxy
uxy uyy

]
.(7)

6

We assume that the matrix Mt is constant on t. We define the quadratic “bump
functions” bi for element t by

b1(x, y) = c2(x, y) c3(x, y),

b2(x, y) = c3(x, y) c1(x, y),

b3(x, y) = c1(x, y) c2(x, y).

(This differs from the standard definition by a factor of 4.) Then the piecewise
quadratic interpolant uQ can be expressed as

uQ = uL + `t1Mt`1 b1(x, y) + `t2Mt`2 b2(x, y) + `t3Mt`3 b3(x, y).

If the second derivatives of u are not constant in t, we must replace `t1M`1 with the
undivided difference quotient

4u(x̂1, ŷ1)− 2u(x2, y2)− 2u(x3, y3),

where x̂1 = (x2 +x3)/2 and ŷ1 = (y2 +y3)/2. Similar replacements are used for `t2M`2
and `t3M`3.

Using these definitions, we can see that∫
t

|∇(uQ − uL)|2 dx = vtBv,

where

v =

 `t1Mt`1
`t2Mt`2
`t3Mt`3

 ,
and

Bij =

∫
t

∇bi · ∇bj dx.

By direct calculation, we find

B =
1

48|t|

 `t1`1 + `t2`2 + `t3`3 2`t1`2 2`t1`3
2`t2`1 `t1`1 + `t2`2 + `t3`3 2`t2`3
2`t3`1 2`t3`2 `t1`1 + `t2`2 + `t3`3

 .
It is well known that the matrix B is positive definite and comparable to its diagonal.
Note that the diagonal entries of B are constant and can be expressed as 1/(4

√
3q(t)),

where q(t) is the quality measure defined in (1). If we use this diagonal approximation
for B, then we have∫

t

|∇(uQ − uL)|2 dx ≈ (`t1Mt`1)2 + (`t2Mt`2)2 + (`t3Mt`3)2

4
√

3q(t)
.(8)

For convenience, we define the function s(t) by

s(t) = (`t1Mt`1)2 + (`t2Mt`2)2 + (`t3Mt`3)2.(9)

Notice that on the right hand side of (8), the quality function q(t) serves as a natural
“barrier function” which will help prevent the triangle t from becoming degenerate as

7

the vertices of the triangulation are moved. On the other hand, the numerator s(t)
contains information about the size and directionality of the second derivatives of u.

Our smoothing algorithm for solving (6) is analogous to that given in Section 2 in
that we will sweep through the vertices, locally optimizing the location of one vertex
while holding the others fixed. As before, we partition the vertices into corners,
which aren’t allowed to move, boundary/interface vertices which can move along
one dimensional manifolds, and interior vertices, which can move in all directions.
As in Section 2, we focus on the procedure for updating interior vertices, as the
boundary/interface case is just a constrained version of that algorithm.

The local problem for vertex νi = (xi, yi) has the form

min
xi,yi

∑
t∈Ωi

s(t)

q(t)
.(10)

Since we assume that Mt is constant, s(t) is a quartic polynomial in xi and yi, while
q(t) is a rational function of quadratic polynomials. Thus (10) can be minimized in a
straightforward fashion using a damped Newton’s method. Although there are certain
cases when the barrier function is canceled by terms in s(t) (see Section 6), it is clear
from the form of (10) that generally the functions q(t) form a barrier which makes
certain that the minimizing point (x∗i , y

∗
i) remains within Ωi. If Ωi is not convex, the

barrier functions constrain the point (x∗i , y
∗
i) to lie in the subregion of Ωi which is

visible from all points on the boundary of Ωi.
There is a potential for nonuniqueness of the solution; this could occur for ex-

ample, if u is linear in Ωi and Mt = 0. Unfortunately, this is not the only sort of
pathology that can arise; we will explore this aspect of the problem in more detail in
Section 6. For now, we note that one possible remedy for degeneracy would be to add
a regularizing term like

min
xi,yi

∑
t∈Ωi

s(t) + ρs0(t)

q(t)
,(11)

where

s0 = {(`t1`1)2 + (`t2`2)2 + (`t3`3)2},

and ρ is a nonnegative penalty parameter. In practice, we have found it more expe-
dient to rely on the damping/line search to keep (xi, yi) well within Ωi, and in the
rare event of exact singularity of the Hessian matrix, to simply skip that point for
the given sweep. Following the Newton sweeps, we can make 1− 2 sweeps of the type
described in Section 2 to improve the geometry of the mesh if needed.

Before leaving this section, we note that global smoothing strategies can also be
developed along these lines. For a given triangulation, a global set of coupled equations
for each vertex is constructed from (6) and (8). The domain boundaries are described
by a set of constraints that restrict the motion to one dimensional manifolds. These
constraints could also provide a means to describe moving boundaries. The resulting
system of coupled nonlinear equations could be solved using a damped Newton’s
method. A line search would insure that the integrity of the original triangulation is
preserved. This could be advantageous when efficient sparse matrix solution methods
are available. For example, the same sparse matrix data structures and solution
methods can be used for mesh optimization that are used in finite element solution
methods. However, the question of uniqueness is far more complex for global methods
than for the local problems we have been considering.

8

4. A Smoothing Algorithm based on A Posteriori Error Estimates. In
this section we consider a method for placing nodes based on approximately minimiz-
ing

min
T ∈F

∫
Ω

|∇(u− uh)|2 dx.(12)

Here F is the family of triangulations of fixed connectivity described in Section 2,
u ∈ H1(Ω) is the solution a partial differential equation, and uh is the continuous
piecewise linear finite element approximation of u relative to the triangulation T ∈ F .
The algorithm we will develop will be quite close to that of Section 3, except that
u− uh will be approximated by an a posteriori error estimate.

Since our goal here is not to develop new a posteriori error estimates, but rather
to explain how they can be applied in this context, for expositional convenience we
will consider only the standard self adjoint, positive definite, elliptic equation

−∇(a∇u) + bu = f for x ∈ Ω,(13)

u = 0 for x ∈ ∂Ω,

with a > 0, b ≥ 0, and f smooth functions. We note that a posterior error estimates
have been developed for much broader classes of linear and nonlinear equations.

The usual weak formulation (13) is: find u ∈ H1
0(Ω) such that

a(u, v) = (f, v)

for all v ∈ H1
0(Ω), where

a(u, v) =

∫
Ω

a∇u · ∇v + buv dx,

(f, v) =

∫
Ω

fv dx.

Let Sh ⊂ H1
0(Ω) be the usual space of continuous piecewise linear polynomials

associated with the triangulation T ∈ F . Then the finite element approximation is:
find uh ∈ Sh such that

a(uh, v) = (f, v)

for all v ∈ Sh.
Our a posteriori error estimate requires the solution of a local Neumann problem

in each element t ∈ T . We will not give a derivation or an analysis of this estimate,
as it is rather lengthy and not especially relevant to our current discussion. The
interested reader is referred to [10] [7] for details. In any event, let Bt be the set
of quadratic polynomials on t which are zero at the vertices of t. This is a three
dimensional space spanned by the quadratic bump functions bi(x, y), 1 ≤ i ≤ 3
defined in Section 3.

Suppose that t ∩ ∂Ω = ∅. Then the local a posteriori error estimate is computed
for element t by solving the problem: find et ∈ Bt such that

a(et, v)t = (f, v)t − a(uh, v)t + 〈
[
∂uh
∂n

]
A

, v〉∂t(14)

9

for all v ∈ Bt. Here

a(et, v)t =

∫
t

a∇et · ∇v + betv dx,

(f, v)t =

∫
t

fv dx,

〈
[
∂uh
∂n

]
A

, v〉∂t =

∫
∂t

[
∂uh
∂n

]
A

v ds,

and [∂uh/∂n]A is the average normal derivative of uh along the boundary of element
t.

Using integration by parts, one can also write (14) as: find et ∈ Bt such that

a(et, v)t = (r, v)t +
1

2
〈
[
∂uh
∂n

]
J

, v〉∂t

for all v ∈ Bt, where r is the residual r = f +∇(a∇uh) − buh, and [∂uh/∂n]J is the
jump in normal derivative in uh along ∂t. In either formulation, (14) represents a
3×3, symmetric, positive definite set of linear equations to be solved in each element.
For elements with edges on the boundary ∂Ω, the condition et = 0 on ∂Ω should be
imposed, with the corresponding modification of the space Bt and the boundary inner
product in (14).

Globally, the function eh is given by

eh =
∑
t∈T

et,

(where it is understood that et(x, y) = 0 for (x, y) 6∈ t), so eh is a discontinuous
piecewise quadratic polynomial which is zero at the vertices of the triangulation T .
We note that, unlike the case of interpolation errors which express the true local
error, most a posteriori error estimates yield only local error indicators. That is,
while ‖ u− uh ‖H1(Ω)≈‖ eh ‖H1(Ω) globally, this is not known to be true elementwise.

To see how such an error indicator can be used for mesh smoothing, we consider
a particular element t ∈ T and adopt the notation used in Figure 1 and Section 3.
On element t, our a posteriori error indicator has the form

et = e1b1(x, y) + e2b2(x, y) + e3b3(x, y),(15)

where the ei were found by solving the 3 × 3 linear system associated with (14). To
use the smoothing algorithm developed in Section 3, we would like to express this in
the form

et = `t1Mt`1 b1(x, y) + `t2Mt`2 b2(x, y) + `t3Mt`3 b3(x, y),(16)

where Mt is the 2 × 2 matrix of (approximate) second derivatives for the solution u
given by (7). Equating coefficients in (15)-(16), and using (7), we are led to the 3× 3
set of equations (x3 − x2)2 2(x3 − x2)(y3 − y2) (y3 − y2)2

(x1 − x3)2 2(x1 − x3)(y1 − y3) (y1 − y3)2

(x2 − x1)2 2(x2 − x1)(y2 − y1) (y2 − y1)2

 uxx
uxy
uyy

 = −2

 e1

e2

e3

(17)

10

for the matrix elements of Mt. This system can be solved provided that t is not
degenerate (q(t) 6= 0). Once computed, we will regard Mt as constant, and then
simply apply the smoothing procedure as in Section 3. We note that the critical point
of the a posteriori error estimate is that one obtains an expression like (15) for the
error indicator in a given element t. Many a posteriori error estimators lead to such
expressions, and the one described here also yields such expressions when applied to
nonlinear, indefinite, and nonself-adjoint problems.

5. Numerical Illustrations. In this section we present two numerical illustra-
tions of the smoothing algorithms described in Sections 3-4. Both examples were
developed using the finite element package PLTMG7.0 [8], which includes these algo-
rithms among its adaptive mesh generation options.

In our first example, we begin with a uniform 17 × 17 mesh on the unit square
Ω = (0, 1)× (0, 1), and adapt it to the function u =

√
x. This function has a singular

gradient at x = 0, and we expect the mesh to move in response to this singularity.
Our algorithm is exactly that of Section 3. After every four Gauss-Seidel itera-

tions, the quadratic interpolant uQ is computed for each element in the usual way,
using the values of u at the vertices and midpoints of each element. New values for the
second derivatives used to define Mt are computed by solving a 3 × 3 linear system
similar to (17), with second differences replacing the ei, and these values are then
used for the next four sweeps. Each time new second derivatives were computed, we
evaluated the functional

E2 =
∑
t∈T

s(t)

4
√

3q(t)
,(18)

where s(t) is defined in (9) and q(t) is defined in (1).
In Table 1, we summarize the convergence history for 40 iterations in terms of E ,

and in Figure 1 we show the initial mesh and the smoothed meshes after 4, 8, and 12
iterations.

iteration E
0 0.679468
4 0.569834
8 0.536575
12 0.523275
16 0.515238
20 0.511084
24 0.509720
28 0.510352
32 0.511416
36 0.512729
40 0.514082

Table 1
Convergence history for the first example.

As can be seen from the Table 1, the convergence of the the Gauss-Seidel sweeps
is initially very rapid, and then slows down. In Figure 4, we can see that the mesh
changes substantially during the first four sweeps, and much less in later iterations.
In this example, after 12 iterations, neither E or the mesh changes very much. We

11

Fig. 4. The triangulation after 0, 4, 8, 12 iterations.

can also see from Figure 4 that mesh movement with a fixed topology by itself is
not necessarily a good strategy for adapting the mesh. While the meshes are reason-
able given the constraints, it is clear that changing the topology of the mesh (e.g.,
unrefining the mesh near x = 1 and refining near x = 0) would be beneficial.

In our second example, we employ the smoothing algorithm in conjunction with
mesh refinement to illustrate this point. This is the arena where we believe smoothing
will be most effective. We consider the function u defined by

u(x, y) =

{
1 for r ≤ 1/3
e10(1/3−r) for r > 1/3

12

where r =
√
x2 + y2, and Ω is again the unit square. Beginning with a uniform

3× 3 mesh made up of eight isosceles right triangles, the mesh was adaptively refined
to a mesh with 644 vertices. Except for a small number of ”green” triangles on the
boundaries of the refined regions, all elements on the refined meshes are isosceles right
triangles with edges which are either horizontal, vertical, or have slope ±1. Our choice
of coarse mesh has led to a highly nonuniform mesh of well-shaped elements. The
topology and general distribution of the elements is good; the mesh is most refined
along the curve r = 1/3 as one would expect. The mesh, and a contour map of
the piecewise linear interpolant uL of the function u are shown in Figure 5. A more
detailed view of the mesh and contour map near x = y =

√
2/6 is shown in Figure 6.

iteration E
0 4.45347
4 4.09555
8 3.31294
12 3.14476
16 3.12519
20 3.12679
24 3.13368
28 3.13191
32 3.12501

Table 2
Convergence history for the second example.

The main shortcoming of the refinement procedure is that, being based on bi-
section, the elements are not aligned with the function u, but rather inherit their
geometries from the elements in the initial mesh. The contours of uL are a bit ragged,
because the elements are not aligned with the “front” along the curve r = 1/3.

In Table 2, we summarize the convergence history of the smoothing algorithm. As
with the first example, the most significant changes occur in the first few iterations.
In Figures 5 and 6, we illustrate the mesh and the contour map after 12 iterations.
Although not perfect, the elements are much better aligned with the function u near
r = 1/3, and as a result the contours are much smoother.

We remark that in the first example ux becomes infinite near x = 0, while in
the second, ∇u is discontinuous at r = 1/3. In the first example, the problem is not
very serious, since uxx and uxy are not needed along the line x = 0, and uyy = 0.
The problem is more serious in the second example, since assuming constant “second
derivatives” is not completely meaningful in elements containing a portion of the arc
r = 1/3. However, in both cases Mt is always well defined, because it is based on
second differences using the endpoints and midpoint of each triangle edge rather than
explicitly on second derivatives. It is interesting to note that discontinuities in ∇u
present no problem for continuous piecewise linear interpolation in the special case
where the elements are exactly aligned with the discontinuity.

6. Single Element Analysis. In practice, we expect that the local problems
(10) to have unique solutions, except in the degenerate case where u is linear and
Mt = 0. However, this seems difficult to prove in general. In a general patch Ωi,
there are too many parameters, the number of elements, the locations of the vertices,
and possibly different second derivatives Mt for each element, to make a simple direct
analysis. We had hoped to build a proof by restricting attention to a single element

13

Fig. 5. Left: the initial triangulation, and triangulation after 12 iterations. Right: a contour
map for uL for the initial triangulation, and for the triangulation after 12 iterations.

in a patch, so the number of parameters would be more manageable. For example,
if one could show that the Hessian matrix for the function s(t)/q(t) was positive
definite for each point in Ωi and for each triangle t ∈ Ωi, then uniqueness would follow
immediately. Unfortunately, the Hessian for a single element is not always positive
definite. Worse yet, in some situations, when q(t) → 0, s(t)/q(t) → 0, in effect
negating the impact of the “barrier function”. However, even in these unfavorable
cases, there is important cancellation when contributions for all elements in Ωi are
summed, so that the Hessian for Ωi can be uniformly positive definite even when the

14

Fig. 6. A detail from Figure 5.

contributions from some of the individual elements are not.

In this section, we analyze the case of a single element t ∈ Ωi in detail to illustrate
these points. Without loss of generality, we can assume Mt is such that its largest
eigenvalue is one and the other eigenvalue λ satisfies −1 ≤ λ ≤ 1. When λ > 0, the
level sets for `tMt` are ellipses, while for λ < 0, the level sets are hyperbolas. We
next apply a rotation such that Mt is diagonal, and make a scaling and translation
of t such that the vertices are ν1 = (0, 0) ν2 = (cos θ, sin θ) and ν3 = (x, y) with
counterclockwise orientation. By symmetry, we may assume 0 ≤ θ ≤ π/2.

15

For this reference element

s(t) = (cos2 θ + λ sin2 θ)2 + (x2 + λy2)2 + ((x− cos θ)2 + λ(y − sin θ)2)2,(19)

while

q(t) =
2
√

3(y cos θ − x sin θ)

1 + x2 + y2 + (x− cos θ)2 + (y − sin θ)2
.(20)

To have a catastrophic failure of the barrier function of the type mentioned above,
we must have cos2 θ+λ sin2 θ = 0 and the terms x2+λy2 and (x−cos θ)2+λ(y−sin θ)2

both proportional to y cos θ − x sin θ. Solutions can be found for −1 ≤ λ ≤ 0, with
cos θ =

√
−λ sin θ. We expect the worst case of this type to be λ = −1, θ = π/4.

To continue our development, it seems best to simplify the model problem again,
and we now focus only on this special choice of λ and θ. We let ν1 = (0, 0), ν2 = (1, 0),
and ν3 = (x, y), 0 ≤ y, with

Mt =

[
0 1
1 0

]
(21)

(Note the eigenvalues of Mt are ±1). This is just the previous problem in a frame of
reference rotated by π/4. For this reference element

s(t) = y2(x2 + (x− 1)2),(22)

while

q(t) =
2
√

3y

1 + x2 + (x− 1)2 + 2y2
.(23)

The 2× 2 Hessian matrix Ht for s(t)/q(t) is

Ht =
1√
3

[
2y(1 + 2x2 + 2(x− 1)2 + 2(2x− 1)2 + 2y2) (2x− 1)(1 + 2x2 + 2(x− 1)2 + 6y2)

(2x− 1)(1 + 2x2 + 2(x− 1)2 + 6y2) 6y(x2 + (x− 1)2)

]
.

It is easy to see that Ht can become indefinite when y → 0, so that Ht is not positive
definite for 0 ≤ y and all x.

On the other hand, even in this case it appears that∑
t∈Ωi

s(t)

q(t)

can have a positive definite Hessian, due to cancellations among the contributions
from the various elements. For example, we consider the case where Ωi is a square
containing four triangles, with each element similar to this most disadvantageous case.
We thus take Ω3 to be the unit square with νi 1 ≤ i ≤ 3 be defined as above, and
ν4 = (1, 1), ν5 = (0, 1) as shown in Figure 7. Mt will be defined as in (21) for all
t ∈ Ω3.

The triangle with vertices ν1, ν2, ν3 has s(t) given by (22) and q(t) by (23). The
triangle with vertices ν4, ν5, ν3 has

s(t) = (1− y)2(x2 + (x− 1)2),

q(t) =
2
√

3(1− y)

1 + x2 + (x− 1)2 + 2(1− y)2
.

16

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@

@
@

ν1

ν5

ν2

ν4

ν3 = (x, y)

Fig. 7. The region Ω3.

The triangle with vertices ν5, ν1, ν3 has

s(t) = x2(y2 + (y − 1)2),

q(t) =
2
√

3x

1 + y2 + (y − 1)2 + 2x2
.

Finally, the triangle with vertices ν2, ν4, ν3 has

s(t) = (1− x)2(y2 + (y − 1)2),

q(t) =
2
√

3(1− x)

1 + y2 + (y − 1)2 + 2(1− x)2
.

Note that although none of the single element Hessians is uniformly positive
definite, each becomes indefinite in a different part of Ω3. If we sum contributions
from the four elements, we obtain

2
√

3
∑
t

s(t)

q(t)
= (x2 + (1− x)2)2 + 6(x2 + (1− x)2)(y2 + (1− y)2) + (y2 + (1− y)2)2.

This function has a positive definite Hessian throughout the unit square and a unique
minimum at (1/2, 1/2).

Finally, we consider the use of penalty functions as in (11), and show that with
the penalty function we can guarantee positive definiteness for the element Hessians.
We first show that the Hessian for s0(t)/q(t) is positive definite for each element t. We
can interpret the penalty function s0(t) as a special case of s(t) when Mt = I. For this
calculation, it is advantageous to use a reference element with vertices ν1 = (−1/2, 0),
ν2 = (1/2, 0) and ν3 = (x, y), with counterclockwise orientation. For this reference
element

s0(t) = 1 + {(x− 1/2)2 + y2}2 + {(x+ 1/2)2 + y2}2

= 2x4 + 4x2y2 + 2y4 + 3x2 + y2 + 9/8,

while

q(t) =
2
√

3y

3/2 + 2x2 + 2y2
.

17

Thus

s0(t)

q(t)
=

64(x2 + y2)3 + 16(x2 + y2)(9x2 + 5y2) + 12(9x2 + 5y2) + 27

32
√

3y
.

The Hessian for the term 1/y is

H0 =
2

y3

[
0 0
0 1

]
.

The Hessian for the term (9x2 + 5y2)/y is

H1 =
18

y3

[
y2 −xy
−xy x2

]
.

The Hessian for the term (x2 + y2)(9x2 + 5y2)/y is

H2 =
2

y3

[
54x2y2 + 14y4 −18x3y + 14xy3

−18x3y + 14xy3 9x4 + 15y4

]
.

Finally, the Hessian for the term (x2 + y2)3/y is

H3 =
2

y3

[
15x4y2 + 18x2y4 + 3y6 −3x5y + 6x3y3 + 9xy5

−3x5y + 6x3y3 + 9xy5 x6 + 9x2y4 + 10y6

]
.

Each of the Hessians Hi is either positive definite or positive semidefinite for y > 0.
Thus the Hessian for s0(t)/q(t),

Ht =
64H3 + 16H2 + 12H1 + 27H0

32
√

3
,

is positive definite, and the Hessian for

s(t) + ρs0(t)

q(t)

can be made positive definite for sufficiently large ρ.
In conclusion, we see that although the analysis of the single element problems

is presently incomplete, the foundation seems solid. As for the outer Gauss-Seidel
iteration, the situation is more or less completely open. It is certainly clear that the
function E defined in (18) is nonincreasing as a function of the number of Gauss-Seidel
sweeps. If we use only a small fixed number of sweeps, this is sufficient to demonstrate
that the smoothing algorithm will improve (or at least not impair) the quality of the
mesh as measured by E . However, the true nature of the asymptotic behavior of the
outer iteration from the theoretical point of view is unknown; we suspect that the
best one can hope for is convergence to a (nonunique) local minimum of the function
E .

REFERENCES

[1] S. Adjerid and J. Flaherty, A moving finite element method with error estimation and
refinement for one-dimensional time dependent partial differential equations, SIAM J.
Numer. Anal., 23 (1986), pp. 778–796.

18

[2] , A local refinement finite element method for two-dimensional parabolic systems, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 792–805.

[3] , Second-order finite element approximations and a posteriori error estimation for two-
dimension parabolic systems, Numer. Math., 53 (1988), pp. 183–198.

[4] D. Arney and J. Flaherty, An adaptive mesh-moving and local refinement method for time-
dependent partial differential equations, ACM Trans. on Math. Software, 16 (1990), pp. 48–
71.

[5] I. Babuška, J. Chandra, and J. Flaherty, Adaptive Computational Methods for Partial
Differential Equations, SIAM, Philadelphia, 1983.

[6] I. Babuška, O. C. Zienkiewicz, J. R. Gago, and E. R. A. e Oliveira, Accuracy estimates
and Adaptive refinements in Finite Element Computations, John Wiley, London, 1986.

[7] R. E. Bank, Analysis of a local a posteriori error estimator for elliptic equations, in Accu-
racy Estimates and Adaptivity in Finite Element Computations, (eds. I. Babuška, O. C.
Zienkiewicz, and E. Arantes e. Oliveira), J. Wiley and Sons, New York, 1986, pp. 119–128.

[8] , PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users’
Guide 7.0, Frontiers in Applied Mathematics, Vol. 15, SIAM, Philadelphia, 1994.

[9] R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM
J. Numerical Analysis, 30 (1993), pp. 921–935.

[10] R. E. Bank and A. Weiser, Some a posteriori error estimates for elliptic partial differential
equations, Mathematics of Computation, 44 (1985), pp. 283–301.

[11] M. Bern and D. Eppstein, Mesh generation and optimal triangulation, tech. report, Xerox
Palo Alto Research Center, Palo Alto California, 1991.

[12] E. F. D’Azevedo and R. B. Simpson, Optimal triangular meshes for minimizing the gradient
error, tech. report, Department of Computer Science, University of Waterloo, Ontario,
Canada, 1991.

[13] A. R. Diaz, N. Kikuchi, and J. E. Taylor, A method of grid optimization for finite element
methods, Comp. Meth. Appl. Mech. Eng., 41 (1983), pp. 29–45.

[14] N. Dyn, D. Levin, and S. Rippa, Data dependent triangulations for piecewise linear interpo-
lation, IMA J. Numer. Anal., 10 (1990), pp. 137–154.

[15] D. A. Field, Laplacian smoothing of Delaunay triangulations, Comm. in Applied Numer.
Anal., 4 (1988), pp. 709–712.

[16] W. H. Frey and D. A. Field, Mesh relaxation: A new technique for improving triangulations,
Int. J. Numer. Meth. Eng., 31 (1991), pp. 1121–1133.

[17] J. M. Hyman, Moving mesh methods for partial differential equations, in Mathematics Applied
to Science, Academic Press, Boston, 1986.

[18] K. Miller, Moving finite elements. II, SIAM J. Numer. Anal., 18 (1981), pp. 1033–1057.
[19] K. Miller, Alternate modes to control the nodes im the moving finite element method, in

Adaptive Computational Methods for Partial Differential Equations, SIAM, Philadelphia,
PA, 1983.

[20] K. Miller and R. N. Miller, Moving finite elements. I, SIAM J. Numer. Anal., 18 (1981),
pp. 1019–1032.

[21] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM
Trans. Math. Soft., 15 (1989), pp. 326–347.

[22] M. Schweingruber and E. Rank, Adaptive mesh generation for triangular or quadrilateral el-
ements, in Proceedings of the First European Conference on Numerical Methods, Brussels,
Belgium, 1992.

[23] M. S. Shephard, Approaches to the automatic generation of finite element meshes, Appl.
Mech. Rev., 41 (1988), pp. 169–185.

[24] R. B. Simpson, A survey of two dimensional finite element mesh generation, in Proceeding of
the Ninth Manitoba Conference on Numerical Math. and Comput., 1979, pp. 49–124.

[25] T. Strouboulis and J. T. Oden, A posteriori error estimation of finite element approxima-
tions in fluid mechanics, Comp. Meth. Appl. Mech. Eng., 78 (1990), pp. 201–242.

[26] R. Verfürth, A review of a posteriori estimation and adaptive mesh refinement techniques,
tech. report, Institut für Angewandte Mathematik der Universität Zürich, 1993.

19

