
AN ALGORITHM FOR COARSENING UNSTRUCTURED MESHES

RANDOLPH E. BANK∗ AND JINCHAO XU†

Abstract. We develop and analyze a procedure for creating a hierarchical basis of continuous
piecewise linear polynomials on an arbitrary, unstructured, nonuniform triangular mesh. Using these
hierarchical basis functions, we are able to define and analyze corresponding iterative methods for
solving the linear systems arising from finite element discretizations of elliptic partial differential
equations. We show that such iterative methods perform as well as those developed for the usual
case of structured, locally refined meshes. In particular, we show that the generalized condition
numbers for such iterative methods are of order J2, where J is the number of hierarchical basis
levels.

Key words. Finite element, hierarchical basis, multigrid, unstructured mesh.

AMS subject classifications. 65F10, 65N20

1. Introduction. Iterative methods using the hierarchical basis decomposition
have proved to be among the most robust for solving broad classes of elliptic partial
differential equations, especially the large systems arising in conjunction with adaptive
local mesh refinement techniques [5][2]; they have been shown to be strongly connected
to space decomposition methods and to classical multigrid methods [27][28][4][17].
Classical hierarchical basis and multigrid methods are defined in terms of an under-
lying refinement structure of a sequence of nested meshes. In many cases this is no
disadvantage, but it limits the applicability of the methods to truly unstructured
meshes, which may be highly nonuniform but not derived from some grid refinement
process. In this work, we develop and analyze an algorithm for generating a hierar-
chical basis for the continuous piecewise linear finite element space corresponding to
an arbitrary, nonuniform, unstructured triangulation of a region Ω. This allows us to
extend the hierarchical basis and other related iterative methods in a natural way to
such meshes. Some work on multigrid methods on non-nested meshes is reported in
Bramble, Pasciak and Xu [9], Xu [27], Zhang [31], Chan and Smith [11], Mavriplis
[21], Kornhuber [20], Hoppe and Kornhuber [19], and Bank and Xu [6] [7].

The practical algorithm for unrefining an arbitrary mesh is developed in Sections
2 and 3. Our basic idea is to force an arbitrary unstructured mesh into the mold of
a possibly nonuniform, locally refined mesh. In doing this, we impose some logical
structure on the mesh, and this logical structure will admit the creation of a hierarchi-
cal basis. The logical structure itself is recovered from the fine mesh by a coarsening
algorithm.

In Section 2, we develop a general refinement paradigm allowing the refinement of
a given element into 2−4 child elements in a number of different patterns. The critical
point of this refinement process is that new vertices created during the refinement of an
element need not lie on the boundary of that element, but can be moved some distance
from the boundary, either into the strict interior of the element, or into the interior
of a neighboring element. This allows the sequence of refined meshes to become
physically nonnested, but still retain an underlying logical refinement structure. Using
this paradigm, in Section 3 we develop a practical algorithm for creating a logical

∗Department of Mathematics, University of California at San Diego, La Jolla, CA 92093. The
work of this author was supported by the Office of Naval Research under contract N00014-89J-1440.
†Department of Mathematics, Penn State University, University Park, PA 16802. The work of

this author was supported by National Science Foundation.

1

refinement structure given only the final fine mesh. This is done by a process of
coarsening, in which one vertex is removed at each step, and the mesh updated. We
develop several heuristic rules to determine the ordering of vertices for elimination,
and for updating the mesh during an elimination step.

The coarsening algorithm occasionally needs to be restarted, when it arrives at
a mesh in which no further vertices can be eliminated within the constraints of the
algorithm. The restart procedure is quite simple, and consists of triangulating cer-
tain quadrilateral elements which arise during intermediate steps of the elimination
process, creating a mesh in which there are only triangular elements. The restart
procedure implicitly corresponds to incorporating an edge swapping algorithm as part
of the refinement procedure. Such procedures are quite common in adaptive refine-
ment and mesh generation algorithms. In practical terms, this has little effect on our
procedure. The fillin generated by the elimination process is modestly increased, and
the graphs of the filled in matrices no longer coincide exactly with the triangular finite
element meshes. There is no effect on the complexity of the iterative methods based
on the hierarchical basis decomposition, and so far as we have observed, no significant
effect on the observed rates of convergence of these methods. Unfortunately, in terms
of our theory, we can allow edge swapping only on a fixed number of levels without
severely weakening our estimates. We view this more as a shortcoming of our current
theory than as a flaw in the basic approach.

In Section 4, we turn to the formal construction of the hierarchical basis functions,
and the mathematical analysis of some of their important properties. The basis
functions are developed using simple interpolation operators arising naturally from
the refinement paradigm developed in Section 2. On an intuitive level, the success of
multigrid and other hierarchical basis iterations derives from the fact that the supports
of the hierarchical basis functions grow as one proceeds to coarser grid levels. This
allows effective damping of smoother components of the error on the coarser levels. In
the case of nested refinement, the hierarchical basis functions are in fact nodal basis
functions for the coarser meshes. As one might expect, this greatly simplifies the
mathematical analysis. In the current case, the hierarchical basis functions exhibit a
similar growth in support. They have the appearance of perturbed (or “lumpy”) nodal
basis functions from the coarser meshes (see Figure 9), but mathematically remain
fairly complicated linear combinations of fine grid nodal basis functions. Thus, while
we should expect iterative methods based on such functions to behave similarly to
those for nested meshes, the mathematical analysis is more complicated.

In Section 5 we present some iterative methods for solving elliptic partial dif-
ferential equations using our hierarchical basis decompositions. Our main result is
that the generalized condition number for these schemes grows as J2, where J is the
number of hierarchical basis levels. This is essentially the same result as for the clas-
sical hierarchical basis schemes. [1] [4] [28] [29] [30] [23] [24] [8]. We can also define
regular multigrid and BPX like methods based on the hierarchical basis decomposi-
tions. These methods are based on the observation of Griebel [15] [14] and Griebel
and Oswald [16], who show that such methods can be interpreted as standard block
iterations applied to a larger, singular system of equations.

Finally, in Section 6, we give some numerical illustrations and provide some details
of the implementation. Our methods have essentially the same implementation as
their counterparts for the case of nested meshes. This is because, once the refinement
structure, in particular the vertex parents function, is known, and the interpolation
coefficients have been determined, the remainder of the implementation is completely

2

algebraic in nature [6].

2. A Paradigm for Logically Structured Grid Refinement. In this section
we will develop a general model for the logically structured refinement of a triangular
mesh. This model will serve as the basis for the coarsening algorithm for unstructured
meshes to be developed in the next section.

Let us assume that we are given a coarse triangulation T1. We will let X1 and
E1 denote the sets of vertices and element edges in T1. The edges and vertices of T1

are all given the unique level number of 1. Triangles can also be assigned levels, but
these are not necessary for this model.

We assume that a sequence of meshes Tk, with vertex sets Xk and edge sets Ek
are generated inductively for k > 1 as follows:

Algorithm Refine
1. A certain subset of edges Fk−1 ⊆ Ek−1 is chosen for refinement. Without loss

of generality, we require that all edges in Fk−1 be of level k − 1.
2. The initial form of the new triangulation triangulation T ′k is created by bi-

secting each edge in the set Fk−1 and then creating new elements as required.
The form of the descendent triangles for a given triangle t ∈ Tk−1 depends
on the number of edges of t that were refined (see Figure 1).

3. The vertex set X ′k is composed as the union of Xk−1 and the set X̃ ′k consisting
of the midpoints of the edges in Fk−1. The newly created vertices (those in
X̃ ′k) are assigned level number k.

4. The edge set E ′k consists of the union of three sets: those edges in Ek−1 which
are not in Fk−1, the descendent edges arising from the refinement of the edges
in Fk−1, and finally the new edges added in creating the descendent triangles
in T ′k . The edges in the two latter sets, which we denote by Ẽ ′k, are assigned
level k.

5. The final triangulation Tk is created by allowing each vertex in the set X̃ ′k to
move a small distance from the midpoint of the edge which it bisects. This
movement is controlled by the parameters θ̄ and ε̄ as described below. The
connectivity of the mesh remains the same as in T ′k . This results in final

vertex set Xk = Xk−1 ∪ X̃k, and edge set Ek = {Ek−1 \ Fk−1} ∪ Ẽk, where X̃k

(Ẽk) is the set of perturbed vertices (edges) corresponding to X̃ ′k (Ẽ ′k).

We note that Steps 1− 4 above (with the identifications T ′k = Tk, X̃ ′k = X̃k, and

Ẽ ′k = Ẽk) describe a refinement procedure which results in a sequence of physically and
logically nested meshes. It is only in Step 5 that the triangulations become physically
nonnested. However, the triangulations remain logically nested, in the sense that one
can describe an element t ∈ Tk−1 which gives rise to several refined elements in Tk,
although the union of those elements may not be t.

We shall begin by considering several aspects of the less complicated algorithm
based only on Steps 1-4. First, we note that case C (D) in Figure 1 can be easily
decomposed into two (three) substeps of type B, in which only a single new vertex
is added. At all intermediate stages, t remains the union of two or more triangles,
although some of the intermediate triangles are themselves refined and hence are not
elements in Tk. This is not true of case E; to decompose case E into three substeps in
which only a single vertex is added, we must introduce several types of quadrilateral
elements, as illustrated in Figure 2. In Figure 2 F, we have a degenerate quadrilateral,
consisting of a triangle with one edge refined. In Figure 2 G, with two edges refined,
we have one triangular element, which remains a triangle in Tk, and one trapezoid.

3

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%%

e
e
ee t

tt
D

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%%

e
e
ee t

tt
E

%
%
%
%
%
%%

e
e
e
e
e
ee

A

%
%
%
%
%
%%

e
e
e
e
e
ee

t
B

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%%t
t

C

Fig. 1. Possible refinements of an element t ∈ Tk−1 depending on whether zero (A), one (B),
two (C), or three (D-E) edges are bisected. All the newly created vertices are assigned level k.

%
%
%
%
%
%%

e
e
e
e
e
ee

t
F

%
%
%
%
%
%%

e
e
e
e
e
ee

%
%
%%t
t

G

Fig. 2. Quadrilateral elements may be generated during intermediate substeps of the refinement
process.

When the third edge is refined, the trapezoid becomes three triangles in Tk, as in
Figure 1 E.

We pause here in our discussion to make several remarks. First, we have assumed
that only edges of level k−1 can be refined in creating Tk from Tk−1. This condition is
rarely imposed on practical refinement algorithms. However, for a given Tk, typically
one can construct a posteriori a sequence {Tj}kj=1 which has this property.

Second, we implicitly assume that the refinement procedure has been devised in
such a way that shape regularity of the triangulations Tk is guaranteed. Shape regu-
larity concerns influence the selection of the subset Fk−1 in Step 1. While there are
several good strategies for controlling shape regularity during the refinement process
[5] [2] [22] [25], their details do not concern us here.

Third, we are assuming an edge based model for refinement; it is possible to also
have an element based model, where an element chosen for refinement is divided into
three elements, a shown in Figure 3. While such refinement is possible, it is usually not
desirable, as it tends to generate elements with poor shape regularity. As a practical
matter, our coarsening algorithm must take this possibility into account (as a special
case), but in this work we will ignore this possibility to simplify our discussion as

4

much as possible.

%
%
%
%
%
%%

e
e
e
e
e
ee

!!
!!

!

aa
aa

at
Fig. 3. Element based refinement.

Finally our refinement model does not allow the possibility of dynamic edge swap-
ping (see Figure 4) a common technique for improving the shape regularity of a mesh.
Such a procedure could result in a sequence of meshes which are not nested in either
the physical or logical sense. While our goal is to coarsen unstructured meshes, creat-
ing a sequence of generally nonnested triangulations, our algorithms try to impose a
logical nesting of the meshes while allowing them to be physically nonested. We note
that our practical algorithm occasionally reaches a point where dynamic edge swap-
ping (in a disguised form) is required in order for the coarsening to continue. While
edge swapping in such circumstances does not significantly influence the observed rate
of convergence of the resulting algebraic hierarchical basis multigrid method, the ab-
stract theory presented in this manuscript can only handle edge swapping on a fixed
number of levels. We also note that by allowing both cases D and E in Figure 1, which
differ only by a swapped edge, we do permit limited a priori (static) edge swapping.

%
%
%
%
%
%%

%
%
%
%
%
%%

!!
!!
!!

!!
!!

!!
!!

!

%
%
%
%
%
%%

%
%
%
%
%
%%

e
e
e
e
e
ee

Fig. 4. An example of edge swapping.

We now turn to a discussion of Step 5 of Algorithm Refine. Let vertex v′ ∈ X̃ ′k,
v′ = (x′, y′)t, be the midpoint of an edge e ∈ Fk−1. Let vr ∈ Xk−1, vr = (xr, yr)t,
and v` ∈ Xk−1, v` = (x`, y`)

t, denote the two endpoints of e. We call the vertices vr
and v` the vertex parents or just parents of vertex v′ (see Figure 5). We note that one
of the parents of v′ must be level k − 1, while the other could be any level between
1 and k − 1. Since v′ is the midpoint of e, we must also have v′ = (v` + vr)/2. The
vertex v ∈ X̃k, v = (x, y)t, is defined in terms of the parents by

v =

[
x
y

]
= θ

[
xr
yr

]
+ (1− θ)

[
x`
y`

]
+ ε

[
y` − yr
xr − x`

]
(1)

5

= θvr + (1− θ)v` + εw

where wt(vr − v`) = 0, ‖ w ‖≡
√
wtw =‖ vr − v` ‖. The parameter θ measures the

displacement along the tangent direction to e and must satisfy

θ̄ ≤ θ ≤ 1− θ̄.(2)

The parameter ε measures the displacement in the normal direction to e and must
satisfy

|ε| ≤ ε̄.(3)

Here θ̄ and ε̄ are the two control parameters mentioned in Step 5 of the algorithm.
The boundary case θ̄ = 1/2, ε̄ = 0 forces X̃ ′k ≡ X̃k and the resulting meshes will
be those generated by just Steps 1-4. The case ε̄ = 0 forces the triangulations to
remain physically as well as logically nested. An example illustrating one possible
perturbation for a refinement of the form shown in Figure 1 B is shown in Figure 5.

%
%
%
%
%
%%

e
e
e
e
e
ee

t tt
v` v′ vr

%
%
%
%
%
%%

e
e
e
e
e
ee

PPPP
(((((((

�
�
�
�
�
�
��tt t

v`
v

vr

Fig. 5. Some refined elements in T ′k on the left are perturbed by moving the newly created vertex
v′. The resulting nonnested elements in Tk are shown on the right. Note that the connectivity is
unchanged, so the triangulation remains logically nested.

3. Details of the Coarsening Algorithm. In this section we describe a heuris-
tic algorithm for coarsening a given fine, unstructured mesh. The basic idea is that
we assume that the mesh came from the refinement procedure described in Section 2,
and then attempt to recover the logical refinement structure from the fine mesh. The
overall algorithm has a strong connection with a symbolic incomplete LU factorization
of the nodal stiffness matrix [18], a point which is explored in detail in [6].

In our algorithm, we begin with the fine triangulation (graph) TJ , and vertex set
XJ , and through a process of incomplete symbolic Gaussian Elimination (i.e., remov-
ing one vertex at a time), gradually transform TJ to the coarse grid triangulation T1,
with vertex set X1. At intermediate steps, the graph will be a triangulation composed
only of triangular and quadrilateral elements, since these are the only types of ele-
ments which arise in our edge based refinement paradigm. As usual, the intersection
of two distinct elements in any graph will be either the empty set, a shared vertex or
a shared edge. All intermediate graphs may not be appropriate finite element meshes,
however, since we must allow nonconvex quadrilaterals (see Figure 2 F).

We begin with some notation, definitions and descriptions which we need to de-
scribe the coarsening algorithm. See Rose [26] and George and Liu [13] for a complete
discussion of the connection of graph theory and Gaussian elimination. To keep the
notation as simple as possible, we will drop subscripts unless absolutely necessary.
Let T be a graph (triangulation), with vertex set X and edge set E . Then for a vertex

6

v ∈ X , we define the edge adjacency set adjeT (v) to be the set of vertices in X which is
connected to v by an edge in E (w ∈ adjeT (v)→ e ≡ (v, w) ∈ E). The set adjqT (v) (the
quadrilateral adjacency set) is nonempty only if v is a vertex of some quadrilateral
elements in T . In this case, for each quadrilateral having v as a vertex, two of the
remaining vertices are elements of the set adjeT (v); the third (the vertex “opposite”
to v and not connected by an edge in E) will be in the set adjqT (v). Finally, we set

adjT (v) = adjeT (v) ∪ adjqT (v)

and denote by degeT (v), degqT (v), and degT (v) = degeT (v) + degqT (v) the sizes of
adjeT (v), adjqT (v), and adjT (v), respectively.

We next describe the classification of the vertices in the set X . We assume that
X can be decomposed at the union of four nonoverlapping sets

X = X c ∪ X b ∪ X i ∪ X 0.

The purpose of this decomposition is to allow the coarsening algorithm to preserve
(approximately) important properties of the fine mesh such as the shape of the phys-
ical domain, the locations of internal interfaces, points where boundary conditions
change type, etc.

Vertices in the set X c are called corners. Such vertices are known a priori to be
members of the coarse grid, and include such vertices as actual geometric corners of
the region, boundary points where boundary conditions change type, vertices marking
the junction of internal interfaces or the junction of an internal interface and the
boundary, and any other vertices one wants in the coarse grid for any reason. The set
X b are the boundary vertices, and consists of the remaining vertices on the boundary
of the mesh exclusive of those classified as corners. A vertex v ∈ X b implies that v is
an endpoint of exactly two boundary edges, and that v is not an endpoint of any edge
on an internal interface; vertices failing to meet this requirement must be classified
as corners.

The set X i are called interface vertices, and is made up of vertices on internal
interfaces which are not classified as corners. An internal interface is any (one di-
mensional) path in the graph T made of a set of edges C ⊂ E , which we want to
distinguish by making it an internal interface. Often such curves have significant
physical meaning, locating a “front” or a discontinuity in a coefficient function, for
example. We remark that a given domain may have no internal interfaces, in which
case X i = ∅. A vertex v ∈ X i implies that v is an endpoint of exactly two interior
edges lying on the given interface, and v is not an endpoint of any edge lying on any
other internal interface; vertices failing to meet this requirement must be classified as
corners. Finally, all vertices which are not classified as corners, boundary vertices or
interface vertices are called interior vertices and belong to the set X 0. If |X | = N ,
one would typically expect that |X c| = O(1), |X b| = O(

√
N), |X i| = O(

√
N), and

|X 0| = O(N), so that most vertices of the mesh will be classified as interior vertices.
We next consider the quality measures that we will use to control the shape

regularity of the elements generated through the coarsening process.
We first consider a triangular element t shown in Figure 6, with vertices vi =

(xi, yi), 1 ≤ i ≤ 3, area a, and edge lengths `i, 1 ≤ i ≤ 3.
The shape regularity quality of t, denoted by G(t), is given by

G(t) =
4
√

3a

`21 + `22 + `23
.(4)

7

%
%
%
%
%
%%

e
e
e
e
e
ee

t t

t

v2

v1

v3

`3 `2

`1

Fig. 6. The edges and vertices of triangle t.

The function G(t) is normalized to equal one for an equilateral triangle and to ap-
proach zero for triangles with small angles. In particular, G(t) is scaling invariant with
respect to t. To understand the geometric meaning of G(t) in somewhat more detail,
without loss in generality, we assume for the moment that v1 = (0, 0), v2 = (1, 0),
and v3 = (x, y) with y ≥ 0, and consider the dependence of the G(t) on the location
of the vertex v3. Noting that 0 ≤ G(t) ≤ 1, we seek the set of points (x, y), for which
G(t) = α. From (4)

G(t) =
2
√

3y

1 + x2 + (1− x)2 + 2y2
= α.

This can be manipulated to the form(
x− 1

2

)2

+

(
y −
√

3

2α

)2

=
3

4

(
1

α2
− 1

)
= r2

which is the equation of a circle.
For α = 1, the center is (1/2,

√
3/2) and the radius is r = 0; this means that the

equilateral triangle is the only triangle for which G(t) = 1. For
√

3/2 ≤ α ≤ 1, we
have 0 ≤ r ≤ 1/2; on this range, t cannot have any obtuse angles. As α is further
decreased, the radius r becomes larger, and the triangle geometries with the quality
α become more degenerate.

The question of assigning shape regularity to quadrilaterals is more complicated.
Developing a measure in terms of standard finite element shape regularity require-
ments is clearly wrong, since we know that the edge based refinement process will
necessarily generate some poorly shaped quadrilaterals when measured by such a cri-
terion. On the other hand, quadrilaterals are only transitional elements which will
ultimately become triangles. Thus we are lead to measure the quality of a quadri-
lateral in terms of the quality of (potential) triangles which can be generated from
it. First, suppose that t is a nonconvex quadrilateral. In this case we decompose t
uniquely into two triangles, denoted t1 and t2, and set

G(t) = min{G(t1), G(t2)}(5)

where G(ti) is defined by (4) for the triangles. If t is a convex quadrilateral, one can
add either diagonal to form triangles; we denote the first pair as t1 and t2, and the
second pair as t′1 and t′2. For this case we set

G(t) = max (min{G(t1), G(t2)}, min{G(t′1), G(t′2)}) .(6)

8

We next consider the parameters θ̄ and ε̄ of Section 2 used for controlling the
refinement procedure. We now adopt here the notation used in (1). In our coarsening
algorithm, we measure the movement of the vertex v relative to the midpoint v′ of
the straight line segment connecting its parents using the function F (v) given by

F (v) =
4θ(1− θ)
1 + 100ε2

.(7)

For the case θ = 1/2, ε = 0, F (v) = 1, while F (v) becomes smaller as |θ − 1/2| or |ε|
increases. In particular, within our coarsening algorithm, we impose the constraint

F (v) ≥ Fmin ≡ 4θ̄(1− θ̄) > 0

which implies

ε ≤

√
(θ̄ − 1/2)2 − (θ − 1/2)2)

θ̄(1− θ̄)100
.

This imposes a stronger constraint on ε as |θ− 1/2| increases. However, for a uniform
bound, one has

ε̄ =

√
(θ̄ − 1/2)2

θ̄(1− θ̄)100

in (3).
The next part of the discussion is concerned with the observation that quadri-

lateral elements are only transitional elements, and that part of our heuristic should
directed towards keeping the number of such elements in the mesh at any give time
as small as possible. To this end, we provide an attribute m(v) for each vertex in X .
If m(v) = 0, then v is not the corner of any quadrilateral element. When a vertex is
eliminated causing the creation of a new quadrilateral element (i.e., we move from a
situation such as Figure 1 E to that of Figure 2 G),then m(v) for the four vertices of
the newly formed quadrilateral is updated as follows:

• For each of the two vertex parents, if currently marked with m(v) = 0, we
reset m(v) > 0. This indicates that such vertices are of a lower level than the
vertex which was eliminated.

• For the other two vertices in the quadrilateral, if currently marked with
m(v) = 0, we reset m(v) < 0. This indicates that such vertices are likely
to be of the same level as the vertex which was eliminated.

Our selection process will encourage the elimination of vertices with m(v) < 0,
since we expect that elimination of such vertices will tend to reduce the number of
quadrilateral elements. We note that the attribute m(v) is time dependent; if at a
later stage of the symbolic elimination m(v) is no longer a corner of any quadrilateral
elements, then we set m(v) = 0 again.

At any stage of the elimination process, all vertices in X either are assigned
tentative vertex parents or they have no tentative parents and are called orphans.
When a given vertex v, (which cannot be an orphan) is eliminated, T is updated to
a new mesh T̂ , with vertex set X̂ and edge set Ê as follows:

9

Algorithm Delete (v)

1. The vertex v and all its incident edges are removed from T . The updated
vertex set X̂ = X \ {v}. The tentative parents of v become the permanent
parents of v.

2. A new edge e (called a fillin edge) is added, connecting the two parents of
vertex v. This completes the definition of the new mesh T̂ . The updated
edge set Ê consists of the union of e and the edges remaining in E following
Step 1.

3. For those vertices w ∈ adjT (v), we must update adjT̂ (w) and m(w) as neces-
sary.

4. For those vertices w ∈ ∪z∈adjT (v)adjT̂ (z), we must reevaluate their tentative
parents or their status as orphans.

We now elaborate on the heuristic by which tentative vertex parents are chosen
(or a vertex is determined to be an orphan). The following are necessary conditions to
be satisfied in order for a vertex v to be assigned tentative parents, which we denote
below as w1 and w2.

• v should not be a corner (v 6∈ X c), and F (v) ≥ Fmin > 0.
• The tentative parents must satisfy wi ∈ adjeT (v), for i = 1, 2.
• Elimination of v as described above must create T̂ with only triangular and

quadrilateral elements. This imposes the limits 3 ≤ degT (v) ≤ 6 for v ∈
X 0 ∪ X i and 3 ≤ degT (v) ≤ 4 for v ∈ X b, and limits the number of possible
pairs within the set adjeT (v) which are eligible to be tentative parents.

• If v ∈ X b then the tentative vertex parents must be vertices on the boundary,
and connected to v by boundary edges. If v ∈ X i then the tentative vertex
parents must be vertices on the same internal interface as v, and connected
to v by edges on the interface.

• Let S denote the set of new elements which would be generated in T̂ by the
elimination of v, using w1 and w2 as tentative parents. Then we must have
Ḡ(v) ≡ mint∈S G(t) ≥ Gmin > 0, where (4)-(6) are used as appropriate to
evaluate G(t) for t ∈ S.

We remark that the state of having tentative parents or of being an orphan is
time dependent. As the elimination process proceeds, a given vertex might change
states several times. If there are two or more pairs of vertices which satisfy all the
necessary conditions to be tentative parents, then the function Q(v) described below is
evaluated for each pair, and a pair corresponding to the largest value of Q(v) becomes
the tentative parents.

For each vertex in the mesh we assign an overall quality 0 ≤ Q(v) ≤ 1. If v is
an orphan then Q(v) = 0. Otherwise, Q(v) = .2Ḡ(v) + .2F (v) + .6K(v)/18, where
0 ≤ K(v) ≤ 18 is an integer “point score” which reflects in a heuristic fashion factors
which should favor the elimination of v.

• 4 points are assigned if m(v) < 0, and 2 points are assigned if m(v) = 0.
• If v ∈ X i ∪ X 0, 6, 4, 2, or 1 points are assigned if degeT (v) is 2, 3, 4, or 5,

respectively. If v ∈ X b, 1 point is assigned if degeT (v) is 3.
• 2 points are assigned for each tentative parent wi satisfying m(wi) > 0, 1

point if m(wi) = 0. 1 point is assigned for each wi ∈ X b, and 2 points are
assigned for each wi ∈ X c.

One of our main objectives is to keep the number of quadrilaterals in the mesh at
any given time as small as possible, so we award extra points in K(v) on this basis.
If v ∈ X i ∪X 0, and degeT (v) = 2, then typically eliminating v will reduce the number

10

of quadrilaterals in the mesh by two. If degeT (v) = 3, then one quadrilateral will be
eliminated, if degeT (v) = 4, there will be no net change in the number of quadrilaterals,
while if degeT (v) = 5, there will be a net increase of one quadrilateral. (This remark
is modified slightly if degT (v) = 3.) For v ∈ X b, and degeT (v) = 3, we award fewer
points for a similar situation, because it is easier to achieve.

Our overall symbolic elimination algorithm is now summarized below.

Algorithm Coarsen

1. All the vertices are placed in a heap according to the value of Q(v), a vertex
having the largest Q(v) at the root. If the root vertex is not an orphan it is
removed from the heap and eliminated using Algorithm Delete. As tentative
vertex parents of surrounding vertices are updated, their positions in the heap
generally change. We continue to eliminate the root vertex of the heap until
we satisfy the termination criteria.

2. If the heap contains only orphans and the termination criteria is not satis-
fied, then we take the current mesh T and add diagonal edges to create two
triangles from every quadrilateral in the mesh. For each vertex in the mesh
we update adjacency lists, the function m(∗), evaluate tentative parents, and
update its position in the heap. We then restart the elimination process in
Step 1 above.

3. The elimination procedure terminates when one of the following is true.
• all remaining vertices are corners.
• the current mesh has only triangular elements and all the remaining

vertices are orphans.
• a prespecified target number of vertices for the coarse grid is achieved.

Typically, Algorithm Coarsen can eliminate 60 − 80% of the vertices in a given
mesh before a restart in Step 2 is required. Usually at such a time, the current mesh
contains many quadrilaterals (despite our algorithmic attempts to keep the number
small), and the extra constraints imposed by our algorithm on meshpoints which are
vertices of quadrilaterals cause all meshpoints to become orphans. By eliminating the
quadrilaterals, we eliminate the constraints, and also enlarge the sets adjeT (v), which
usually allows many orphan vertices to then have tentative parents. However, adding
diagonals to the quadrilaterals amounts to “dynamic edge swapping” when viewed
from the perspective of Algorithm Refine, and can only be treated by our current
theory if it is done a fixed number of times (independent of the number of levels).

We note that if v ∈ X i ∪ X 0 and degT (v) = 3 then v should be viewed as
coming from an element refinement as in Figure 3. It would make some sense to
assign such a vertex three parents instead of two. However, we expect such vertices
to arise infrequently, and allowing the possibility of three parents adds what seems
to us an unnecessary level of complication to an already complicated algorithm. On
a positive note, such vertices are obviously easy to detect, create no quadrilaterals
when eliminated, and their elimination improves the overall shape regularity of the
new mesh. Thus we award some extra “points” in K(v) for such vertices.

Although the basic structure controlling the order of elimination in Algorithm
Coarsen is a heap, we think an effective algorithm could be designed based on a
queue. Using a queue, one could potentially carry out the elimination process with
less frequent updating of the data, and perhaps could eliminate groups of vertices
simultaneously.

Finally, we remind the reader that our coarsening algorithm and the underlying

11

ideas are all heuristic. In the end, we can offer no formal justification for the algo-
rithm other than it apparently works quite well, and that it is consistent with the
refinement paradigm presented in Section 2. We expect that with more study and
experimentation, these heuristics will be improved or better ones developed to replace
them.

We now give a short numerical illustration of the use of Algorithm Coarsen. We
take Ω to be a region in the shape of Lake Superior. The region has a fairly irregular
outer boundary and six islands. The initial triangulation used 5927 vertices and is
shown in Figure 7. We applied Algorithm Coarsen to this initial mesh, with a target
coarse grid containing 300 vertices. Algorithm Coarsen was able to achieve this target
value with two restarts, the first when the mesh had 1412 vertices, and the second
when it had 398 vertices. All these meshes are shown in Figure 7. Note that the
intermediate meshes with 1412 and 398 vertices do not correspond directly to the
triangulations Tk of Section 2, but are simply the mesh as it existed prior to the
restart, with many quadrilateral elements to be triangulated. Indeed, this calculation
resulted in eight hierarchical levels. Also note that as the coarsening proceeds, the
boundary ∂Ω is also approximated.

The vertex level L(v) for vertices in the (original) fine mesh cannot be determined
until Algorithm Coarsen is completed. Even then, L(v) is not necessarily uniquely
defined for all vertices in the mesh, since the coarsening process only yields a partial
ordering of the vertices. Of course, it is known that L(v) = 1 for all vertices in the
coarse grid. The levels of the remaining vertices must only satisfy

L(v) > max{L(w1), L(w2)},

where w1 and w2 are the permanent parents of v. Our algorithm for assigning levels to
vertices uses both a lower level L(v) and an upper level L̄(v). For coarse grid vertices,
L(v) = L̄(v) = L(v) = 1. For other vertices,

L(v) = max{L(w1), L(w2)}+ 1,

where w1 and w2 are the permanent parents of v. This is consistent with vertex levels
assigned by Algorithm Refine, and can be easily computed by processing vertices in
the reverse order in which they were eliminated. Let Lmax = maxv L(v), and let S(v)
denote the set of vertices which have v as one of their parents. Then if S(v) = ∅
L̄(v) = Lmax; otherwise,

L̄(v) = min
w∈S(v)

L̄(v)− 1,

which is easily computed by processing vertices in the same order in which they were
eliminated. For some vertices (at least one at every level) L(v) = L̄(v) ≡ L(v), while
for many others, L(v) < L̄(v), giving some flexibility in level assignment.

The assignment of levels has some practical implications, in that the nodal stiff-
ness matrix (and implicitly, the hierarchical stiffness matrix) are blocked according
to the partitioning of vertices into levels. Since the diagonal blocks of the stiffness
matrix represented in terms of the hierarchical basis are actually computed as part of
the preprocessing stages for hierarchical basis iterations, the block structure has some
influence on the work and storage estimates. We have made some experiments using
L(v) ≡ L(v) and L(v) ≡ L̄(v). Choosing L(v) ≡ L̄(v) results in the diagonal blocks
having minimal order at every step, which should result in less work and storage.
On typical problems, our empirically observed savings is about 5− 10% compared to

12

Fig. 7. The initial triangulation with 5927 vertices, and intermediate grids with 1412, 398,
and 300 vertices generated by Algorithm Coarsen.

choosing L(v) ≡ L(v). Since the work and storage requirements are both linear in the
number of vertices, this represents a modest, but still significant, reduction. We note
that this choice need not be optimal in terms of work and storage, although at present,
we do not see a way to improve upon it without investing significant additional com-
putation. So far, we have noted little difference in observed rates of convergence for
the two choices we have tried, and suspect all assignments consistent with the partial
ordering will behave similarly.

In Table 1 we record the distribution of vertices among the eight levels for our
numerical example of Lake Superior, using both the functions L̄(v) and L(v) to com-
pute the levels. Here we notice a substantial difference between the two algorithms.
However, this difference has a negligible impact on the observed rate of convergence.

We also note that in our example, the total number of nonzeroes in the upper
triangular parts of all the matrices needed for the hierarchical basis multigrid method
(see Section 6) is 33198 using levels determined by L̄(v) and 34971 using L(v). A
problem with approximately 6000 vertices created using nested refinement would have

13

level vertices computed vertices computed
using L̄(v) using L(v)

8 3732 21
7 1017 151
6 508 537
5 244 1140
4 89 1860
3 28 1118
2 9 500
1 300 300

Table 1
The distribution of vertices among the eight levels, computed using L̄(v) and L(v).

a total of approximately 30000 nonzeroes in the corresponding set of matrices. We
attribute the increase in our example partly to the suboptimal choices of levels, and
partly to edge swapping, which has the effect of increasing the density of nonzeroes
in the hierarchical basis stiffness matrices.

4. Interpolation Operators for Nonnested Spaces. In this section, we de-
fine and analyze the interpolation operators used in constructing a hierarchical basis
for a sequence of nonnested meshes. We will assume the notation developed in Section
2, and that the sequence of meshes {Tk}Jk=1 has been generated by Algorithm Refine.
One messy detail of our analysis concerns the approximation of the boundary; all of
the triangulations Tk are supposed to approximate the same underlying region Ω, but
are able to do so only with different degrees of success. We denote by Ωk the region
corresponding to the triangulation Tk, and without loss of generality, we assume that
ΩJ ≡ Ω. For the remaining regions, we assume that all vertices which lie on ∂Ωk also
lie on ∂Ω.

We define the bilinear form a(u,w)D, u,w ∈ H1(D), by

a(u,w)D =

∫
D

∇u · ∇w dx

and the usual L2 inner product by

(u,w)D =

∫
D

uw dx

for u,w ∈ L2(D). For convenience we set a(u,w) = a(u,w)Ω and (u,w) = (u,w)Ω. We
define the (level dependent) energy seminorm by |||u|||2D = a(u, u)D, |||u||| = |||u|||Ω,
and L2 norm by ‖ u ‖2D= (u, u)D, ‖ u ‖=‖ u ‖Ω. While it is convenient in this section
to work with spaces without boundary conditions, we are careful to insure that the
results also apply to the case where the spaces all satisfy homogeneous Dirichlet
boundary conditions.

Associated with each triangulation Tk, there is a space Mk ⊂ H1(Ωk) of contin-
uous piecewise linear polynomials. We let Nk denote the dimension of Mk. Since
the triangulations Tk are not nested, the spaces Mk are not nested. However, by
construction the vertex sets Xk are nested (Xk ⊂ Xi for i > k).

We shall assume that all the elements in all the triangulations Tk are shape regular.
In particular, we assume that there exists a positive constant δ̄, such that G(t) ≥ δ̄ for

14

all t ∈ Tk, 1 ≤ k ≤ J , where the quality function G(t) is defined in (4). We also need
a measure of the relative sizes of elements in the various triangulations. Given an
element t of size ht, suppose that t̃ is the set of elements arising from the application
of k steps of Algorithm Refine to t, with the additional assumption that at least one
edge is refined at each step. Let hmin be the size of the smallest element in the patch
t̃. Then there exists a constant γ̄ = γ̄(θ̄, ε̄, δ̄), γ̄ < 1, such that hmin/ht ≤ γ̄k.

We next define several primitive interpolation operators which play an important
role in our hierarchical basis algorithms. First, let Ik∞ : C(∪jΩj) 7→ Mk denote the
usual nodal value interpolant. The interpolation operator Ik+1

k : Mk 7→ Mk+1 is a
local interpolation operator based on the details of the refinement. Let u ∈Mk; then
we can characterize Ik+1

k u ∈Mk+1 in terms of its values at the set of vertices Xk+1.

First we set Ik+1
k u(v) = u(v) for all v ∈ Xk ⊂ Xk+1. For the remaining vertices, we

refer to the notation of equation (1). We suppose vr ∈ Xk, v` ∈ Xk, and v ∈ Xk+1\Xk.
Then

Ik+1
k u(v) = θu(vr) + (1− θ)u(v`).(8)

Notice that Ik+1
k is not pointwise interpolation except for the special case ε = 0,

that is, when all the meshes are physically as well as logically nested. In this case,
Ik+1
k is just the restriction of Ik+1

∞ toMk. On the other hand, we note from (8) that

the value of Ik+1
k u at a vertex v ∈ Xk+1 \Xk is just a simple linear combination of the

values of the function evaluated at v’s vertex parents. This keeps the interpolation
scheme very local, and extremely simple to implement. Finally, we note that (8)
interpolates zero boundary conditions correctly.

We next define the composite interpolant I`k :Mk 7→ M` for ` > k by

I`k = I``−1I`−1
`−2 · · · I

k+1
k(9)

with Ikk = I, and the composite interpolant Ĩ`k :M` 7→ M` by

Ĩ`k = I`kIk∞(10)

for k < `, with Ĩ`` = I.
We now describe the hierarchical basis decomposition for MJ . First note that

by construction, each vertex v ∈ XJ has a unique level 1 ≤ L(v) ≤ J . Using the
notation of Algorithm Refine, and the identification X̃1 ≡ X1, we have the direct sum
decomposition

Xk = X̃1 ⊕ X̃2 ⊕ · · · ⊕ X̃k(11)

for 1 ≤ k ≤ J . For convenience, we will order the vertices of the mesh by level; vi for
Nk−1 + 1 ≤ i ≤ Nk will denote the set of vertices in X̃k.

For each space Mk, let φki , 1 ≤ i ≤ Nk, denote the usual nodal basis functions
satisfying φki (vj) = δij for 1 ≤ j ≤ Nk. The hierarchical basis for Mk is defined
inductively in the usual way. First, the hierarchical basis for M1 is just the nodal
basis for M1. For k > 1, we construct a hierarchical basis by interpolating the
hierarchical basis for Mk−1 onto Mk using the operator Ikk−1, and taking the union
of the resulting set of functions with the nodal basis functions for the level k nodes
(φki , Nk−1 + 1 ≤ i ≤ Nk). We let ψk

i denote the hierarchical basis functions for Mk,
ordered using the same scheme as the nodal basis functions. Then we have

ψk
i = IkLi

φLi
i = ĨkLi

φki(12)

15

where we have used the notation Li = L(vi) to denote the level of vertex vi.
We next consider a direct sum decomposition of the space Mk. First, we define

the spaces M̃k
i = IkiMi for 1 ≤ i ≤ k. Clearly by (9) these spaces are nested

M̃k
i ⊂ M̃k

j ⊂ M̃k
k ≡ Mk, for i ≤ j ≤ k. By (10), we have M̃k

i = ĨkiMk, for

1 ≤ i ≤ k. Let Vk
i = (Ĩki − Ĩki−1)Mk for 1 ≤ i ≤ k, with the convention Ĩk0 = 0. Then

we have the direct sum decomposition

M̃k
i = Vk

1 ⊕ Vk
2 ⊕ · · · ⊕ Vk

i(13)

for 1 ≤ i ≤ k. We are especially interested in (13) for the special case i = k = J ,

MJ ≡ M̃J
J = VJ

1 ⊕ VJ
2 ⊕ · · · ⊕ VJ

J ,

since it is the hierarchical decomposition of the space MJ which is of interest to us.
Lemma 4.1. Let t ∈ Tk be a triangle of size ht, and let t̃ be the union of the

triangles in T`, ` > k, which arise from the refinement of t as in Algorithm Refine.
Let u ∈ Mk, and ũ be the linear polynomial determined by the values of u at the
vertices of t, and extended to t̃. Then

(1− cε̄)|||ũ|||t̃ ≤ |||I`ku|||t̃ ≤ (1 + cε̄)|||ũ|||t̃(14)

where c = c(θ̄, ε̄, δ̄).
Proof. We note that (14) is a local result and does not require quasiuniformity

of the mesh; however, this result does depend on the shape regularity of t and each
triangle in t̃.

First, let us consider the linear function ũ, which we write as

ũ =
∂u

∂x
x+

∂u

∂y
y + u0 = ∇u · ṽ + u0

where ṽ = (x, y)t, and u0 is constant. Since the gradient of the constant function is
zero, and I`k is exact for constants, without loss of generality, we can assume u0 = 0.

Since I`k is a linear operator, and ∇u is constant, we have

I`ku = ∇u · I`kṽ.

Let us now examine I`kṽ using the decomposition (9). We consider first the simple
case Ik+1

k v, where v is a level k+1 vertex with vertex parents vr and v`, in the notation
of (1). By (8), we have

Ik+1
k v = θvr + (1− θ)v` = v − εw

so at vertex v the interpolated function value of u is ∇u · (v − εw). Note that the
vector −εw can be interpreted as moving v from its actual location in the nonnested
mesh to the location it would have been had the refinement been nested (ε̄ = 0). We
also note that

√
wtw ≤ cht. It is simple to see by induction that if v is a vertex of

level j in t̃

I`ku = ∇u · (v − e)

where −e is a vector which moves v to its corresponding location in the case of nested
refinement (ε̄ = 0) of t, and

√
ete ≤ cε̄ht{1 + γ̄ + γ̄2 + · · ·+ γ̄j−k−1}
≤ cε̄ht(1− γ̄)−1.

16

Now let t̂ ∈ t̃ be a triangle in the level ` mesh with vertices vi, nodal basis
functions φi, and interpolated function values ∇u · (vi − ei), 1 ≤ i ≤ 3. Then on t̂

∇I`ku = ∇u−
3∑

i=1

∇u · ei∇φi

= ∇u−∇u · {(e2 − e1)∇φ2 + (e3 − e1)∇φ3}.

Now we make a critical observation, that the vectors e2 − e1 and e3 − e1 denote
the change in shape in element t̂ relative to the case ε̄ = 0, as opposed to a change in
location; in effect, we have subtracted the translation common to all three vertices.
Since t̂ and the corresponding triangle in the case of nested refinement are both shape
regular, we must have for i = 2, 3,√

(ei − e1)t(ei − e1) ≤ cε̄ht̂

Since |∇φi| ≤ ch−1
t̂

, we have immediately

(1− cε̄)|||ũ|||t̂ ≤ |||I
`
ku|||t̂ ≤ (1 + cε̄)|||ũ|||t̂.

The result now follows by summing over t̂ ∈ t̃.
Since Lemma 4.1 is a critical result in our analysis, we pause here to give a

numerical illustration. We consider a single element t, and refine 9 levels as in Figure
1 E, with θ = θ̄ = 0.5, and ±ε = ε̄ = 0.1, ±ε = ε̄ = 0.05, and ±ε = ε̄ = 0.01. In Figure
8, we show the original element t and the regions t̃ for k + 1 ≤ ` ≤ k + 5 and ε̄ = .1.
(the more refined regions have too many elements to be resolved in a small picture).
In Figure 9, we show the corresponding contour maps for the function u = φki (one
of the nodal basis functions for t) and the corresponding functions I`ku. Finally, in
Table 2, we show the function |||I`ku|||t̃/|||ũ|||t̃ − 1 for k ≤ ` ≤ k + 9, where one can
see clearly the predicted behavior cε̄.

` triangles vertices ε̄ = .1 ε̄ = .05 ε̄ = .01
k 1 3 0.0 0.0 0.0

k+1 4 6 -2.77(-2) -1.41(-2) -2.87(-3)
k+2 16 15 -2.00(-2) -1.21(-2) -2.79(-3)
k+3 64 45 -1.54(-2) -1.10(-2) -2.75(-3)
k+4 256 153 -0.96(-2) -9.64(-3) -2.69(-3)
k+5 1024 561 -0.37(-2) -8.26(-3) -2.63(-3)
k+6 4096 2145 0.25(-2) -6.89(-3) -2.59(-3)
k+7 16384 8385 0.89(-2) -5.52(-3) -2.53(-3)
k+8 65536 33153 1.59(-2) -4.01(-3) -2.48(-3)
k+9 262144 131841 2.23(-2) -2.71(-3) -2.32(-3)

Table 2
The function |||I`ku|||t̃/|||ũ|||t̃ − 1 for k ≤ ` ≤ k + 9 and ε̄ = .1, .05, .01.

Lemma 4.2. Let t ∈ Tk be a triangle of size ht, and let t̃ be the union of the
triangles in T`, ` > k, which arise from the refinement of t as in Algorithm Refine.
Let u ∈ M` and w = Ik∞u, and let w̃ be the linear polynomial determined by the
values of w at the vertices of t, and extended to t̃. Then

|||w̃|||t̃ ≤ C
√
`− k|||u|||t̃(15)

17

Fig. 8. The element t and t̃ for ` = k + 1, k + 2, · · · , k + 5, and ε̄ = .1

Fig. 9. Contour maps for the function u and I`ku for ` = k + 1, k + 2, · · · , k + 5, and ε̄ = .1

18

for C = C(θ̄, ε̄, δ̄).
Proof. Since w ∈ Mk, w is just a linear polynomial on t. As in the proof of

Lemma 4.1, let vi, 1 ≤ i ≤ 3, denote the vertices of t. Then, noting w(vi) = u(vi), we
have,

|||w̃|||t̃ ≤ C max
i
|w(vi)| = C max

i
|u(vi)| ≤ C ‖ u ‖∞,t̃ .

Let hmin denote the size of the smallest triangle in t̃. Then

‖ u ‖2∞,t̃≤ C log

(
ht
hmin

)
|||u|||2t̃ ≤ C log

(
γ̄k−`

)
|||u|||2t̃ ≤ C(`− k)|||u|||2t̃ .

This completes the proof.
Theorem 4.3. Let u ∈M` and let ` > k. Then

|||Ĩ`ku|||Ω`
≤ C
√
`− k|||u|||Ω`

(16)

for C = C(θ̄, ε̄, δ̄).
Proof. Let t ∈ Tk, and let t̃ be the union of triangles in T` which arise from

the refinement of t as in Algorithm Refine. Let w = Ik∞u and let w̃ be the linear
polynomial determined by the values of w at the vertices of t and extended to t̃. Then
by Lemmas 4.1 and 4.2,

|||Ĩ`ku|||t̃ = |||I`kw|||t̃
≤ (1 + cε̄)|||w̃|||t̃
≤ C(1 + cε̄)

√
`− k|||u|||t̃.

The result (16) follows by summing over t ∈ Tk.
The next lemma shows that a bound on the interpolant as in (16) in essentially

equivalent to a strengthened Cauchy inequality [3] [12].
Lemma 4.4. Suppose M = V ⊕W, and let I denote the interpolation operator

defined as follows: if u = v + w ∈M, v ∈ V, and w ∈ W, then I(u) = v. Then

|||I(u)|||D ≤ C|||u|||D(17)

if and only if

|a(v, w)D| ≤ γ|||v|||D|||w|||D(18)

for γ < 1 and for all v ∈ V and w ∈ W.
Proof. First, we assume (18) in order to prove (17). Let u = v+w, v ∈ V, w ∈ W.

Then

|||u|||2D = a(v + w, v + w)D

= |||v|||2D + |||w|||2D + 2a(v, w)D

≥ |||v|||2D + |||w|||2D − 2γ|||v|||D|||w|||D
≥ (1− γ2)|||v|||2D.

Therefore

|||I(u)|||D ≤
1√

1− γ2
|||u|||D.

19

Now we assume (17) to show (18). It suffices to take |||v|||D = |||w|||D = 1. Then,
from (17)

|||v − w|||D ≥
1

C
|||v|||D =

1

C
.

Thus,

a(v, w)D =
1

2
|||v|||2D +

1

2
|||w|||2D −

1

2
|||v − w|||2D

≤ 1− 1

2C2
.

Theorem 4.5. Let u = v + w ∈Mk, with

v ∈ Vk
1 ⊕ Vk

2 ⊕ · · · ⊕ Vk
i

and

w ∈ Vk
i+1 ⊕ Vk

i+2 ⊕ · · · ⊕ Vk
k

for 1 ≤ i < k. Then

|a(v, w)Ωk
| ≤

(
1− C

k − i

)
|||v|||Ωk

|||w|||Ωk
.(19)

Proof. Apply Lemma 4.4 and Theorem 4.3.

We next prove another strengthened Cauchy inequality.

Theorem 4.6. Let u ∈ V`
i and w ∈ V`

k. Then there exists a constant C =
C(θ̄, ε̄, δ̄), such that, for ε̄ sufficiently small,

|a(u,w)Ω`
| ≤ C

(
γ̄|i−k|/2 + ε̄

)
|||u|||Ω`

|||w|||Ω`
.(20)

Proof. Our proof follows closely the proof of Lemma 4.1. For convenience, suppose
i < k, and let t ∈ Ti and t̃ denote the set of elements in T` resulting from the refinement
of t. Let ũ be the linear polynomial characterized by the values of u at the vertices
of t, and set u = ∇ũ · (v − e) = ũ+ z, as in the proof of Lemma 4.1. As in the proof
of Lemma 4.1, we may set the constant ũ0 = 0.

We first consider the term a(ũ, w)t and note

a(ũ, w)t̃ =

∫
∂t̃

∂ũ

∂n
w dx

where n is the unit normal. Note that w ≡ 0 on edges of ∂t̃ which are level k − 1 or
less, and w = 0 at all vertices in t̃ of level k − 1 or less. Thus w ≡ 0 on any element
in t̃ not containing at least one vertex of level k or larger, and where w 6= 0, it must
be oscillatory. Let hi denote the size of t̃, and hk denote size of elements of level k
which came from the refinement of t. Then hk/hi ≤ Cγ̄k−i, and

20

|a(ũ, w)t̃| ≤

(∫
∂t̃

{
∂ũ

∂n

}2

dx

)1/2(∫
∂t̃

w2dx

)1/2

≤ c√
hi
|||ũ|||t̃

hk√
hi
|||w|||t̃

≤ cγ̄|i−k|/2|||u|||t̃ |||w|||t̃.

Here we have estimated |||ũ|||t̃ using Lemma 4.1 assuming that 1 − cε̄ > 0 in (14),
and used standard trace and inverse estimates for the terms involving w. Using the
arguments of Lemma 4.1 once more, we have

|a(z, w)t̃| ≤ Cε̄|||u|||t̃ |||w|||t̃.

Combining these two estimates, and summing over t ∈ Ti (in effect, summing over
the refined patches t̃) leads to the estimate (20).

Our final theorem is
Theorem 4.7. Let u ∈ V`

k, u =
∑

i Uiψ
`
i , where the ψ`

i are the hierarchical basis
functions described above, and k > 1. Then there exist constants Ci = Ci(θ̄, ε̄, δ̄),
1 ≤ i ≤ 2, such that

C1|||u|||2Ω`
≤
∑
i

U2
i |||ψ`

i |||2Ω`
≤ C2|||u|||2Ω`

.(21)

Proof. The left inequality in (21) is a simple exercise using the triangle inequality,
and the fact the support of ψ`

i can intersect the support of only a fixed number of
hierarchical basis functions of the same level, and is true even in the case k = 1. The
right inequality is more difficult, and will be proved elementwise for t ∈ Tk. Since Tk
came from the refinement of Tk−1, all of the elements must be of the patterns shown
in Figure 1. As usual, we will let t̃ denote the patch of elements in T` which arise
from the subsequent refinement of t.

In Figure 1 A, no edges were refined and the single element has all vertices with
level less than k; thus u ≡ 0 on t̃, and there is nothing to prove. In Figure 1 B, there
is one level k vertex, and hence one nonzero basis function, say ψ`

i1
. If t̃ corresponds

to one of the two elements t ∈ Tk arising from such a refinement then |||u|||2
t̃

=

U2
i1
|||ψ`

i1
|||2

t̃
, and again the proof is trivial.

In Figure 1 C, one of the three elements has only one nonzero basis function, and
is similar to the case of Figure 1 B. The remaining elements have two nonzero basis
functions, say ψ`

i1
and ψ`

i2
. To obtain a local bound, we are led to study the 2 × 2

eigenvalue problem[
|||ψ`

i1
|||2

t̃
a(ψ`

i1
, ψ`

i2
)t̃

a(ψ`
i1
, ψ`

i2
)t̃ |||ψ`

i2
|||2

t̃

] [
Ui1

Ui2

]
= λ

[
|||ψ`

i1
|||2

t̃
0

0 |||ψ`
i2
|||2

t̃
.

] [
Ui1

Ui2

]
The eigenvalues are λ = 1± α, where

α =
|a(ψ`

i1
, ψ`

i2
)t̃|

|||ψ`
i1
|||t̃|||ψ`

i2
|||t̃

.

We will show α < 1, depending only on θ̄, ε̄ and δ̄. Following the pattern of
Lemma 4.1, we let ψ`

i1
= ψ̃`

i1
+ zi1 , where ψ̃`

i1
is the linear polynomial based on the

21

values at the vertices of t (in this case, ψ̃`
i1

= 0 at two nodes and ψ̃`
i1

= 1 at the

third). We make an analogous decomposition for ψ`
i2

. Note that ψ̃`
i2

= 1 at one of

the two vertices where ψ̃`
i1

= 0. Now let t̂ ∈ T` be one of the triangles in the set of

elements making up t̃. Then ∇ψ`
i1

and ∇ψ`
i2

are constant on t̂ and essentially small

perturbations of ∇ψ̃`
i1

and ∇ψ̃`
i2

, respectively. By shape regularity combined with
their definitions we must have the strengthened Cauchy inequality

|∇ψ`
i1 · ∇ψ

`
i2 | ≤ αt̂

√
∇ψ`

i1
· ∇ψ`

i1

√
∇ψ`

i2
· ∇ψ`

i2

leading directly to the estimate

|a(ψ`
i1 , ψ

`
i2)t̂| ≤ αt̂|||ψ

`
i1 |||t̂|||ψ

`
i2 |||t̂.

Taking α = maxt̂ αt̂ and summing over t̂ complete the estimate in this case.
For refinement as in Figure 1 D, all four elements have two nonzero basis functions

and are covered by the preceding argument. For refinement as in Figure 1 E, three of
the four elements in Tk have two nonzero basis functions, while the middle element
has three nonzero basis functions. The argument above will fail for such elements, as
the analogous 3×3 eigenvalue problem will have one zero eigenvalue and two positive
eigenvalues. On the other hand, such elements only occur in the situation shown
in Figure 1 E, where they are surrounded by three elements, each having only two
nonzero basis functions. Let t0 denote the center element with three nonzero basis
functions, and let t1, t2 and t3 denote the other three triangles, each with two nonzero
basis functions. Let ψ`

i1
, ψ`

i2
, and ψ`

i3
denote the three basis functions. Suppose ψ`

i1
has support in t2 and t3 as well as t0. Then using arguments similar to those in
Lemma 4.1, it is straightforward to show

c1|||ψ`
i1 |||

2
t̃0
≤ |||ψ`

i1 |||
2
t̃2

+ |||ψ`
i1 |||

2
t̃3
≤ c2|||ψ`

i1 |||
2
t̃0

so that we can control the behavior of the center element though the surrounding
elements which have only two nonzero basis functions. Similar estimates apply to the
other two basis functions. These can be combined to show

U2
i1 |||ψ

`
i1 |||

2
t̃0

+ U2
i2 |||ψ

`
i2 |||

2
t̃0

+ U2
i3 |||ψ

`
i3 |||

2
t̃0
≤ C|||u|||2t̃0∪t̃1∪t̃2∪t̃3 .

Now, by combining all cases, and summing over t ∈ Tk, we obtain the right hand
inequality in (21).

We close this section with a few remarks. The first concerns the issue of dy-
namic edge swapping. We note that under appropriate assumptions, one can show
|||Su|||D ≈ |||u|||D where S is an “edge swapping” operator. For example, if we were
to allow dynamic edge swapping once, say only on the finest triangulation TJ , we
would have growth like C(1 + cε̄), C > 1 in Lemma 4.1. This could be generalized
to any fixed number p of levels on which edge swapping is allowed with growth like
Cp(1 + cε̄)p. However, if we allowed dynamic edge swapping on all levels (p = J),
clearly the growth would not be acceptable. We emphasize that we do not believe that
dynamic edge swapping is harmful to the coarsening (or refinement) process; indeed,
it is a critical part of the restart step of Algorithm Coarsen, and from our practical
experience in this context, has little if any observed effect on the convergence of itera-
tions using hierarchical basis preconditioners. It just seems that the theory developed
in this section is not yet mature enough to adequately explain this observed behavior.

22

Our second remark concerns the effect of a variable coefficient in the enery inner
product. Suppose that

ã(u,w)D =

∫
D

a∇u · ∇w dx

where a = a(x, y) is a piecewise smooth, positive, bounded function on D. Let
t ∈ T1 and t̃ be the set of elements in TJ resulting from the refinement of t. Let
0 < at̃ ≤ a(x, y) ≤ āt̃ on t̃ and set α = maxt̃ āt̃/at̃. Then most constants in our
analysis would depend on α as well as θ̄, ε̄ and δ̄. We note that α is a locally
defined quantity, and depends only on the variation of a(x, y) on fine grid patches
of elements corresponding to coarse grid triangles. For example, if a is a piecewise
constant, it will have no effect on our estimates as long as the interfaces where a
has jumps are modeled in the coarse triangulation. This is independent of the sizes
of the jumps, and is of course exactly similar to the behavior of hierarchical basis
decompositions on sequences of nested meshes. However, it is interesting to note that
we do not have to approximate these interfaces exactly on the coarse grids, just as
we do not have to approximate the boundary ∂Ω exactly on the coarse grids. Indeed
the same basic refinement rule applies to both interfaces and boundaries: when an
interface (boundary) edge is refined, the new vertex should be placed on the interface
(boundary). Neither the original interface (boundary) edge or its two children edges
are required to coincide exactly with the interface (boundary). This explains our
motivation for giving boundary and interface vertices similar special treatment in
assigning tentative vertex parents in Algorithm Coarsen.

5. Some Hierarchical Basis Preconditioners. In this section, we will ana-
lyze block Jacobi and block symmetric Gauss-Seidel iterations using the hierarchical
decomposition

MJ = VJ
1 ⊕ VJ

2 ⊕ · · · ⊕ VJ
J

defined in Section 4. However, for convenience in this section, we assume that the
spaceMJ ⊂ H1

0(Ω). Satisfying the Dirichlet boundary conditions amounts to exclud-
ing basis functions associated with boundary vertices from the subspace. In order to
avoid the notational explosion involved with this change, we adopt the same notation
as in Section 4, and simply remark that many symbols have slightly altered mean-
ings to accommodate the boundary conditions. One important change is that ||| · |||
becomes a strong norm instead of a seminorm.

As before, we let {ψk
i }

Nk

i=Nk−1+1 denote the hierarchical basis functions for the
level-k vertices in TJ . Then the stiffness matrix A, represented in the hierarchical
basis, is expressed as the symmetric, positive definite block J × J matrix

A =


A11 A12 · · · A1J

A21 A22 A2J

...
. . .

...
AJ1 AJ2 · · · AJJ

(22)

where Akk is the (Nk−Nk−1)×(Nk−Nk−1) matrix of energy inner products involving
just the level-k basis functions. We set

A = L+D + Lt(23)

23

where

D =


A11

A22

. . .

AJJ


and

L =


0
A21 0

...
. . .

AJ1 AJ2 · · · 0

 .
The block diagonal matrix D is further decomposed as D = d+ `+ `t, where

d =


A11

d22

. . .

dJJ


dii = DiagAii, and

` =


0

`22

. . .

`JJ


is lower triangular.

We first analyze the block Jacobi preconditioner d. This is similar to the hierar-
chical basis method of Yserentant [29].

Theorem 5.1. Let A = L+D + Lt and D = `+ d+ `t as defined above. Then
there exist positive constants Ci = Ci(θ̄, ε̄, δ̄), i = 1, 2, such that

C1(1 + ε̄J)−1 ≤ U tdU

U tAU
≤ C2J

2(24)

for U 6= 0.
Proof. The upper bound in (24) is similar to the hierarchical basis preconditioner

for the case of nested meshes. The lower bound in the nested case does not have
the term (1 + ε̄J)−1. However, for typical choices of ε̄ and J , this term is effectively
bounded by a constant, so as a practical matter, the bound (22) does not differ
significantly from the nested mesh case. We begin our proof by writing the Rayleigh
quotient in (24) as

U tdU

U tAU
=
U tDU

U tAU

U tdU

U tDU

and will estimate each of the terms separately. Let u ∈MJ correspond to U in (24).
Then the Rayleigh quotient U tDU/U tAU can be written as

U tDU

U tAU
=

∑J
k=1 |||zk|||2

|||u|||2
24

where zk = (ĨJk − ĨJk−1)u.
Applying Theorem 4.3 for the upper bound, and Theorem 4.6 for the lower bound,

we have

c1(1 + ε̄J)−1 ≤ U tDU

U tAU
≤ c2J2.

For the Rayleigh quotient U tdU/U tDU , we can apply Theorem 4.7 to see

c1 ≤
U tdU

U tDU
≤ c2.

Combining these estimates proves (24).
We next consider the symmetric block Gauss-Seidel preconditioner using sym-

metric Gauss-Seidel “inner iterations”, an algorithm similar to the Hierarchical Basis
Multigrid Method [4] [1]. We begin with a few preliminary lemmas.

Lemma 5.2. Let A = L+D+Lt and let B̃ = (D+Lt)D−1(D+L) = A+LtD−1L.
Then there exists a positive constant C = C(θ̄, ε̄, δ̄), such that

1 ≤ U tB̃U

U tAU
≤ 1 + µ0 ≤ CJ2(25)

for U 6= 0, and

µ0 = max
U 6=0

W tDW

U tAU
.

DW = LU.

Proof. The preconditioner B̃ is essentially that for block symmetric Gauss-Seidel,
assuming that all linear systems involving the diagonal blocks Aii are solved exactly.
The lower bound and upper bound 1 + µ0 follow immediately from the definition of
B̃ and the fact that LtD−1L is positive semidefinite. To estimate µ0, let u ∈ MJ

correspond to U in (25). Then, in finite element notation,

µ0 = max
u6=0

∑J
k=2 |||wk|||2

|||u|||2

where

a(wk, χ) = a(ĨJk−1u, χ)

for all χ ∈ VJ
k .

Taking χ = wk in this relation and applying Theorem 4.3 leads to

|||wk||| ≤ |||ĨJk−1u||| ≤ C
√
J − k + 1|||u|||

which immediately implies µ0 ≤ CJ2.
Lemma 5.3. Let D = ` + d + `t and let D̃ = (d + `t)d−1(d + `) = D + `td−1`.

Then there exists a positive constant C = C(θ̄, ε̄, δ̄), such that

1 ≤ U tD̃U

U tDU
≤ 1 + µ1 ≤ C(26)

25

for U 6= 0, and

µ1 = max
U 6=0

W tdW

U tDU

dW = `U.

Proof. The preconditioner D̃ summarizes the symmetric Gauss-Seidel inner iter-
ations. The proof follows the pattern of that for Lemma 5.2, using Theorem 4.7 in
place of Theorem 4.3.

The preconditioner for the Hierarchical Basis Multigrid Method using symmetric
Gauss-Seidel inner iterations is given by

B = (D̃ + L)t(2D̃ −D)−1(D̃ + L)

= A+ (D − D̃ + L)t(2D̃ −D)−1(D − D̃ + L)(27)

= A+ (L− Z)t(D + 2Z)−1(L− Z)

where Z = `td−1` [4] [1].
Theorem 5.4. Let A = L+D+Lt and let B be given by (27). Then there exists

a positive constant C = C(θ̄, ε̄, δ̄), such that

1 ≤ U tBU

U tAU
≤ CJ2(28)

for U 6= 0.
Proof. We begin by noting that the matrix (L − Z)t(D + 2Z)−1(L − Z) is sym-

metric, positive semidefinite. This gives a lower bound of of 1 ≤ U tBU/U tAU and
an upper bound of the form U tBU/U tAU ≤ 1 + µ, where

µ = max
U 6=0

U t(L− Z)t(D + 2Z)−1(L− Z)U

U tAU

= ‖ (D + 2Z)−1/2(L− Z)A−1/2 ‖2`2

≤
(
‖ (D + 2Z)−1/2D1/2 ‖`2‖ D−1/2LA−1/2 ‖`2

+ ‖ (D + 2Z)−1/2ZD−1/2 ‖`2‖ D1/2A−1/2 ‖`2
)2

.

Now ‖ (D+2Z)−1/2D1/2 ‖`2= 1, since Z = `td−1` is symmetric, positive semidef-
inite, while ‖ D−1/2LA−1/2 ‖`2= µ0 ≤ CJ2 and ‖ D1/2A−1/2 ‖`2≤ CJ2 using Lemma
5.2 and Theorem 5.1, respectively. Finally, from Lemma 5.3,

‖ (D + 2Z)−1/2ZD−1/2 ‖`2≤
1√
2
‖ D−1/2ZD−1/2 ‖`2=

µ1√
2
≤ C.

Combining these estimates, we see that µ ≤ CJ2, just as in the basic block symmetric
Gauss-Seidel iteration.

We next formally define algorithms similar to BPX [10] and regular multigrid al-
gorithms based on our decomposition. We will use the ideas of Griebel [15] [14], who
characterizes these methods as particular iterations applied to an enlarged, semidef-
inite system. For each vertex vi ∈ XJ , let L(vi) ≡ Li denote the vertex level of vi

26

and E(vi) ≡ Ei denote the maximum edge level of any edge in EJ having vi as an
endpoint. Clearly 1 ≤ Li ≤ Ei ≤ J . With each vertex vi ∈ XJ , we associate a set of
one or more basis functions given by

ξki = ĨJk φi

for Li ≤ k ≤ Ei. Here φi ≡ φJi (= ξEi
i) are just the nodal basis functions for MJ ,

and ξLi
i ≡ ψJ

i are the usual hierarchical basis functions for MJ . We next define the
subspaces ṼJ

k by

ṼJ
k = span

{
ξki
}
.

Note that VJ
k ⊂ ṼJ

k and

MJ = ṼJ
1 + ṼJ

2 + · · ·+ ṼJ
J .

We note that this is not a direct sum decomposition as in the case of hierarchical basis
methods.

We can now form a block J ×J , symmetric, positive semidefinite stiffness matrix
A given by

A =


A11 A12 · · · A1J

A21 A22 A2J

...
. . .

...
AJ1 AJ2 · · · AJJ

(29)

where Akk involves energy inner products of the ξki .

If the enlarged finite element system is AU = B, then Griebel shows that any
solution U of the singular system corresponds to the unique finite element solution
u ∈ MJ . Within this framework, the BPX method is just a block Jacobi precondi-
tioner analogous to the Hierarchical Basis preconditioner analyzed in Theorem 5.1,
but applied to the matrix A. Similarly, the block symmetric Gauss Seidel Precondi-
tioner, using symmetric Gauss Seidel as an inner iteration as in Theorem 5.4, is just a
particular multigrid V -cycle using symmetric Gauss-Seidel as smoother when applied
to the matrix A.

In the case of nested meshes, both BPX and regular multigrid V -cycle have been
shown to have condition numbers which are bounded independent of the number of
levels J [23] [24] [28] [30] [8]. Furthermore, those bounds apply in three as well as two
space dimensions. Our analysis of these methods, based on the results of Section 4,
is essentially the same as Theorems 5.1 and 5.4, and has neither of these properties.

On the one hand, one should expect these BPX and multigrid like preconditioners
to outperform hierarchical basis and hierarchical basis multigrid preconditioners, re-
spectively, since unknowns associated with certain grid points are processed on several
levels, rather than only one. On the other hand, our subspace decomposition is based
on the approximate pointwise interpolation operators ĨJk rather than L2 projections,
so it is problematic that these preconditioners could be shown to achieve the same
sorts of condition numbers as their counterparts based on nested refinement.

27

6. Implementation Issues. In this section we discuss several important as-
pects of the practical implementation of the hierarchical basis multigrid and other
hierarchical basis preconditioners. The most difficult issue is that, in typical applica-
tions, the stiffness matrix is assembled using the nodal basis functions rather than the
hierarchical basis. The reason is that the nodal basis functions have small supports,
only three such functions are nonzero in any given element of the fine mesh, and there-
fore the stiffness matrix represented in the nodal basis is both easy to assemble and
very sparse. In contrast, since hierarchical basis functions have supports of varying
sizes, depending on the level, the stiffness matrix represented in the hierarchical basis
is more complicated to assemble and much less sparse than that of the nodal basis
(although better conditioned).

To give a theoretical analysis of the method as in Sections 4 and 5, it is sufficient
to assume the linear system is assembled in the hierarchical basis. However, to effi-
ciently implement the method, one must assemble the stiffness matrix with respect
to the nodal basis, and then implement the hierarchical basis iteration in an implicit
fashion. It is through this aspect of their implementation that the connection be-
tween hierarchical basis methods and multigrid methods becomes clear. We will give
a simple illustration of how this is done, by considering in detail the case of two levels.

We write the linear system ÂÛ = F̂ , constructed with respect to the standard
nodal basis, in block form as[

Â11 Â12

Â21 Â22

] [
Û1

Û2

]
=

[
F̂1

F̂2

]
.(30)

Here we have assumed a partitioning corresponding to the two level hierarchical de-
composition. The system (30) is related to the hierarchical basis system[

A11 A12

A21 A22

] [
U1

U2

]
=

[
F1

F2

]
(31)

via a nonsingular matrix S which transforms the representation of a finite element
function with respect to the hierarchical basis into its representation with respect to
a nodal basis. S has the block structure

S =

[
I 0
R I

]
.(32)

The off-diagonal entries of S are zero except for at most two nonzeroes in each row
of R. Let vi have Li = 2, and let v` and vr be the vertex parents of vi. Then the
two nonzero coefficients in R for row i are Sir = θ and Si` = 1 − θ, where θ is the
interpolation coefficient defined in (4) and (1). Using (32) we relate the matrices A
and Â , the right hand sides F and F̂ , and solutions U and Û by

A = StÂS

F = StF̂

Û = SU.

Blockwise this gives

A11 = Â11 +RtÂ21 + Â12R+RtÂ22R

A12 = Â12 +RtÂ22

28

A21 = Â21 + Â22R

A22 = Â22

F1 = F̂1 +RtF̂2

F2 = F̂2

Û1 = U1

Û2 = RU1 + U2.

A single iteration cycle of the hierarchical basis multigrid method, expressed in the
current notation, is given below. First, we approximately solve

A22W2 = F2(33)

using a symmetric Gauss-Seidel inner iteration. To avoid introducing more notation,
we denote the approximate solution by W2. We then form the level-1 hierarchical
basis residual G1 = F1 −A12W2 as

G1 = (F̂1 − Â12W2) +Rt(F̂2 − Â22W2).(34)

Next, we solve

A11W1 = G1(35)

by a direct method, and set Ŵ1 = W1. Next, form the level-2 hierarchical basis
residual G2 = F2 −A21W1 −A22W2 as

G2 = F̂2 − Â21Ŵ1 − Â22(RW1 +W2)(36)

Next, we approximately solve

A22Z2 = G2(37)

using a symmetric Gauss-Seidel inner iteration, denote the approximate solution by
Z2, and set

Ŵ2 = RW1 +W2 + Z2.(38)

Careful inspection of (33)-(38) shows the hierarchical basis method to be closely re-
lated to a standard multigrid V-cycle. Equations (33) and (37) correspond to multigrid
smoothing steps, except that only the level-2 unknowns (W2 and Z2) are smoothed,
rather than all unknowns. After the first (pre) smoothing step in (33), the approxi-
mate solution with respect to the nodal basis is[

Û1

Û2

]
≈
[

0
W2

]
.

In (34), forming the residual vector G1 consists of forming the fine grid residuals after
smoothing with respect to the nodal basis[

F̂1 − Â12W2

F̂2 − Â22W2

]
and making a “fine-to-coarse” grid transfer (multiply by Rt) to compute the residual
with respect to the hierarchical basis for the level-1 unknowns. Equation (35) is the

29

standard multigrid coarse grid correction, done by direct methods for our case J = 2,
but more generally handled by recursion for J > 2. In (36) we update the nodal basis
solution as [

Û1

Û2

]
≈
[

Ŵ1

RW1 +W2

]
using “coarse-to-fine” grid interpolation (multiply by R), and form the fine grid resid-
ual Ĝ2. After the second (post) smoothing step (37), the approximate solution with
respect to the nodal basis is [

Û1

Û2

]
≈
[
Ŵ1

Ŵ2

]
.

To carry out this iteration, we need the matrices Â22 = A22, Â12, and A11, all of
which are sparse. The matrices Â12 and Â22 are just blocks of the original stiffness
matrix computed with respect to the nodal basis. In the case of nested refinement, A11

is just the stiffness matrix formed from energy inner products of the coarse grid nodal
basis functions. In our case, A11 has a similar sparsity pattern to that of the nested
case, but the basis functions involved are the nodal basis functions for the coarse grid
interpolated onto the fine grid using (4). However, we never have to explicitly form or
compute with these basis functions; rather we compute Â as in (30), using the usual
nodal basis, and form A11 = Â11 +RtÂ21 + Â12R+RtÂ22R.

The matrix R is also sparse; its sparsity structure is known through the vertex
parents for each vertex, and the numerical values for each row (θ and 1 − θ) can be
conveniently stored in one or two linear arrays of order NJ .

For more than two levels, the procedure is implemented recursively, which affects
only equation (35). Matrix A11 is recursively decomposed into pieces corresponding
to coarser levels, but with the same structure as the basic two level matrices described
above.

We close this section with a numerical example, using the hierarchical basis multi-
grid method applied to the Lake Superior example of Section 3. The partial differential
equation we solved was

−∆u = 1 in Ω,

u = 0 on ∂Ω.

The application of Algorithm Coarsen with a target value of 300 vertices in the
coarse grid triangulation resulted in eight hierarchical basis levels, which we defined
using the function L(v) ≡ L̄(v).

The graphs of the resulting stiffness matrices (similar to A11 above, but now
generated recursively for each of the hierarchical basis levels) are shown in Figures 10
and 11. As is standard in sparse matrices, each edge in the graph corresponds to a
nonzero in the upper triangular part of the stiffness matrix. Perhaps the most striking
feature of these graphs is that, with the exception of case of the original mesh, none of
the graphs are triangulations. This is partly due to a suboptimal choice of levels, and
partly due to edge swapping. For example, if the mesh with 1412 vertices in Figure 7
was one of the meshes (it is not) then the graph of the mesh would be the graph of the
stiffness matrix, with the remark that for each quadrilateral element, both diagonal
edges must be added. In effect, edge swapping creates nonzeroes in the stiffness matrix

30

connecting all four vertices involved in the swap. This effect propagates through
subsequent edge swaps, so the matrix graphs become progressively more distant from
the underlying triangulations. The extra edges due to swapping also increase slightly
the overall work and storage involved in the algorithm, as noted in Section 3.

Fig. 10. Graph of the initial stiffness matrix with 5927 vertices, and graphs of the hierarchical
basis matrices with 2195, 1178 and 670 vertices.

The convergence history is shown on the right in Figure 12. The quantity plotted
is

σk = log

{
‖ rk ‖
‖ r0 ‖

}
,

where rk is the residual at iteration k and ‖ · ‖ is the `2 norm. Standard conjugate
gradient acceleration was used. From the data points, we estimate by least squares
that the convergence rate is approximately .37, which is fairly typical of this particular
iterative method applied to a similar problem on a sequence of refined meshes.

REFERENCES

31

Fig. 11. Graphs of the hierarchical basis matrices with 426, 337, 309, and 300 vertices.

[1] R. E. Bank, Hierarchical preconditioners for elliptic partial differential equations, in Large
Scale Matrix Problems and the Numerical Solution of Partial Differential Equations (J.
Gilbert and D. Kershaw, eds.), Oxford University Press, 1994, pp. 121–155.

[2] , PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users’
Guide 7.0, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1994.

[3] R. E. Bank and T. F. Dupont, Analysis of a two level scheme for solving finite element
equations, Tech. Rep. CNA-159, Center for Numerical Analysis, University of Texas at
Austin, 1980.

[4] R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method,
Numer. Math., 52 (1988), pp. 427–458.

[5] R. E. Bank, A. H. Sherman, and A. Weiser, Refinement algorithms and data structures for
regular local mesh refinement, in Scientific Computing (Applications of Mathematics and
Computing to the Physical Sciences) (ed. R. S. Stepleman), North Holland, 1983, pp. 3–17.

[6] R. E. Bank and J. Xu, The hierarchical basis multigrid method and incomplete LU decompo-
sition, in Proceedings of Seventh International Conference on Domain Decomposition. (ed.
D. Keyes and J. Xu), AMS, Providence, Rhode Island, 1994, pp. 163–173.

[7] , A hierarchical basis multigrid method for unstructured meshes, in Fast Solvers for Flow
Problems. Proceedings of the Tenth GAMM-Seminar Kiel, (Notes on Numerical Mathe-
matics, vol. 49, W. Hackbusch and G. Wittum, eds.), Vieweg-Verlag, Braunschweig, 1995,
pp. 1–13.

32

Fig. 12. Convergence history for HBMG with conjugate gradient acceleration.

[8] F. Bornemann and H. Yserentant, A basic norm equivalence for the theory of multigrid
methods, Numer. Math., 64 (1993), pp. 455–476.

[9] J. Bramble, J. Pasciak, and J. Xu, The analysis of multigrid algorithms with non-imbedded
spaces or non-inherited quadratic forms, Math. Comp., 56 (1991), pp. 1–43.

[10] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp.,
55 (1990), pp. 1–22.

[11] T. F. Chan and B. F. Smith, Domain decomposition and multigrid algorithms for elliptic
problems on unstructured meshes, in Proceedings of Seventh International Conference on
Domain Decomposition. (ed. D. Keyes and J. Xu), AMS, Providence, Rhode Island, 1994,
pp. 175–189.

[12] V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy-Buniakowskii-Schwarz
inequality in multilevel methods, SIAM Review, 33 (1991), pp. 405–419.

[13] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice
Hall, Englewood Cliffs, NJ, 1981.

[14] M. Griebel, Multilevel algorithms considered as iterative methods on semidefinite systems,
SIAM J. Sci. Comput., 15 (1994), pp. 547–565.

[15] , Multilevelmethoden als Interationsverfahren Erzeugendensystemen, B. G. Teubner,
Stuttgart, 1994.

[16] M. Griebel and P. Oswald, Remarks on the abstract theory of additive and multiplicative
Schwarz algorithms, Tech. Rep. TUM-19314, Institut für Informatik, Technische Univer-
sität München, 1993.

[17] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
[18] W. Hackbusch and G. Wittum, eds, Incomplete Decompositions - Algorithms, Theory and

Applications, Notes on Numerical Fluid mechanics, vol. 41, Vieweg, Braunschweig, 1993.
[19] R. H. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM

J. Numer. Anal., (to appear).
[20] R. Kornhuber, Monotone multigrid methods for variational inequalities I, Numer. Math., (to

appear).
[21] D. J. Mavriplis, Multigrid techniques for unstructured meshes, Tech. Rep. 95-27, Institute for

Computer Applications in Science and Engineering, Hampton, Virginia, 1995.
[22] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM

Trans. Math. Soft., 15 (1989), pp. 326–347.
[23] P. Oswald, On discrete norm estimates related to multigrid preconditioners in the finite el-

ement method, in Proceedings of the International Conference on Constructive Theory of
Functions, Varna, 1991.

33

[24] , Multilevel Finite Element Approximation. Theory and Applications, B. G. Teubner,
Stuttgart, 1994.

[25] M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, Int. J. Numer. Meth. Eng., 20 (1984), pp. 745–756.

[26] D. J. Rose, A graph theoretic study of the numeric solution of sparse positive definite systems,
in Graph Theory and Computing, Academic Press, New York, 1972.

[27] J. Xu, Theory of Multilevel Methods, PhD thesis, Cornell University. Report AM-48, Penn
State, 1989.

[28] , Iterative methods by space decomposition and subspace correction, SIAM Review, 34
(1992), pp. 581–613.

[29] H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986),
pp. 379–412.

[30] , Old and new convergence proofs for multigrid methods, in Acta Numerica, Cambridge
University Press, 1992.

[31] S. Zhang, Multilevel Iterative Techniques, PhD thesis, Pennsylvania State University, Depart-
ment of Mathematics Report 88020, 1988.

34

