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1. Introduction

In this paper, we describe some recent enhancements to the software package pltmg
[Ban94]. This package uses piecewise linear finite elements approximations, adaptive
meshing procedures and multilevel iterative methods to solve elliptic partial differential
equations posed on general regions of the plane. The enhancements described here are
mainly concerned with the adaptive mesh generation capabilities of the package.

In the past, the linear equation solvers in pltmg have been multigrid and
hierarchical basis multi level solvers making use of a hierarchy of refined meshes
generated through an adaptive mesh refinement process. More recently, the strong
connection between HBMG and ILU factorization has been exploited in developing
HBMG algorithms that construct the needed hierarchical basis implicitly through an
incomplete factorization (grid coarsening) [BX94, BX96]. In terms of efficiency, such
hierarchical basis multigraph solvers have been seen to be comparable to classical
HBMG solvers, and in some cases even better, but make use of information only on
the finest mesh.

In any event, with the linear algebra portion of the package able to work efficiently
using information from only the finest mesh, it seemed appropriate to consider adaptive
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algorithms which do not necessarily produce the usual hierarchy of meshes. This
allowed some simple but interesting adaptive refinement, unrefinement and mesh
smoothing strategies to be incorporated in the current code.

At the same time, the triangle tree data structures, previously necessary to maintain
the hierarchy of meshes, were replaced by simplified data structures which maintain
only the current mesh. An additional feature of these new data structures is the
capability to deal with partitioned domains. This allows problems with periodic
boundary conditions to be solved. This also allows solution of problems posed on
more general partitioned domains typical of those arising from domain decomposition
algorithms. One hopes that these additional capabilities will enhance the value of the
package both as a research tool and in the solution of routine problems. We note
that although the pltmg package is not presently designed for a parallel computing
environment, some of the necessary communication links for that environment are now
established in the serial version.

The remainder of this manuscript is organized as follows. In Section 2., we briefly
describe the data structures. In Section 3., we discuss some details of the resulting
systems of linear equations. In Section 4. we describe a few enhancements for the
a posteriori error estimates which form the basis of our adaptive procedures. The
adaptive procedures themselves are described in Section 5., and a simple numerical
example is presented in Section 6..

2. Data Structures

For convenience, we consider the model elliptic boundary value problem

−∆u+ σu = f(x, y) for (x, y) ∈ Ω, (1)

with σ(x, y) ≥ 0 and boundary conditions

u = g2(x, y) for (x, y) ∈ ∂Ω2,

∇u · n = g1(x, y) for (x, y) ∈ ∂Ω1, (2)

u and ∇u · n continuous for (x, y) ∈ ∂Ω0.

The details of the particular partial differential equation have no impact on our
specification of the physical domain, so our remarks are relevant for very general
systems of nonlinear PDES. The problem formulation (1)-(2) is sufficiently general
that it is possible to specify inconsistent and ill-posed problems. This is not our intent
here, so we assume that the specification is such that the problem is well posed. Here
Ω is a (possibly disconnected) region in R2 with boundary ∂Ω = ∂Ω0∪∂Ω1∪∂Ω2, and
n is the unit normal. The boundary conditions are the usual Dirichlet and Neumann
types on part of the boundary. The interesting case is ∂Ω0, which is best described in
terms of a few illustrative examples.

First, suppose that Ω is connected, and we specify periodic boundary conditions on
part of the boundary. We can then view corresponding pairs of points on the periodic
boundary as being linked and interpret the continuity of u and ∇u · n with respect
to these linked boundaries. For example, if Ω is the unit square (0, 1) × (0, 1) with
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periodic boundary conditions at x = 0 and x = 1, then the left and right boundaries
of Ω are linked as described above.

Second, suppose that Ω is decomposed into two subregions Ω = Ω1 ∪ Ω2 with
an internal interface Γ. Then the portions of the boundaries of Ωi lying on the
interface comprise ∂Ω0 and once again are linked, with continuity of u and ∇u · n
again interpreted with respect to the linked boundaries.

There is nothing new in this formulation using linked boundaries, but by viewing
the domain as defined in this way, all the necessary information about the linked
boundaries is automatically built into the data structures defining the domain, and
the necessary communication for the linked boundaries will already be present in a
serial implementation. The differences between serial and parallel implementations
should thus be diminished.

We now describe the data structures used for our finite element mesh. We suppose
that T is a triangulation of the region Ω. We assume that the triangles are shape
regular, although triangles can have curved edges as allowed by isoparametric finite
element discretizations. The overall mesh can be nonuniform and unstructured. Along
the linked boundary ∂Ω0 the triangulation must be matching; that is, if two boundaries
are linked, then the restrictions of the triangulation T to those boundaries should be
congruent.

Our basic data structure consists of lists of vertices, triangles, and edges, and is
fairly standard in most respects. Let (xk, yk)Nk=1 be the set of vertices of T ; then the
vertex coordinates are stored in real arrays of size N . The only unusual aspect is that
along linked boundaries, two vertices may share the same physical coordinates. This
would not happen in our example of periodic boundary conditions, but would happen
in the example of the linked internal interface Γ. If there are so-called cross points,
more than two distinct vertices could have the same physical coordinates.

A triangle t ∈ T is characterized in terms of four integers; three global vertex
numbers (essentially pointers to the arrays storing the (xk, yk)) and a fourth optional
pointer (called a label), which could, for example, point at a database of material
properties associated with the region containing t. This is realized (in fortran) as
a 4 × NT integer array, where NT ≈ 2N is the number of triangles. This is again a
fairly standard approach.

We now turn to the definition of edges, which is the most intricate part of the
data structure. All boundary edges must be defined in our data structure, which is
the standard case. Internal edges of the mesh are defined within the data structure
only if they are curved; internal straight edges are implicitly defined through the
triangulation. As a practical matter, we expect that all or almost all internal edges
will be straight, and thus we anticipate that NB = O(

√
N), where NB is the number

of edges defined in the data structure.
An edge b is characterized by five integers; two are global vertex numbers for the

endpoints of the edge. The third characterizes the geometry of the edge. It is zero for
straight edges. It is positive for curved edges, and points at a database which allows
one to compute points along the curve as needed.

The fourth parameter is an edge type. We specify type = 2 for Dirichlet boundary
edges, type = 1 for Neumann boundary edges, and type = 0 for internal edges.
Edges lying on linked boundaries have a negative type. Suppose that bi and bj are
a pair of corresponding edges along a linked boundary. The type = −j for bi and
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type = −i for bj . Thus it is the type parameter (and only the type parameter) which
establishes communication along linked boundaries. We note that it is this simple
plan for communication which requires the triangulation to be matching along linked
boundaries.

The fifth parameter is an optional label parameter, which could be used to point at
a database of material properties associated with the given edge. This data structure
is realized as a 5×NB integer array.

3. The Linear System

In this section we describe briefly the Lagrange multiplier formulation we use to
construct the system of equations to be solved. To some extent this aspect of the
problem is peripheral to the main thrust of this paper, but we include a short discussion
for the sake of completeness. For simplicity, we consider the case of two subregions
with one linked boundary, since the generalization to the case of many regions and
linked boundaries is immediately apparent. Also, we assume the case of piecewise
linear finite element approximation, since the standard degrees of freedom correspond
to solution values at the vertices, and this will also simply our discussion.

The global system of equations is denoted AU = F , with A the global stiffness
matrix, U the solution vector (including Lagrange multipliers as necessary) and F the
right hand side. Let B and C denote the usual finite element stiffness matrices for
Ω1 and Ω2, respectively. For convenience in presentation, in Ω1 we assumed that the
vertices along the linked boundary Γ are ordered last. In Ω2, we do the same, with
that additional requirement that the linked vertices are given the same relative order
as in Ω1. As a practical matter, vertices in both regions can be ordered arbitrarily and
independently, but that generality would make our current discussion notationally
cumbersome. With our imposed ordering, the matrices B and C have the simple block
structure

B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

The blocks B22 and C22 are of the same order, which is equal to the number of vertices
along the linked boundary.

To construct our linear system, we impose (pointwise) continuity at all vertices
along the linked boundary, and introduce Lagrange multipliers for each pair of linked
vertices. These Lagrange multipliers have a physical interpretation in terms of the
normal component of the gradient at the linked vertices. Then the overall linear system
AU = F has the block structure

B11 B12 0 0 0
B21 B22 0 0 I
0 0 C11 C12 0
0 0 C21 C22 −I
0 I 0 −I 0




V1

V2

W1

W2

Λ

 =


G1

G2

H1

H2

0

 , (3)

where V and W are the solution vectors for Ω1 and Ω2, respectively, and Λ is the vector
of Lagrange multipliers. This linear system has the standard form of a saddle point
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problem. One could weakly impose continuity using an appropriate (one dimensional)
finite element space defined on Γ; the main effect is that the identity matrices in (3)
would be replaced by mass matrices.

Because of the simple structure we can easily eliminate the Lagrange multipliers
and either V2 or W2 from (3) and have the reduced system B11 0 B12

0 C11 C12

B21 C21 B22 + C22

 V1

W1

W2

 =

 G1

H1

G2 +H2

 . (4)

Equation (4) is the linear system which would have resulted from the finite element
discretization of the original problem, without the introduction of Γ.

4. A Posteriori Error Estimates

Of central importance to the adaptive procedures is the computation of a posteriori
local error estimates [BR78, AO93, Ver95]. In this section we briefly summarize our
a posterior error estimation procedure for the case of piecewise linear finite element
approximation. In our procedure, we compute an approximate error eh ≈ u − uh as
a discontinuous piecewise quadratic polynomial which is zero at the vertices of the
mesh. The piecewise polynomial eh is found by solving a small (of order 3) Neumann
problem in each element of the mesh as described in [BW85, Ban96]. The unknowns
of the problem associated with triangle t are the values of the quadratic polynomial
approximating the error at the midpoints of the three edges of t. The data for the
problem in triangle t is the residual of the partial differential equation in t, and the
boundary data is based on the jump in normal direction of the solution across the
edges of t. This is a completely standard scenario, with only a small modification for
linked boundary edges, where the solution for the two elements sharing a pair of linked
edges is used to compute the jump in normal derivative.

The error estimates are further processed for use in the adaptive algorithms. Suppose
that in each element t the true solution u is well approximated by a quadratic
polynomial. In particular, assume that eh ≈ u2 − u1 where u2 is the local quadratic
interpolant based on vertices and midpoints, and u1 is the linear interpolant based
on vertices. Let (xm, ym) denote the midpoint of the edge connecting vertices (xi, yi)
and (xj , yj). Then the coefficient of the nodal quadratic basis function for midpoint
(xm, ym) for the quadratic polynomial u2 − u1 is

u(xm, ym)− 1

2
u(xi, yi) − 1

2
u(xj , yj)

≈ −1

8

[
xi − xj
yi − yj

]t [
uxx uxy
uxy uyy

] [
xi − xj
yi − yj

]
.

Our specific assumption for the true solution u is that the 2 × 2 matrix of second
derivatives is (approximately) constant in each element t. Our a posteriori error
estimates provide approximations eh(xm, ym) of the coefficient of the quadratic basis
function for the midpoint (xm, ym). These values are related to the second derivatives
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by the relation

eh(xm, ym) = −1

8

[
xi − xj
yi − yj

]t [
uxx uxy
uxy uyy

] [
xi − xj
yi − yj

]
, (5)

For each triangle t, we solve a 3×3 set of equations using (5), where m is in turn each
of the three midpoints of element t, for the (assumed) constants uxx(t), uxy(t), and
uyy(t).

Of course, the initial computation of a posteriori estimates yields directly error
estimates for the original elements t in the finite element mesh, without the necessity
of solving for the second derivatives using (5). However, it is the second derivatives
for each element which are actually used to estimate errors in new elements created
through the adaptive processes. For example, if an element is refined, one can use the
second derivatives for the parent element in (5) to evaluate eh(xm, ym) for the edge
midpoints of the refined elements. Once these midpoint values are known, one can
directly compute error estimates for the refined elements.

5. Adaptive Algorithms

Our adaptive algorithms all operate on the data structures defined in Section 2.;
in some sense they can be regarded as operators which map an input triangulation
data structure to an output triangulation data structure. Because our multilevel
solution techniques no longer require a hierarchy of meshes to be efficient, our adaptive
procedures no longer maintain a history of the adaptive process (e.g. a refined element
tree), and hence have become both less complicated and more flexible. Fundamentally,
all our adaptive algorithms are hueristics with the goals of minimization of the
local error, maintenance of the shape regularity of the elements, and efficiency in
implementation.

Let t be a triangle with area a and side lengths h1, h2, and h3. The quality of t,
q(t), is measured using the formula

q(t) = 4
√

3a/(h2
1 + h2

2 + h2
3). (6)

The function q(t) is normalized to equal one for an equilateral triangle and to approach
zero for triangles with small angles, and is used for controlling the shape regularity of
elements in the mesh.

5.1. Refinement and Unrefinement.

We begin with a discussion of our adaptive refinement and unrefinement algorithms.
Our goal here is to begin with a mesh with N vertices, and create a new mesh with
(approximately) N ′ vertices. If N ′ > N , then adaptive refinement takes place; if
N < N ′, then unrefinement takes place.

A third possibility is to combine both procedures. Given N̄ < N , one can first
unrefine the mesh to N̄ vertices. The one can then refine to again obtain a mesh with
N vertices. The output triangulation thus has approximately the same number of
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vertices as the input triangulation, but the topology of the mesh and the distribution
of mesh points can be quite different.

We begin with a brief summary of our refinement procedure, which is based on
the longest edge bisection algorithm of Rivara [Riv84, Mit89]. All current elements
are placed in a heap data structure according to the size of the error estimates. The
element with largest error estimate is at the root of the heap. This element is selected
for refinement, and is bisected along its longest edge. The neighbor element sharing
the longest edge is also bisected along its longest edge. If the result is a triangulation
(i.e. the longest edge for both elements is the same) the process stops. Otherwise, it is
recursively applied to the longest edge neighbors of all refined elements. An example
is shown is Figure 1. This process is known to have finite termination, typically in a
very small number of steps. When the longest edge bisection process finally results
in a triangulation, the new elements are created, and added to the triangulation data
structures. New elements inherit the second derivative information from their parents,
so error estimates can be computed and the heap updated. Using the updated heap, the
refinement process continues, until a mesh with approximately N ′ vertices is created.

Local edge swapping and mesh smoothing algorithms [BSar] are employed to locally
optimize the shape regularity of the of the final mesh in terms of the quality measure
(6).
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Figure 1 Element t is refined by the longest edge bisection method. The original mesh is

on the left. The first step of bisection (middle) does not yield a compatible triangulation.

However, the second step (right) does yield a triangulation.

In the case of unrefinement, the basic step consists of deleting vertices from the mesh,
rather then directly unrefining elements. Each vertex v is associated with a region Ωv,
as illustrated in Figure 2. The error associated with vertex v is the largest error of
any element contained in Ωv. With these definitions, the unrefinement procedure is
quite analogous to the refinement procedure described above. All the vertices are
placed in a heap based on their errors, with the vertex of smallest error at the root.
Certain vertices, which are critical to the geometric integrity of the domain as a whole
(e.g, corner vertices on the boundary of the region) are given artificially large errors.
Vertices of low degree have their errors reduced a bit to favor their elimination.

In the elimination step, the root vertex of the heap is eliminated from the mesh.
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The region Ωv associated with this mesh is then triangulated using the boundary
vertices, as shown in Figure 2. The newly created elements inherit second derivative
information from the original elements in Ωv (through suitable averaging), and error
estimates are computed for the new elements. The vertices lying on ∂Ωv have their
errors updated as required, and the heap is updated. The process is continued until a
mesh with N ′ vertices is achieved. As in the case of refinement, local edge swapping
and mesh smoothing are used to improve the shape regularity of the final mesh in
terms of the quality measure (6).
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Figure 2 On the left is the subregion Ωv, associated with vertex v. To unrefine the mesh,

vertex v and all its incident edges are removed from the triangulation (middle). The region

Ωv is then triangulated using the boundary vertices (right).

5.2. Mesh Smoothing.

Our adaptive mesh smoothing algorithm does no refinement or unrefinement of the
mesh, but rather adjusts the (x, y) coordinates of the mesh points for a fixed topology
in an attempt to optimize the mesh. The procedure consists of a Gauss-Seidel like
iteration on the vertices in the mesh, where the location of each vertex is locally
optimized with all other vertices held fixed. The procedure is described in detail in
[BSar]. Typically a given vertex v is allowed to move withing the region Ωv as shown
in Figure 2. Not all vertices in the mesh are allowed to move. Some boundary and
interface vertices must remain fixed to preserve the definition of the region. These
vertices are called corners. Vertices on the boundary or on interfaces that are not
designated corners are allowed to move only along the boundary or interface. The
remaining vertices, called interior vertices, are allowed to move freely within Ωv. As
in our refinement algorithms, some local mesh smoothing based on (6) is used to locally
optimize the shape regularity of the mesh.

For each vertex v = (x, y) in the mesh, we solve the minimization problem

min
x,y
||∇eh||2L2(Ωv) (7)

of order two by a damped Newton’s method. As noted above, we assume the second
derivatives are constant in each element t having v as a vertex, leading to an
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overall piecewise constant approximation of the second derivatives on Ωv. All other
dependencies on v = (x, y) are taken into account by Newton’s method. Boundary
and interface vertices have an additional constraint equation, so an appropriately
constrained version of problem (7) is solved for those vertices. Besides its usual task
of insuring sufficient decrease, the damping strategy for Newton’s method is also used
to insure that the point (x, y) remains well within Ωv, so that all triangles are always
well defined. It is interesting to note that the function ||∇eh||L2(Ωv) contains a natural
barrier function that becomes infinite as (x, y) approaches ∂Ωv.

6. Numerical Example

In this section we present a simple numerical example to illustrate the minimal effect
of linked boundaries on our adaptive algorithms. We solve the equation −∆u = 1
with homogeneous boundary conditions in the region shown in Figure 3 (the profiles
are NACA0012). The initial mesh has 644 elements and 375 vertices. We refined this
mesh to one with N = 24000 using three refinement steps (N = 1500, N = 6000 and
N = 24000). A detail of the final mesh is shown in Figure 4 (the complete mesh is
too dense to be resolved in such a small picture). For comparison we solve the same
problem except the domain is now partitioned into two subdomains as illustrated in
Figure 3. The initial mesh still has 644 elements but now has 398 vertices due to
duplicate vertices along the linked boundary. We again refine this mesh to one with
N = 24000 vertices; a detail is shown in Figure 4. From this we see that while the
meshes for the two cases are not identical, they are quite similar.

In Figure 5, we present a log-log plot of the a posteriori error estimates for the H1

norm as a function of N . Again we see quite similar behavior. The final relative error
estimate is 3.01e(−2) for the first case and 3.01e(−2) for the partitioned mesh. For
the L2 norm (not illustrated) the final relative error estimates were 2.27e(−4) and
2.25e(−4), respectively.
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Figure 3 The initial grids.

Figure 4 Detail of the final grids.

Figure 5 Convergence histories in the H1 norm.
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