
A New Parallel Domain Decomposition
Preconditioner I: Application with an Adaptive

Parallel Finite Element Solver

Randolph E. Bank∗and Peter K. Jimack†

Abstract: Adaptive algorithms are of great importance in computational me-
chanics codes since they can allow both reliability, through the satisfaction of
error tolerances, and efficiency, by ensuring that the total number of degrees of
freedom present is as small as possible. Unfortunately, the successful incorpora-
tion of adaptivity into most software is a complex programming task, and this
is especially true for parallel codes. This paper introduces a new parallel do-
main decomposition preconditioner which is ideally suited for use in an adaptive
framework. Unlike conventional domain decomposition approaches, this tech-
nique requires each process to work on the entire domain but with a coarse mesh
which has been locally refined only in the subdomain for which that process is
responsible. In order to justify the proposed preconditioner it is presented as
a natural development of existing domain decomposition and subspace iteration
algorithms, and its implementation as part of a parallel mesh adaptivity algo-
rithm, due to Bank and Holst [2], is also outlined. The paper concludes with the
presentation and discussion of a number of provisional numerical results.

1 Introduction

Throughout this paper we will consider the parallel finite element solution of the
following linear second order model problem.

Problem 1.1 Find u ∈ H1
E(Ω) such that

A(u, v) = F(v), ∀v ∈ H1
0 (Ω) , (1)

where Ω ∈ <2 is the problem domain,

H1
E(Ω) = {u ∈ H1(Ω) : u|∂ΩE

= uE(x)} (2)

and
H1

0 (Ω) = {u ∈ H1(Ω) : u|∂ΩE
= 0} . (3)

∗Dept. of Mathematics, University of California at San Diego, CA 92093, USA. (The work of
this author was supported by the National Science Foundation under contract DMS-9706090.)
†School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK. (The work of this

author was supported by the Leverhulme Trust.)

1

Here ∂ΩE is the (non-empty) part of the boundary, ∂Ω, upon which essential
boundary conditions are imposed and A(·, ·) and F(·) are the bilinear and linear
forms

A(u, v) =
∫

Ω
(A(x)∇u) · ∇v dx and F(v) =

∫
Ω
fv dx+

∫
∂ΩN

gv ds , (4)

where A(x) is symmetric and strictly positive-definite, and ∂ΩN = ∂Ω− ∂ΩE is
the part of the boundary subject to Neumann boundary conditions: ∂u

∂n
= g(x).

In order to approximate this solution from a finite dimensional space of trial
functions, Sh(Ω) say, it is necessary to solve the following discrete problem.

Problem 1.2 Find uh ∈ Sh(Ω) ∩H1
E(Ω) such that

A(uh, vh) = F(vh), ∀vh ∈ Sh(Ω) ∩H1
0 (Ω) . (5)

This problem may in turn be expressed as the matrix equation

Ku = b , (6)

where K is the stiffness matrix, b is the load vector and u is a vector of nodal
displacements which is to be determined.

The matrix K is strictly positive-definite and, for the usual choices of finite
element trial space and basis (e.g. [17, 22]), sparse. Hence an iterative solution
method for (6), such as the conjugate gradient method, [12], is most appropriate.
Unfortunately, it is well known that when Sh(Ω) is a space of piecewise polyno-
mial functions defined on a mesh of elements covering Ω with edge size h, T h say,
the condition number of K grows like O(h−2) as h → 0 (see [17] for example).
For this reason it is necessary to apply a preconditioned version of the conjugate
gradient algorithm for realistic mesh sizes h (again see [12]). (Note that, in this
context, reference to meshes of size h means that there exist constants, c1 and
c2, such that the length of each edge of every element in T h lies in the interval
[c1h, c2h].)

There are many possible ways in which the system (6) can be preconditioned.
Some of these are purely algebraic, such as incomplete Cholesky factorization
[4, 5, 11, 18], whilst others make use of the underlying finite element derivation
of the system, such as element-by-element preconditioning [16, 23] or domain
decomposition preconditioners (e.g. [7, 10, 13, 14, 15, 20, 24, 25]), which are the
subject of this paper.

The essential idea behind any preconditioning strategy is to find a positive-
definite matrix, M say, that has two properties.

1. The matrix M−1K should have a small condition number.

2. The system Ms = r should be computationally cheap to solve.

(In fact the above properties refer to what is known as left preconditioning, where
the system (6) is expressed as

(M−1K)v = M−1b . (7)

2

This is the form of preconditioning that is considered in this paper, however all of
the results may also be extended to symmetric or right preconditioning.) When
seeking to solve the system (6) using preconditioning on a parallel computer
there is an additional requirement.

3. The system Ms = r should be easy to solve in parallel.

The first of these properties is required because the rate of convergence of the
preconditioned conjugate gradient (PCG) algorithm is dependent upon the con-
dition number of the preconditioned matrix M−1K, and the other properties
should hold because the major computational step at each iteration of the PCG
algorithm is the solution of a system of the form Ms = r ([12]). As we will see,
the domain decomposition algorithm proposed here can satisfy all three of these
requirements.

2 Background

In this section we give a brief description of the theoretical background behind
domain decomposition algorithms by considering them in the context of subspace
correction methods ([24]). In particular we follow the abstract framework laid out
in [24] in order to describe the common class of parallel domain decomposition
preconditioners known as additive Schwartz methods (also see [8, 9, 13, 20, 25]
for example). For the simplicity of this description we will assume that uE(x) ≡ 0
(see (2)) and define V = Sh(Ω) ∩H1

0 (Ω) to be both the trial space and the test
space in (5). We will also assume that the triangulation T h may be obtained by
the uniform refinement of some coarser triangulation, T H say, of the domain Ω,
and we will define V0 to be the corresponding finite element space SH(Ω)∩H1

0 (Ω)
defined on T H (see Fig. 1 for an example of such meshes).

Having introduced a coarse mesh T H it is now possible to decompose Ω into
(possibly overlapping) subdomains, Ω1, ...,Ωp say, which are each the union of
triangles in T H (see Fig. 2 for an example with p = 2). We now define the spaces
H1

0 (Ωi), for i = 1, ..., p, by

H1
0 (Ωi) = {u ∈ H1(Ω) : u(x) = 0 ∀x ∈ (Ω− Ω̄i) ∪ ∂ΩE} , (8)

and the corresponding finite dimensional spaces Vi = Sh(Ω)∩H1
0 (Ωi). Note that

these local spaces, Vi, form a decomposition of the finite element space V :

V =
p∑

i=1

Vi . (9)

Thus, for each v ∈ V , there exist a (not necessarily unique) combination of
vi ∈ Vi (i = 1, ..., p) such that v =

∑p
i=1 vi.

Given any space decomposition of the form (9), the additive Schwartz algo-
rithm defines a preconditioner, M−1, for K in (6) in the following manner. Let
Q̄i and P̄i be orthogonal projections from V to Vi (for i = 1, ..., p) given by∫

Ω
(Q̄iu)vi dx =

∫
Ω
uvi dx ∀u ∈ V , vi ∈ Vi (10)

3

Figure 1: An example of how the mesh T h might be obtained by the uniform
refinement of a coarser mesh T H .

and ∫
Ω

(A(x)∇(P̄iu)) · ∇vi dx =
∫

Ω
(A(x)∇u) · ∇vi dx ∀u ∈ V , vi ∈ Vi (11)

respectively. Also define Ai to be the restriction of A to Vi × Vi given by:

Ai(ui, vi) = A(ui, vi), ∀ui, vi ∈ Vi . (12)

Note that in matrix notation Q̄i and P̄i may be expressed as rectangular matrices,
Qi and Pi ∈ <ni×n, and that Qi is such that

Ki = QiKQ
T
i , (13)

where Ki ∈ <ni×ni is the stiffness matrix corresponding to Ai (derived in the
same way that K ∈ <n×n is derived from A above). The additive Schwartz
(parallel subspace correction) preconditioner for (6) is then given by

M−1 =
p∑

i=1

QT
i K

−1
i Qi . (14)

Note that each of the subdomain solves (K−1
i ri), required when solving the sys-

tem Ms = r at each PCG iteration, may be performed concurrently. For sim-
plicity we will assume here that all such subdomain solves are exact.

We now quote, without proofs, a number of results that apply to precon-
ditioners of the form (14). Full details of these results may be found in [24],
including proofs which are generalized to the case of inexact subdomain solves at
each PCG iteration, along with many more results concerning subspace correc-
tion algorithms. The first lemma demonstrates that the proposed preconditioner
is positive-definite as required.

4

Figure 2: An example of how the meshes from Fig. 1 might be decomposed into
two overlapping subdomains.

Lemma 2.1 The matrix M defined from (14) is symmetric and positive-definite.

We now give some conditions under which it is possible to derive bounds on the
maximum and minimum eigenvalues of M−1K.

Theorem 2.2 Assume that there exist constants C1 and C2 that satisfy the fol-
lowing conditions.

1. For all v ∈ V there are vi ∈ Vi such that v =
∑p

i=1 vi and

p∑
i=1

Ai(vi, vi) ≤ C1A(v, v) . (15)

2. For all S ⊂ {1, ..., p} × {1, ..., p} and ui, vi ∈ Vi (i = 1, ..., p)

∑
(i,j)∈S

A(P̄iui, P̄jvj) ≤ C2

(p∑
i=1

A(P̄iui, ui)

) 1
2
(p∑

i=1

A(P̄jvj, vj)

) 1
2

. (16)

Then, for M−1 given by (14),

κ(M−1K) ≤ C1C2 , (17)

where κ(M−1K) is the spectral condition number of M−1K.

It transpires that the second of the conditions required for the above theorem is
quite easy to fulfill.

5

Lemma 2.3 Condition 2 in the statement of Theorem 2.2 is satisfied with C2 =
p: the number of subspaces. Moreover, for the specific choices of Vi defined in
this section, the condition is also satisfied with C2 = nc: the minimum number of
colours required to colour the subdomains, Ωi, in such a way that no neighbours
are the same colour.

Finding a constant C1 to fulfill the first of the conditions required by Theorem
2.2 is not so straightforward however. This is the key to proving strong results
about the quality of the proposed preconditioner since it is easy to derive from
the above the following corollary.

Corollary 2.4 Provided (15) is satisfied for some constant C1 then

κ(M−1K) ≤ pC1 . (18)

From (18) it is clear that in order to obtain an effective preconditioner we must
choose a set of subspaces which permit C1 in (15) to be as small as possible.
In particular, it is desirable that C1 should only grow slowly (if at all) as the
finite element mesh, T h, and the coarse substructure, T H , are refined. Unfortu-
nately, the decomposition described in equations (8) to (9) does not permit such
a choice of C1 since it is entirely local in nature and so significant reductions in
the low frequency error components can require many PCG iterations. This is
easily rectified however by the introduction of an extra, coarse grid, term in the
preconditioner (14):

M−1 =
p∑

i=0

QT
i K

−1
i Qi . (19)

Here Q0 is the <N×n matrix corresponding to the orthogonal projection, Q̄0,
from V to the coarse grid space V0, given by,∫

Ω
(Q̄0u)v0 dx =

∫
Ω
uv0 dx ∀u ∈ V , v0 ∈ V0 , (20)

and K0 is the <N×N stiffness matrix derived from A0, the restriction of A to
V0 × V0 given by

A0(u0, v0) = A(u0, v0), ∀u0, v0 ∈ V0 . (21)

Hence
K0 = Q0KQ

T
0 . (22)

The following result is also proved in [24], and applies to the new precondi-
tioner defined in (19).

Lemma 2.5 Provided the overlap between the subdomains Ωi is of size O(H),
where H represents the mesh size of T H , then there exists C1 which is independent
of h, H and p, such that for any v ∈ V there are vi ∈ Vi such that v =

∑p
i=0 vi

and
p∑

i=0

Ai(vi, vi) ≤ C1A(v, v) . (23)

Hence κ(M−1K) ≤ C1(p+ 1).

6

(Note that there are now p+1 subspaces Vi to be counted in Lemma 2.3.) In fact,
a slightly more general result can be proved for an overlap in the subdomains of
O(δ); in which case it may be shown that C1 = O(1 + (H/δ)2).

The preconditioner given by (19) is the typical form of the additive Schwartz
preconditioner with a coarse grid. For i = 1, ..., p each of the subspace problems
may be solved concurrently using data that is local to Ωi only. Whilst the
problem for i = 0 is also independent of the others, it is a global problem and
so causes more difficulties from the point of view of a parallel implementation.
Different strategies are possible for the solution of this problem, such as to solve
it on a single processor (e.g. [15]) or to solve it in parallel using the domain
decomposition approach recursively (e.g. [6, 25]). The latter approach is an
example of a multilevel method. Such methods are known to perform very well
on globally refined sequences of meshes but are considerably more complex to
implement in parallel when combined with an adaptive algorithm which uses local
mesh refinement. In the next section we introduce an alternative way of handling
the coarse grid component that is an essential part of any domain decomposition
preconditioner. This is designed specifically for use with parallel solvers based
upon local mesh refinement, whilst still maintaining the good spectral properties
of more conventional preconditioners (such as in Lemma 2.5 for example).

3 A New Preconditioner

In this section we derive a new parallel preconditioner for finite element systems
of the form (6) in three distinct stages. Our goal is to develop an effective
preconditioner which fits naturally alongside adaptive software for the solution
of problems of the form (1).

In [2] Bank and Holst suggest a new approach to the parallel implementation
of adaptive finite element solvers in two and three dimensions. They consider
the use of local mesh refinement in the following manner. First the problem, (1)
for example, is solved once on a single processor on a coarse mesh T H . This
coarse mesh is then partitioned between the available processors based upon
local a posteriori error estimates for the initial crude solution. The objective of
the partition is to ensure that each subregion has about the same total error,
so that the following steps will be reasonably well load-balanced. Next, each
processor solves the entire problem adaptively on the entire coarse mesh, but is
only permitted to refine this mesh within the subregion that was assigned to it
(and possibly in the immediate neighbourhood of this subregion too; see below).
The target number of elements and grid points for the mesh on each processor
is approximately equal, even though the number of coarse mesh elements may
differ significantly. A final fine mesh may now be defined to be the union of
the local refinements of the subregions “owned” by each processor — although
this mesh is never actually assembled on a single processor. If the local error
estimates used as the basis of the refinement are reliable and the solution of (1)
is smooth then this final mesh will match at the subregion boundaries, however
a practical implementation should always test that this is the case and fix the
mesh locally when it fails to match.

7

Version 1

In the first version of the domain decomposition algorithm described here we
allow each processor to refine the coarse mesh not only in those elements which
it owns, but also in the coarse elements that are their immediate neighbours.
There may be some further mesh refinement required outside of this extended
region too in order to keep the mesh conforming: in this situation we constrain
any new nodes on the midpoints of edges to have solution values which are the
average of those at the two end points. If Wi represents the finite element space
defined on the mesh generated this way on processor i it then follows that

Wi = Vi ∪ V0 . (24)

Here, the Vi are the same spaces as defined in the previous section and, for
i = 1, ..., p, correspond to subdomains Ωi with an overlap of O(H). Hence the
following result must hold by analogy with Lemma 2.5.

Lemma 3.1 Let V be the global finite element space defined on the final fine
mesh defined above. Then there exists C1, independent of h, H and p, such that
for any v ∈ V there are wi ∈ Wi such that v =

∑p
i=1wi and

p∑
i=1

Ai(wi, wi) ≤ C1A(v, v) . (25)

From this lemma and the results of the previous section it follows that the domain
decomposition preconditioner of the form (14) (but with the stiffness matrices,
Ki, now formed on the global coarse mesh with its local refinement in and around
the subregion owned by processor i) is such that κ(M−1K) ≤ (p+ 1)C1.

Note that there is no longer a need for a separate coarse mesh solve to be
completed as part of this preconditioner since this global aspect is now dealt
with on each processor, i = 1, ..., p, in a natural manner. Furthermore, the
independence of C1 from h and H is also due to the large overlap in the regions
of refinement on each processor. Whilst a smaller overlap, of O(h) rather than
O(H) say, would cause this desirable theoretical property to be lost, it might still
result in a more efficient procedure overall since the work at each PCG iteration
would be significantly reduced. Thus, provided the total number of iterations
does not increase by too much, the total computational cost could decrease.

Version 2

In this version we still apply an additive Schwartz preconditioner of the form
(14) but now for slightly smaller spaces Wi (and their smaller stiffness matrices,
Ki ∈ <mi×mi say) than in Version 1 above. On processor i we allow the coarse
mesh to be refined only in the coarse elements owned by that processor plus
an additional “layer” of elements immediately around this subregion. Note that
this layer is of width O(h) rather than O(H) as in the previous version. As
before, some further refinement of the mesh on each processor (i = 1, ..., p) is

8

also required beyond this additional layer in order to keep the mesh conforming:
unlike in Version 1 however we choose not to place any constraints on the nodal
values at the extra midpoint nodes that are introduced. This has the theoretical
disadvantage that the spacesWi are no longer strictly subspaces of V but appears
to make little difference in practice, other than being more straightforward to
implement.

Version 3

In order to ensure that the preconditioners M of the form (14) defined in each
of the algorithms above are symmetric and positive-definite, the prolongation
matrix on each processor is always chosen to be the transpose of the projection
matrix Qi. In Version 2 this transpose is in <n×mi and so a more general form
that the preconditioner could take would be

M−1 =
p∑

i=1

RT
i K

−1
i Qi , (26)

where RT
i ∈ <n×mi is some other prolongation operator. In general this choice

of M−1 will not be symmetric or positive-definite and therefore nor will M−1K.
This means that the PCG algorithm cannot be applied and so some other it-
erative technique should be used. This could take the form of a fixed point
iteration (e.g. [3]) or could be some other Krylov subspace algorithm such as the
preconditioned GMRES algorithm (PGM), [1, 12, 21], for example.

In the implementation considered here we choose RT
i to be the unique matrix

that maps ζ ∈ <mi to z ∈ <n in the following manner (where the index j is used
to enumerate the n nodes in the final fine mesh).

zj = ζk when node j is in the interior of
the subregion owned by processor i
(and is numbered k on processor i),

zj = ζk/νk when node j is on the boundary of
the subregion owned by processor i,
(and is numbered k on processor i),

zj = 0 otherwise.

Here νk represents the total number of processors for which node k of mesh i lies
on their subregion boundary. Hence M−1 is a form of weighted average of K−1

i Qi

on each of the meshes. The logic behind this choice of M−1 is that it weights the
information from the fine mesh on each processor most heavily when assembling
that processor’s contribution to the overall preconditioner. It is anticipated that
the improvement that results from this weighting will more than compensate for
the additional work and storage required when using PGM rather than PCG.

9

4 Computational Examples

Details of the efficient parallel implementation of the algorithms introduced in the
previous section are provided in [3]. In this section we seek to demonstrate the
potential of these algorithms by considering their application to two linear test
problems of the form (1). In order to asses their performance as preconditioners,
convergence results have been collected on a sequence of uniformly refined meshes
using exact sub-problem solves at each iteration. Generalizations to problems
with local adaptivity, inexact sub-problem solves, non-self-adjoint and nonlinear
partial differential equations are all discussed in the next section.

The test problems that we consider here are as follows.

Problem 4.1

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω .

Problem 4.2

−∇ ·
((

102 0
0 1

)
∇u

)
= f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,

u = g ∀x ∈ ∂Ω .

In each case f has been chosen to permit the exact solution u = g for some
quadratic choice of g.

Tables 1 and 2 below show the number of iterations required by each of the
preconditioners in the previous section to reduce the 2-norm of the initial residual
by a factor of 106 for these two problems respectively. In each case a 256 element
coarse mesh has been used and the final fine grids have between 4096 and 1048576
elements. The number of processors goes from 2 to 16.

Inspection of these tables shows that there is very little to choose between
the two symmetric versions of the preconditioner (Version 1 and Version 2) in
terms of the number of iterations required. For the more demanding of the two
test problems, Problem 4.2, the use of the generous overlap of O(H) can be seen
to result in slightly fewer iterations than with an overlap of O(h) as the mesh
is refined. It should be noted however that the matrix problems that must be
solved by each processor in Version 1 are considerably larger than those that
must be solved in Version 2, which result from the smaller overlap. Hence this
second version generally produces the required solution with substantially fewer
floating point operations that Version 1.

It is also apparent from these tables that any growth in the condition number
of M−1K as h is refined is extremely slow (if at all) for all three versions of the
preconditioner. In addition, the non-symmetric preconditioner, Version 3, always
requires significantly fewer iterations that either of the two symmetric versions.
Even allowing for the fact that slightly more work is required to complete an
average iteration of the PGM algorithm compared to the PCG algorithm, Version
3 still proves to be substantially more efficient that the other two. It is the use
of this preconditioner that we propose in this paper, and in the following section
its possibilities are discussed in more detail.

10

Fine mesh Version 1 Version 2 Version 3 Procs.

4096 6 6 3
16384 6 6 3
65536 6 6 3 2
262144 6 6 3
1048576 6 6 3

4096 8 9 3
16384 8 8 3
65536 8 8 3 4
262144 8 7 3
1048576 8 7 3

4096 13 12 4
16384 13 12 4
65536 12 12 4 8
262144 11 11 4
1048576 11 11 4

4096 14 14 4
16384 14 13 4
65536 14 13 4 16
262144 14 12 4
1048576 13 12 4

Table 1: The number of iterations required to reduce the 2-norm of the residual
by a factor of 106 using the three versions of the algorithm described in Section
3 when solving Problem 4.1 using piecewise linear finite elements.

5 Discussion

In the previous section it is demonstrated that the non-symmetric preconditioner
that we propose appears to perform very well when applied with the PGM algo-
rithm for solving finite element equations of the form (6). At each iteration of
this algorithm it is necessary to solve a system of the form Ms = r, which, by
(26), is equivalent to

s =
p∑

i=1

RT
i K

−1
i Qir . (27)

If we define ri ∈ <mi to be Qir, then each processor must solve its own system
of the form

Kisi = ri (28)

at each iteration. So far we have assumed that these systems are always solved
exactly, however this is an unnecessary expense. In practice, a sufficiently ac-
curate approximate solution to (28) is always adequate at each iteration: the
theoretical justification for this being provided in [24] for example.

Given that the matrices Ki are sparse (they are the conventional finite ele-
ment stiffness matrices for the meshes generated on each processor i = 1, ..., p),

11

Fine mesh Version 1 Version 2 Version 3 Procs.

4096 7 8 5
16384 7 8 5
65536 7 8 5 2
262144 7 8 6
1048576 7 8 6

4096 11 12 5
16384 12 13 6
65536 12 13 6 4
262144 11 12 7
1048576 10 12 7

4096 14 15 7
16384 14 16 8
65536 13 16 8 8
262144 13 17 8
1048576 13 17 9

4096 18 19 7
16384 18 19 8
65536 19 20 9 16
262144 18 21 10
1048576 18 21 10

Table 2: The number of iterations required to reduce the 2-norm of the residual
by a factor of 106 using the three versions of the algorithm described in Section
3 when solving Problem 4.2 using piecewise linear finite elements.

it makes good sense to use an iterative method to solve these local problems
approximately at each iteration. In our implementation we use a preconditioned
conjugate gradient algorithm with an algebraic preconditioner based upon an
incomplete factorization of Ki (see [4, 5] for example). Numerical experiment
suggests that it is sufficient to find approximate solutions of the systems (28) for
which the residual is decreased by a factor of about 102 to 103 in order to get
the best balance between the cheapness of each PGM iteration and keeping the
total number of these outer iterations from becoming too large.

Recall from Section 3 that the main motivation for proposing this precondi-
tioner is that it should be straightforward to apply in conjunction with parallel
adaptivity. In order to illustrate that this is indeed the case, we now consider a
third test problem. This takes the same form as Problem 4.1 but now the source
term f is chosen such that the analytic solution is given by:

u = (1− (2x1 − 1)100)(1− (x2 − 1)100) ∀x ∈ Ω = (0, 1)× (0, 1) . (29)

Note that this solution is unity in the interior of Ω but tends to zero very rapidly
in a thin layer (of width ≈ 0.02) near to the boundary; allowing the Dirichlet
condition u = 0 to be satisfied throughout ∂Ω.

Once more a coarse triangulation, T H , containing just 256 elements was used

12

when solving this problem on 2, 4, 8 and 16 processors. The final fine mesh
for this problems contains up to seven levels of refinement (hence h ≈ 0.001
at the highest level) and has almost 90000 vertices and 176000 elements. The
vast majority of these elements are situated in the transition layer near to the
boundary as illustrated by the first mesh shown in Fig. 3. The coarse mesh T H is
partitioned in such a way that the number of refined elements in each subregion
is approximately equal. In the cases where p = 8 and p = 16 this means that
there are differing numbers of coarse elements in each subregion (between 8 and
40 when p = 16 for example) — the partitions into 2 or 4 may be computed
more simply however, using the symmetry of the problem and the coarse mesh
(again see Fig. 3).

Figure 3: The final fine mesh (left) and a typical mesh on one processor when
p = 4 (right) for the problem considered in Section 5. Here the coarse mesh
contains 256 elements and at most three levels of refinement are permitted.

Table 3 shows the number of outer iterations of the PGM algorithm and the
total cpu times required on an SGI Origin 2000 when solving this test problem
with 2, 4, 8 and 16 processors. These cpu times, in seconds, are the sums of the
times taken by each processor however they exclude any time taken for inter-
processor communication and other parallel overheads. This therefore allows a
comparison to be made between the different solution algorithms, independently
of the efficiency of their parallel implementation. This comparison is comple-
mented by the inclusion of the conventional single processor solution time using
the PCG algorithm to achieve the required reduction factor of 106 in the residual.
This single processor time is the best that was achieved over a number of dif-
ferent trials allowing different amounts of fill-in in the (incomplete factorization)
preconditioner. The purpose of the table is to demonstrate that even on a single
processor the algorithm that we propose is competitive with the best equivalent
sequential algorithm. This is clearly of great importance since there is little value
in having a parallel algorithm that scales well unless it is also efficient as a single
processor algorithm in its own right.

13

Processors 1 2 4 8 16

Iterations 1 4 4 5 5
Total cpu 7.31s 8.07s 7.32s 7.88s 7.64s

Table 3: A comparison of the relative performance of the different solution algo-
rithms corresponding to differing numbers of processors.

It may also be observed from Table 3 that the average cost per iteration
reduces as p increases. This is to be expected since the approximate solutions of
the mi×mi systems (28) on each processor have a complexity that is worse than
O(mi). Hence, it is faster to solve 2p of these systems of size mi/2 than it is to
solve p systems of size mi. To compensate for this however it is clear, from the
results in Tables 1 and 2 as well as Table 3, that as p increases the number of
outer iterations required to reach a fixed relative convergence tolerance will also
go up. It appears from our provisional results that, provided there are sufficient
elements in the coarse mesh, T H , these two effects generally combine in such a
way that the overall sequential solution time does not grow significantly with p.

Full details of the efficient parallel implementation of the above algorithm
may be found in [3]. In that paper the algorithm is applied to a more general
class of problem than (1); taking the form

−∇ · (A(x)∇u) + b · ∇u+ cu = f on Ω ⊂ <2 (30)

(where A is symmetric and strictly positive-definite and c ≥ 0). Given that the
preconditioner proposed here makes no use of the symmetry in (1), its application
to non-self-adjoint problems such as (30) poses no significant new problems. Fur-
thermore, the technique may also be successfully applied to the parallel solution
of certain nonlinear partial differential equations: here the nonlinear algebraic
equations that result from the finite element discretizations on each processor
may be solved with a quasi-Newton method, such as [19], where the linear sys-
tem that arises at each Newton iteration can be solved using the PGM algorithm
with a preconditioner of the form (26). Again see [3] for further details.

6 Conclusions

In this paper we have introduced a new parallel domain decomposition precondi-
tioner as a natural extension of conventional additive Schwartz techniques. The
novel features of this new algorithm are: (i) that each processor works over the
entire problem domain, but with a mesh that is locally refined in and around
its own subregion, and (ii) that the preconditioner sacrifices symmetry in order
to improve its overall quality. The preconditioner is designed to work well as
part of an adaptive finite element solution procedure and its performance has
been demonstrated on problems with both uniformly and non-uniformly refined
meshes. These provisional results suggest that the approach proposed may have
significant potential.

14

Acknowledgements

The work of REB was supported by the National Science Foundation under con-
tract DMS-9706090 and the work of PKJ, whilst visiting UCSD, was supported
by a Research Grant from the Leverhulme Trust.

References

[1] S.F. Ashby, T.A. Manteuffel and P.E. Taylor, “A Taxonomy for Conjugate
Gradient Methods”, SIAM J. on Numerical Analysis, 27, 1542–1568, 1990.

[2] R.E. Bank and M. Holst, “A New Paradigm for Parallel Adaptive Meshing
Algorithms”, in preparation, 1999.

[3] R.E. Bank and P.K. Jimack, “A New Parallel Domain Decomposition Method
for the Adaptive Finite Element Solution of Elliptic Partial Differential Equa-
tions”, in preparation, 1999.

[4] R.E. Bank and R.K. Smith, “The Incomplete Factorization Multigraph Algo-
rithm”, to appear in SIAM J. on Scientific Computing, 1999.

[5] R.E. Bank and C. Wagner, “Multilevel ILU Decomposition”, to appear in
Numerische Mathematik, 1999.

[6] J. Bramble, J. Pasciak and J. Xu, “Parallel Multilevel Preconditioners”,
Mathematics of Computation, 55, 1–21, 1990.

[7] T.F. Chan and J.P. Shao, “Parallel Complexity of Domain Decomposition
Methods and Optimal Coarse Grid Size”, Parallel Computing, 21, 1033–1049,
1995.

[8] M. Dryja and O.B. Widlund, “Towards a Unified Theory of Domain Decom-
position Algorithms for Elliptic Problems”, in Third International Symposium
on Domain Decomposition Methods (T.F. Chan et al, eds.), SIAM publica-
tions, Philadelphia, 1990.

[9] M. Dryja and O.B. Widlund, “Some Domain Decomposition Algorithms for
Elliptic Problems”, in Iterative Methods for Large Linear Systems, Academic
Press, 1990.

[10] C. Farhat, J. Mandel and F.X. Roux, “Optimal Convergence Properties of
the FETI Domain Decomposition Method”, Computer Methods for Applied
Mechanics and Engineering, 115, 365–385, 1994.

[11] A. George and J.W. Liu, “Computer Solution of Large Sparse Positive Def-
inite Systems”, Prentice Hall, 1981.

[12] G.H. Golub and C.F. Van Loan, “Matrix Computations”, John Hopkins
Press, 3rd edition, 1996.

15

[13] M. Griebel and P. Oswald, “On Additive Schwartz Preconditioners for
Sparse Grid Discretizations”, Numerische Mathematik, 66, 449–463, 1994.

[14] W.D. Gropp and D.E. Keyes, “Parallel Performance of Domain-Decomposed
Preconditioned Krylov Methods for PDEs with Locally Uniform Refinement”,
SIAM J. on Scientific Computing, 13, 128–145, 1992.

[15] D.C. Hodgson and P.K. Jimack, “A Domain Decomposition Preconditioner
for a Parallel Finite Element Solver on Distributed Unstructured Grids”, Par-
allel Computing, 23, 1157–1181, 1997.

[16] T.J.R. Hughes, I. Levit and J. Winget, “An Element-by-Element Solution
Algorithm for Problems of Structural and Solid Mechanics”, Computer Meth-
ods for Applied Mechanics and Engineering, 36, 241–254, 1983.

[17] C. Johnson “Numerical Solution of Partial Differential Equations by the
Finite Element Method”, Cambridge University Press, 1987.

[18] T.A. Mantueffel, “Shifted Incomplete Cholesky Factorization”, in Sparse
Matrix Proceedings (I.S. Duff and G.W. Stewart eds.), SIAM Publications,
Philadelphia, 1978.

[19] M. Pernice and H.F. Walker, “NITSOL: A Newton Iterative Solver for Non-
linear Systems”, SIAM J. on Scientific Computing, 19, 302–318, 1998.

[20] W. Rachowicz, “An Overlapping Domain Decomposition Preconditioner for
an Anisotropic h-Adaptive Finite Element Method”, Computer Methods for
Applied Mechanics and Engineering, 127, 269–292, 1995.

[21] Y. Saad and M. Schultz, “GMRES: A Generalized Minimal Residual Al-
gorithm for Solving Nonsymmetric Linear Systems”, SIAM J. on Scientific
Computing, 7, 856–869, 1986.

[22] G. Strang, G.J. Fix: “An Analysis of the Finite Element Method”, Prentice-
Hall, Englewood-Cliffs, 1973.

[23] A.J. Wathen, “An Analysis of some Element-by-Element Techniques”, Com-
puter Methods for Applied Mechanics and Engineering, 74, 271–287, 1989.

[24] J. Xu, “Iterative Methods by Space Decomposition and Subspace Correction”,
SIAM Review, 34, 581–613, 1992.

[25] X. Zhang, “Multilevel Schwartz Methods”, Numerische Mathematik, 63,
521–539, 1992.

16

