
A Weakly Overlapping Domain Decomposition Preconditioner for

the Finite Element Solution of Elliptic Partial Differential Equations

R.E. Bank∗, P.K. Jimack†, S.A. Nadeem† and S.V. Nepomnyaschikh‡

Abstract

We present a new two level additive Schwarz domain decomposition preconditioner which is
appropriate for use in the parallel finite element solution of elliptic partial differential equations
(PDEs). As with most parallel domain decomposition methods each processor may be assigned
one or more subdomains and the preconditioner is such that the processors are able to solve
their own subproblem(s) concurrently. The novel feature of the technique proposed here is that
it requires just a single layer of overlap in the elements which make up each subdomain at each
level of refinement, and it is shown that this amount of overlap is sufficient to yield an optimal
preconditioner. Some numerical experiments are included to confirm that the condition number
when using the new preconditioner is indeed independent of the level of mesh refinement on the
test problems considered: which are posed in both two and three space dimensions.

1 Introduction

In this paper we introduce a two level overlapping additive Schwarz (AS) algorithm which may be
applied as an optimal domain decomposition (DD) preconditioner for the adaptive finite element
solution of a variety of second-order self-adjoint elliptic problems defined on a bounded Lipschitz
domain Ω ⊂ <n (n = 2, 3). In recent years there has been a large amount of research into DD and
related methods and we refer to some of the recent survey and review articles, such as [11, 24, 27,
30, 36, 37], for further details. In particular we note that a number of the algorithms proposed have
been successfully implemented as software (see, for example, [12, 16, 21]) and many take the form of
multiplicative or multilevel methods (e.g. [3, 8, 10, 15, 38]). Furthermore, by viewing these iterative
techniques in terms of subspace corrections it is possible to develop a unified theory for a variety
of algorithms and so, although this paper mainly discusses a two level additive Schwarz approach,
it is certainly possible to generalize this to a multiplicative or a multilevel variant. This is briefly
considered in Section 6.

Although the work in this paper applies in both two and three dimensions, the first four sections
consider the following model problem in just two dimensions so as to simplify the explanations and
illustrations provided. In Section 5 the ideas presented are then generalized to three dimensions. It
should also be noted that the ideas presented may also be applied to a wider variety of boundary
conditions than the zero Dirichlet conditions imposed here for simplicity.

Problem 1.1 Find u ∈ H1
0(Ω) such that

A(u, v) = F(v) ∀v ∈ H1
0(Ω) , (1.1)
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where Ω ⊂ <2 is the problem domain and

H1
0(Ω) = {u ∈ H1(Ω) : u|∂ΩE

= 0} . (1.2)

Here ∂ΩE is a closed, non-empty subset of the boundary, ∂Ω, upon which zero Dirichlet boundary
conditions are imposed and A(·, ·) and F(·) are the bilinear and linear forms

A(u, v) =

∫
Ω

(P (x)∇u) · ∇v dx and F(v) =

∫
Ω
fv dx+

∫
∂ΩN

gv ds , (1.3)

where P (x) is bounded, symmetric and strictly positive-definite, and ∂ΩN = ∂Ω− ∂ΩE is the part
of the boundary subject to Neumann boundary conditions: n · (P (x)∇u) = g(x).

The Galerkin finite element (FE) method for the solution of (1.1) requires a triangulation, T h

say, of Ω to be produced so that one may define a piecewise polynomial space of trial functions, Vh
say, on T h. Further details of the construction of this triangulation are given in the following sections
and, for the sake of clarity, we only consider continuous piecewise linear finite element spaces on T h

throughout the rest of this paper. Section 2 also provides background on the relevant theoretical and
practical details of additive Schwarz preconditioning that are required for Section 3. This section
introduces details of the DD preconditioner that we propose and presents a detailed analysis of its
convergence properties. In the analysis it is demonstrated that it is possible to obtain an optimal
preconditioner (i.e. with condition number independent of the mesh size and the number and size of
the subdomains) with an overlap of just one element at each level of a mesh hierarchy. This is the
main result of the paper. Finally, Sections 4 and 5 present a small number of numerical examples
using the proposed DD preconditioner for two and three dimensional problems respectively. The
paper concludes with a brief discussion of possible extensions and applications of this work.

2 Background

In order to approximate the solution of (1.1) from the finite dimensional space Vh (of continuous
piecewise linears on T h (where h is the diameter of the largest triangle)), it is necessary to solve the
following discrete problem.

Problem 2.1 Find uh ∈ Vh ∩H1
0(Ω) such that

A(uh, vh) = F(vh) ∀vh ∈ Vh ∩H1
0(Ω) . (2.1)

This is achieved by choosing a basis for Vh and expressing the problem as a matrix equation

Au = b . (2.2)

For the usual, local, choice of basis the stiffness matrix A is sparse, symmetric and strictly positive-
definite and so an iterative solution method, such as the conjugate gradient (CG) algorithm (e.g.
[2, 17]), is most appropriate. However, it is well-known that, when the triangulation T h is uniformly
refined, the condition number of A grows like O(h−2) as h → 0 (see [23] for example), hence it is
necessary to apply a preconditioned version of the CG algorithm for realistic mesh sizes h.

In this work we consider the use of additive Schwarz preconditioning (e.g. [13, 14, 18, 25, 28, 33]),
which is suitable for use with both non-uniformly refined meshes and parallel computer architectures.
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Let us define V = Vh∩H1
0(Ω) to be the trial and test space in (2.1) and assume that the triangulation

T h may be obtained by the uniform refinement of some coarser triangulation, T H say, of the domain
Ω, where V0 is the corresponding piecewise linear finite element space, VH ∩H1

0(Ω), defined on T H .
Having introduced a coarse mesh T H it is now possible to decompose Ω into (possibly overlap-

ping) subdomains, Ω1, ...,Ωp say, which are each the union of triangles in T H . We now define the
spaces H1

0(Ωi) ⊂ L2(Ω), for i = 1, ..., p, to be the extensions of H1(Ωi) for which

u(x) = 0 ∀x ∈ (Ω− Ωi) ∪ ∂ΩE , (2.3)

and the corresponding finite dimensional spaces Vi = Vh ∩H1
0(Ωi). Note that these local spaces, Vi,

form a decomposition of the finite element space V:

V =
p∑

i=1

Vi . (2.4)

Thus, for each v ∈ V, there exists a (not necessarily unique) combination of vi ∈ Vi (i = 1, ..., p)
such that v =

∑p
i=1 vi.

Given any space decomposition of the form (2.4), the additive Schwarz algorithm defines a
preconditioner, B, for A in (2.2) in the following manner. Let Qi be the projection from V to Vi
(for i = 1, ..., p) given by ∫

Ω
(Qiu)vi dx =

∫
Ω
uvi dx ∀u ∈ V, vi ∈ Vi , (2.5)

and define Ai to be the restriction of A to Vi × Vi given by:

Ai(ui, vi) = A(ui, vi), ∀ui, vi ∈ Vi . (2.6)

Note that (given the usual finite element bases for V and Vi) Qi may be expressed as a rectangular
matrix, Qi say, and a local stiffness matrix, Ai say, may be derived from Ai (in the same way that
the global stiffness matrix A is derived from A above). The additive Schwarz (parallel subspace
correction) preconditioner for (2.2) is then given by

B =
p∑

i=1

Q
T
i A
−1
i Qi . (2.7)

Note that each of the subdomain solves (A−1
i ri), required when solving the system B−1s = r at each

preconditioned CG iteration, may be performed concurrently and, for simplicity, we will assume for
the time-being that all such subdomain solves are exact.

The following theorem, which is proved in [36] for example (or see [30] for a slightly more general
form), provides the main theoretical justification for considering preconditioners of the form (2.7).

Theorem 2.1 The matrix B defined by (2.7) is symmetric and positive-definite. Furthermore, if
we assume that there is some constant C > 0 such that: for all v ∈ V there are vi ∈ Vi such that
v =

∑p
i=1 vi and

p∑
i=1

Ai(vi, vi) ≤ CA(v, v) , (2.8)

then the spectral condition number of BA is given by

κ(BA) ≤ νcC , (2.9)

where νc is the minimum number of colours required to colour the subdomains Ωi in such a way that
no neighbours are the same colour.
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This result demonstrates that the quality of any AS preconditioner depends only upon the stability
of the splitting of V into subspaces Vi. In particular, if the splitting is such that (2.8) holds with C
independent of h, H or p then the preconditioner is said to be optimal.

Unfortunately, the decomposition described in equations (2.3) to (2.4) does not permit such a
choice of C since it is entirely local in nature and so significant reductions in the low frequency error
components can require many preconditioned CG iterations. This is easily rectified however by the
introduction of an extra, coarse grid, term in the preconditioner (2.7):

B =
p∑

i=0

Q
T
i A
−1
i Qi . (2.10)

Here Q0 is another rectangular matrix corresponding to the L2 projection, Q0 say, from V to the
coarse grid space V0, given by,∫

Ω
(Q0u)v0 dx =

∫
Ω
uv0 dx ∀u ∈ V, v0 ∈ V0 , (2.11)

and A0 is the stiffness matrix derived from A0, the restriction of A to V0 × V0 given by

A0(u0, v0) = A(u0, v0) ∀u0, v0 ∈ V0 . (2.12)

The following result is also proved in [30] and [36], and applies to the new two level preconditioner
defined in (2.10).

Theorem 2.2 Provided the overlap between the subdomains Ωi is of size O(H), where H represents
the mesh size of T H , then there exists C > 0, which is independent of h, H and p, such that for any
v ∈ V there are vi ∈ Vi such that v =

∑p
i=0 vi and

p∑
i=0

Ai(vi, vi) ≤ CA(v, v) . (2.13)

The above result demonstrates that, provided a coarse-grid solve is undertaken and there is a
“generous” overlap between the subdomains, the additive Schwarz technique may indeed be used
to achieve optimal preconditioning. It should be noted however that these two provisos do raise
important practical concerns over the efficiency of such a preconditioner. For example, the solution
of the coarse-grid problem is hard to achieve in parallel and so care must be taken when developing
parallel software to ensure that this does not become a significant bottleneck. More importantly
however, the fixed O(H) overlap that is required between the subdomains means that as the mesh
T h is refined (assuming uniform global refinement for simplicity), the number of elements of T h in
the overlap regions is O(h−2) as h→ 0. This represents a significant computational overhead when
h becomes small.

In practice the usual way in which this second issue is addressed (see, for example, [30]) is to
drop the optimality requirement and only allow subdomains to overlap by a small, fixed, number of
fine element layers. In the following section we address this issue in a different manner by proposing
a new two level optimal AS preconditioner of the form (2.10), which requires substantially fewer
elements in the overlap region as T h is refined (O(h−1) as h → 0 as opposed to O(h−2)). This is
achieved by considering a hierarchy of meshes between T H and T h, each defined by a single level
of refinement of its predecessor. Whilst the total overlap between the subdomains remains O(H)
in size, at each level of the mesh hierarchy the overlap is the width of just one element. This is
illustrated in Figure 1 which shows an overlap of size H in two cases: the first with a uniformly
refined mesh in the overlap region, and the second with a mesh which is refined into the overlap
region to a width of just one element at each level of the mesh hierarchy.
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Figure 1: A comparison between a mesh which is uniformly refined in the overlap region (left) and
one that is non-uniformly refined in the overlap region (right).

3 A New Preconditioner

In order to describe the domain decomposition preconditioner that we propose in this section it is
necessary to begin by establishing some notation. We will again consider (1.1) to (1.3) as a test
problem, maintaining the zero Dirichlet boundary conditions for simplicity. Many of the technical
details that follow are concerned with ensuring that both the method itself and the analysis that
follow are completely general with respect to the domain geometry and how it is decomposed. On first
reading however it might be more straightforward to visualize the ideas presented by considering
a less than general situation. For this reason we also provide a specific model example using a
uniformly refined rectangular domain with a regular Cartesian product decomposition (see Figure
2).

Let T0 be a coarse triangulation of Ω consisting of N0 triangular elements, τ
(0)
j , such that τ

(0)
j =

τ
(0)
j ,

Ω =
N0⋃
j=1

τ
(0)
j and T0 = {τ (0)

j }
N0
j=1 . (3.1)

Also let diameter(τ
(0)
j ) = O(H) (so this triangulation could also be referred to as T H in the notation

of the previous section), and divide Ω into p non-overlapping subdomains Ωi. These subdomains
should be such that:

Ω =
p⋃

i=1

Ωi , (3.2)

Ωi ∩ Ωj = φ (i 6= j) , (3.3)

Ωi =
⋃
j∈Ii

τ
(0)
j where Ii ⊂ {1, ..., N0} (Ii 6= φ) . (3.4)
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Figure 2: The model example, illustrating a regular Cartesian product decomposition of a simple
rectangular domain: coarse grid T0 (left) and uniformly refined grid T2 (right).

We now permit T0 to be refined several times, to produce a family of triangulations, T0, ..., TJ ,

where each triangulation, Tk, consists of Nk elements, τ
(k)
j , such that

Ω =
Nk⋃
j=1

τ
(k)
j and Tk = {τ (k)

j }
Nk
j=1 . (3.5)

The successive mesh refinements that define this sequence of triangulations need not be global and
may be non-conforming, however we do require that they satisfy a number of conditions, as in [9]
for example:

1. τ ∈ Tk+1 implies that either

(a) τ ∈ Tk, or

(b) τ has been generated as a refinement of an element of Tk into four similar children,

2. the level of any triangles which share a common point can differ by at most one,

3. only triangles at level k may be refined in the transition from Tk to Tk+1.

(Here the level of a triangle is defined to be the least value of k for which that triangle is an element
of Tk.) In addition to the above we will also require that:

4. in the final mesh, TJ , all pairs of triangles on either side of the boundary of each subdomain
Ωi have the same level as each other.

Note that Figure 2 shows a simple example of such a nested sequence of triangulations for J = 2.
In this case every triangle in T2 is a level 2 triangle and the number of subdomains, p, is 16.
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Having defined a decomposition of Ω into subdomains and a nested sequence of triangulations
of Ω we next define the restrictions of each of these triangulations onto each subdomain by

Ωi,k = {τ (k)
j : τ

(k)
j ⊂ Ωi} . (3.6)

In order to introduce a certain amount of overlap between neighbouring subdomains we also define

Ω̃i,k = {τ (k)
j : τ

(k)
j has a common point with Ωi} . (3.7)

Following this we introduce the finite element spaces associated with these local triangulations. Let
G be some triangulation and denote by S(G) the space of continuous piecewise linear functions on
G. Then we can make the following definitions:

W = S(TJ) (3.8)

W0 = S(T0) (3.9)

Wi,k = S(Ωi,k) (3.10)

W̃i,k = S(Ω̃i,k) (3.11)

W̃i = W̃i,0 + ...+ W̃i,J . (3.12)

It is evident that
W =W0 + W̃1 + ...+ W̃p (3.13)

and this is the decomposition that we propose for the two level additive Schwarz preconditioner
of the form (2.10). Figure 3 illustrates the meshes Ω̃i,k that are the basis for the decomposition
(3.13) in the case of our regularly decomposed model problem (where i is the number of the top left
subdomain and k = 0, 1 and 2).

Figure 3: An illustration of Ω̃i,0 (left), Ω̃i,1 (centre) and Ω̃i,2 (right), where subdomain i is the top
left subdomain of Figure 2.

In order to prove that this preconditioner is optimal Theorem 2.1 demonstrates that it is sufficient,
given any uh ∈ W, to provide a construction for uh0 ∈ W0 and uhi ∈ W̃i (i = 1, ..., p) such that

uh =
p∑

i=0

uhi (3.14)

and
p∑

i=0

Ai(u
h
i , u

h
i ) ≤ CA(uhi , u

h
i ) , (3.15)
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for some C > 0 which is independent of h, H and p. To allow such a construction to be produced
it is necessary first to introduce some further notation and then to prove a preliminary lemma.

Given the set of non-overlapping subdomains Ωi we define a colouring of the Ωi such that no
neighbouring subdomains are the same colour and that the boundary of each subdomain of colour
m should have no isolated points in common with the union of the boundary of all subdomains of
colour 1 to m− 1. Let the number of colours required be nc, which we assume is independent of h,
H and p (although it may be slightly different to νc appearing in Theorem 2.1). Figure 4 illustrates
an example of a suitable colouring (with nc = 4) for the subdomains defined in Figure 2. It also
illustrates a second example which violates the restriction that each subdomain of colour m should
have no isolated points in common with the union of the boundary of subdomains of lower numbered
colours.

Figure 4: Examples of a valid (left) and an invalid (right) colouring of the subdomains used in
the example of Figure 2. The points marked with an X are isolated points on the boundary of
subdomains of colour 2 that are also on the boundary of subdomains of colour 1.

Having introduced an appropriate colouring of the subdomains, let c(i) denote the set of indices
of those subdomains of colour i (for i = 1, ..., nc). We may now define

∂Ωi = the boundary of Ωi, (3.16)

Ωc(m) =
⋃

i∈c(m)

Ωi , (3.17)

∂Ωc(m) = the boundary of Ωc(m) (3.18)

and, for each i ∈ c(m) (m = 1, ..., nc),

Γi = ∂ΩE

⋃(
∂Ωi

⋂(
m−1⋃
n=1

∂Ωc(n)

))
. (3.19)

Figure 5 illustrates these sets Γi for our regularly decomposed model problem and the valid colouring
shown in Figure 4. Furthermore, with this definition of Γi, it is possible to introduce three more
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finite element spaces, Wi,k,0, Ŵi,k and Ŵi, which are subspaces of Wi,k, W̃i,k and W̃i respectively:

Wi,k,0 = {uhi ∈ Wi,k : uhi (x) = 0 ∀x ∈ Γi} , (3.20)

Ŵi,k = S(Ω̂i,k) , (3.21)

and

Ŵi = Ŵi,0 + ...+ Ŵi,J , (3.22)

where

Ω̂i,k = {
⋃
j

τ
(k)
j : τ

(k)
j has a common point with Ωi − Γi} . (3.23)

Also, let Ω̂i be the subset of Ω which is covered by the triangulation Ω̂i,0. Figure 6 illustrates the
meshes Ω̂i,k for one specific choice of i using the first colouring shown in Figure 4. Note that this
construction is such that overlap from subdomain i is only allowed to occur into subdomains with a
larger numbered colour than the colour of subdomain i: see Figure 5.

Figure 5: An illustration of Γi for the valid colouring shown in Figure 4: line A is ∪i∈c(1)Γi ∩ Ωi;

line B is ∪i∈c(2)Γi ∩ Ωi; line C is ∪i∈c(3)Γi ∩ Ωi; line D is ∪i∈c(4)Γi ∩ Ωi.

We are now ready to define a mechanism for extending an arbitrary function wh
i ∈ Wi,J,0 to Ŵi,

as follows. In defining this mechanism note that the vertices of Ω̂i,k − Ωi,k are easily identified in
the example shown in Figure 6.

Algorithm 3.1 Let wh
i ∈ Wi,J,0. Let Qi,k : L2(Ωi) → Wi,k,0 be the usual L2 orthogonal projection

onto Wi,k,0 and define

vhi,0 = Qi,0w
h
i and vhi,k = (Qi,k −Qi,k−1)wh

i for k = 1, ..., J. (3.24)

Now denote by v̂hi,k ∈ Ŵi,k the extension of vhi,k which is zero at all vertices of Ω̂i,k−Ωi,k, so it easily
follows that

‖v̂hi,k‖2L2(Ω̂i,k)
≤ C0‖vhi,k‖2L2(Ωi)

(3.25)

9



Figure 6: An illustration of Ω̂i,0 (left), Ω̂i,1 (centre) and Ω̂i,2 (right), where subdomain i is the
subdomain in the top row and second column of Figures 2 and 5 (i.e. of colour number 2).

for some C0 > 0 which is independent of h, H and p. We are now in a position to define

v̂hi = v̂hi,0 + ...+ v̂hi,J , (3.26)

which is the required local extension of wh
i ∈ Wi,J,0 to Ŵi.

Lemma 3.1 Given wh
i ∈ Wi,J,0 let v̂hi ∈ Ŵi be the extension of wh

i defined by Algorithm 3.1 above.
Then there exists C1 > 0, which is independent of h, H and p, such that

‖v̂hi ‖2H1(Ω̂i)
≤ C1

{
1

H2
‖wh

i ‖2L2(Ωi)
+ |wh

i |2H1(Ωi)

}
. (3.27)

Proof First we introduce the following change of variables:

x = H s , y = H t ; (x, y) ∈ Ωi . (3.28)

Under this transformation the domain Ωi is the image of a domain Ω′i whose geometric properties
are independent of H in the (s, t) plane. Furthermore

1

H2
‖wh

i (x, y)‖2L2(Ωi)
+ |wh

i (x, y)|2H1(Ωi)
= ‖wh

i (s, t)‖2L2(Ω′i)
+ |wh

i (s, t)|2H1(Ω′i)
, (3.29)

and we may define by Q′i,k the projection in the (s, t) variables which corresponds to Qi,k. From [9]
it follows that there exists C2 > 0, which is independent of h, H and p, such that:

1

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)
=

1

H2

(
‖Qi,0w

h
i (x, y)‖2L2(Ωi)

+
J∑

k=1

4k‖(Qi,k −Qi,k−1)wh
i (x, y)‖2L2(Ωi)

)

= ‖Q′i,0wh
i (s, t)‖2L2(Ω′i)

+
J∑

k=1

4k‖(Q′i,k −Q′i,k−1)wh
i (s, t)‖2L2(Ω′i)

≤ C2‖wh
i (s, t)‖2H1(Ω′i)

= C2

(
1

H2
‖wh

i (x, y)‖2L2(Ωi)
+ |wh

i (x, y)|2H1(Ωi)

)
. (3.30)
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A second inequality that we require comes from [26], where it is shown that there exists C3 > 0,
which is independent of h, H and p, such that

‖v̂hi (x, y)‖2H1(Ω̂i)
= H2‖v̂hi (s, t)‖2L2(Ω̂′i)

+ |v̂hi (s, t)|2H1(Ω̂′i)

≤ C3 inf
v̂hi = ξ̂0 + ...+ ξ̂J

(ξ̂k ∈ Ŵ ′i,k)

J∑
k=0

4k‖ξ̂k‖2L2(Ω̂′i)
, (3.31)

where Ŵ ′i,k is the space which corresponds to Ŵi,k with the change of variables (3.28). From this,
along with (3.25) and (3.30), it follows that

‖v̂hi (x, y)‖2H1(Ω̂i)
≤ C3

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂′i)

=
C3

H2

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂i,k)

≤ C0C3

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

≤ C0C2C3

(
1

H2
‖wh

i ‖2L2(Ωi)
+ |wh

i |2H1(Ωi)

)
. (3.32)

as required. ///

This lemma forms the main component of our proof that the proposed splitting is stable. The
following theorem completes this proof by explicitly constructing a suitable decomposition of any
uh ∈ W. It should be noted that the proof of the theorem holds for an arbitrary partition of Ω into
subdomains Ωi and could certainly be simplified if less general partitions (e.g. into strips or regular
blocks) were considered. For the completely general case it is necessary to introduce a small amount
of additional notation. For m ∈ {1, ..., nc} let

W(m)
0 = {uH ∈ W0 : uH(x) = 0 ∀x ∈

m−1⋃
n=1

Ωc(n)} (3.33)

and Q
(m)
0 : L2(Ω)→W(m)

0 be the L2 orthogonal projection onto W(m)
0 given by∫

Ω
(Q

(m)
0 u)w

(m)
0 dx =

∫
Ω
uw

(m)
0 dx ∀w(m)

0 ∈ W(m)
0 . (3.34)

Hence, by the H1 stability of the L2 projection we have

‖Q(m)
0 uh‖H1(Ω) ≤ C4‖uh‖H1(Ω) , (3.35)

and using standard finite element interpolation estimates we have

1

H
‖uh −Q(m)

0 uh‖L2(Ω) + |uh −Q(m)
0 uh|H1(Ω) ≤ C4‖uh‖H1(Ω) , (3.36)

for some C4 > 0 which is independent of h, H and p. (Note that, in the case m = 1, W(1)
0 = W0

and Q
(1)
0 = Q0 as defined in Section 2 above.)
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Theorem 3.2 There exists C > 0, which is independent of h, H and p, such that for any uh ∈ W
there are uH ∈ W0 and ui ∈ W̃i (i = 1, ..., p) such that

uh = uH + uh1 + ...+ uhp (3.37)

and
‖uH‖2H1(Ω) + ‖uh1‖2H1(Ω) + ...+ ‖uhp‖2H1(Ω) ≤ C‖u

h‖2H1(Ω) . (3.38)

Proof Given any uh ∈ W, we now construct functions uH ∈ W0 and uhi ∈ Ŵi ⊂ W̃i (for i = 1, ..., p)
such that (3.37) and (3.38) are satisfied.
Let rh1 = uh.

Let uH1 = Q
(1)
0 rh1 .

Let wh
1 = rh1 − uH1 .

Let [wh
1 ]Ωi be the restriction of wh

1 to Ωi.
For each i ∈ c(1):

use Algorithm 3.1 to define uhi ∈ Ŵi to be the extension of [wh
1 ]Ωi .

For m = 2 to nc.
Let rhm = wh

m−1 −
∑

j∈c(m−1) u
h
j (hence rhm(x) = 0 ∀x ∈

⋃m−1
n=1 Ωc(n)).

Let uHm = Q
(m)
0 rhm.

Let wh
m = rhm − uHm.

Let [wh
m]Ωi be the restriction of wh

m to Ωi (hence [wh
m]Ωi ∈ Wi,J,0).

For each i ∈ c(m):
use Algorithm 3.1 to define uhi ∈ Ŵi to be the extension of [wh

m]Ωi .
Let uH = uH1 + ...+ uHnc

.
Note that in the above definitions, when i ∈ c(nc) the functions ui are just the restrictions of wh

nc

to Ωi since the extension operation is just the identity in this case (because Γi = ∂Ωi for i ∈ c(nc) and
so Ω̂i,k = Ωi,k and Ŵi,k =Wi,k for k = 1, ..., J). For these definitions of uH and uhi (for i = 1, ..., p)
we now prove that (3.37) and (3.38) both hold.

To prove (3.37) first let x ∈ Ωi for i ∈ c(1). Then

uH + uh1 + ...+ uhp =
nc∑
n=1

uHn (x) +
p∑

j=1

uhj (x)

= uH1 (x) + uhi (x)

= uH1 (x) + wh
1 (x)

= rh1

= uh .

Now let x ∈ Ωi for i ∈ c(m) for any m ∈ {2, ..., nc}. Then

uH + uh1 + ...+ uhp =
nc∑
n=1

uHn (x) +
p∑

j=1

uhj (x)

=
m∑

n=1

uHn (x) +
∑

j∈c(n)

uhj (x)


=

m−1∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ uHm(x) + uhi (x)
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=
m−1∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ uHm(x) + wh
m(x)

=
m−1∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ rhm(x)

=
m−1∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ rhm−1(x)− uHm−1(x)−
∑

j∈c(m−1)

uhj

=
m−2∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ rhm−1(x)

=
m−3∑
n=1

uHn (x) +
∑

j∈c(n)

uhj (x)

+ rhm−2(x)

= :

=

uH1 (x) +
∑

j∈c(1)

uhj (x)

+ rh2 (x)

= rh1

= uh .

Finally, we observe that if x is on the boundary between two or more subdomains, then the above
argument may be applied to the subdomain of the lowest colour to show that uH +uh1 + ...+uhp = uh

at this point too. (This argument uses the continuity of each wh
m and the fact that wh

m(x) = 0 for
each subdomain m whose boundary contains x, except the one with the lowest colour.)

To conclude the proof we now demonstrate that (3.38) also holds. In order to do this first note
that, since ∪nc

m=1c(m) = {1, ..., p} and uH =
∑nc

m=1 u
H
m,

‖uH‖2H1(Ω) + ‖uh1‖2H1(Ω) + ...+ ‖uhp‖2H1(Ω) ≤
nc∑

m=1

‖uHm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω)

 . (3.39)

Hence, since nc is assumed to be independent of h, H and p, it is sufficient to show that

‖uHm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω) ≤ C‖u
h‖2H1(Ω) (3.40)

for some C which is independent of h, H and p, and any m ∈ {1, ..., nc}. Let the quantity on the
left-hand side of (3.40) be Sm, say. Then

Sm = ‖uHm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω̂i)

(since uhi ∈ Ŵi)

≤ C4‖rhm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω̂i)

(using (3.35))

≤ C4‖rhm‖2H1(Ω) + C1

∑
i∈c(m)

{
1

H2
‖wh

m‖2L2(Ωi)
+ |wh

m|2H1(Ωi)

}
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(using Lemma 3.1)

≤ C4‖rhm‖2H1(Ω) + C1C
2
4

∑
i∈c(m)

‖rhm‖2H1(Ωi)

(using (3.36))

= C4‖rhm‖2H1(Ω) + C1C
2
4‖rhm‖2H1(Ω)

= C5‖rhm‖2H1(Ω) . (3.41)

Clearly if m = 1 then rhm = uh and we are done. Otherwise note that

Sm ≤ C5‖rhm‖2H1(Ω)

≤ C5

(
‖rhm−1‖2H1(Ω) + Sm−1

)
≤ C5

(
‖rhm−1‖2H1(Ω) + C5‖rhm−1‖2H1(Ω)

)
(using the same argument as in (3.41) above)

= C6‖rhm−1‖2H1(Ω)

≤ C7‖rh1‖2H1(Ω)

(repeating this argument m− 2 further times)

= C7‖uh‖2H1(Ω) ,

as required. ///

Having demonstrated that the splitting given by (3.13) is stable it is now a simple matter to
invoke Theorem 2.1 (with νc replaced by νc + 1 to take into account the coarse grid space W0) and
the equivalence of the norm A(·, ·)1/2 with the H1 norm, to deduce that the corresponding additive
Schwarz preconditioner is optimal.

The results of this section show that, in two dimensions, it is possible to obtain an optimal two
level AS preconditioner with an overlap which contains O(h−1) elements only, provided appropriate
use is made of the mesh hierarchy. Whilst the proofs developed here are fully general in terms
of subdomain shapes and connectivity a simple, more regular, example has also been included for
illustrative purposes. In contrasting these results with more standard theoretical results (as in the
following section), which require O(h−2) elements in the overlap regions for optimality, a number of
practical points should be noted. Firstly, as described in [30] for example, the standard two level AS
method does not use a generous overlap in practice. Typically, two to four fine mesh layers are found
to be most economical. It follows therefore that the weakly overlapping approach that we have anal-
ysed will not generally be any less (or more) computationally expensive per iteration than standard
two level AS solvers. What our approach does offer however is the guarantee of optimality; which
does not hold when only a fixed number of fine grid layers of overlap are used. Furthermore, the
communication cost at each iteration is O(h−1) in both cases and the weakly overlapping approach
has the added simplicity of not requiring any trade-off between cost per iteration (i.e. overlap size)
and the total iteration count to be considered. Secondly, when the weakly overlapping approach is
applied to an arbitrary decomposition of Ω, the fact that only a single layer of overlap is required
at each mesh level makes its implementation extremely straightforward. This is arguably less com-
plex than the implementation of a more standard approach where four (say) layers of elements are
required in the overlap: which can be quite cumbersome to calculate on a geometrically complex
decomposition.
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4 Numerical Examples

In this section we present a small number of two-dimensional numerical examples which demon-
strate the efficiency of the preconditioner introduced above. For these examples we make a slight
modification to the preconditioner so as to allow the practical parallel generation of the partitioned
hierarchical meshes that are required.

In this modified algorithm, once the coarse mesh T0 has been partitioned into the p non-
overlapping subdomains, Ωi, p copies of it are made. Copy i is then refined only in Ω̃i,k at level
k of the refinement process. The continuous piecewise linear finite element spaces on the resulting
meshes are then

Ui =W0 ∪ W̃i (4.1)

for i = 1, ..., p. The following corollary follows immediately from Theorem 3.2.

Corollary 4.1 Let the spaces Ui be given by (4.1) for i = 1, ..., p. Then

W = U1 + ...+ Up (4.2)

is also a stable decomposition.

The advantages of this approach are outlined in some detail in [4] where it is shown that parallel
adaptive mesh generation may be achieved in a well load-balanced manner. The main disadvantage
is that one is effectively completing a coarse mesh solve as part of each subspace correction (i.e. p
times per iteration) rather than once per iteration. However, in many practical parallel codes (e.g.
[22]) the coarse grid solve is completed sequentially on a single processor anyway, so the overhead of
repeating it on all p processors simultaneously is not necessarily that great.

The other minor practical modification that we have made to the preconditioner outlined in the
previous section comes from the use of transition (sometimes known as “green” [29]) elements in our
meshes in order to keep them conforming. In Figure 1 it may be observed that there are a number of
“slave” nodes in the non-uniformly refined mesh which cause the mesh shown to be non-conforming.
The solution values at these nodes are not free: they are determined by the nodal values at the
ends of the edges on which the slave nodes lie. For a practical implementation it turns out to be
much simpler to allow the solution values at these nodes to be free by bisecting the element on the
unrefined side of the edge that has the “hanging” node on it. This is the approach that is used in
the examples below.

For the first two test problems considered, sequences of uniformly refined meshes, Tk, have been
used.

Problem 4.1

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω .

Problem 4.2

−∇ ·
((

102 0
0 1

)
∇u
)

= f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,

u = g ∀x ∈ ∂Ω .
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In each case f has been chosen to permit the exact solution u = g for a quadratic choice of g.
Tables 1 and 2 below show the number of iterations required by both the conventional optimal (as

defined by (2.10) and Theorem 2.2) and the new two level additive Schwarz preconditioners in order
to reduce the 2-norm of the initial residual by a factor of 106 for these two problems respectively.
In each case a 256 element coarse mesh has been used and the final fine grids have between 4096
and 1048576 elements. The number of subdomains goes from 2 to 16 and for the purposes of these
comparisons the local solves on each subproblem are exact (but see below for a discussion of this).

Fine mesh Conventional AS New AS CPU Ratio p

4096 6 6 1.0
16384 6 6 0.85
65536 6 6 0.57 2
262144 6 6 0.47
1048576 6 6 0.35

4096 8 9 1.0
16384 8 8 0.65
65536 8 8 0.56 4
262144 8 7 0.42
1048576 8 7 0.27

4096 13 12 0.88
16384 13 12 0.68
65536 12 12 0.52 8
262144 11 11 0.36
1048576 11 11 0.29

4096 14 14 0.73
16384 14 13 0.58
65536 14 13 0.44 16
262144 14 12 0.30
1048576 13 12 0.25

Table 1: The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the two different AS preconditioners when solving Problem 4.1 using piecewise linear finite
elements. Column 4 shows the relative speed of the New versus the Conventional optimal two level
preconditioner.

Inspection of these tables shows that there is very little to choose between the number of iterations
required by the conventional optimal AS preconditioner with, O(h−2) elements in the overlap regions,
and the new preconditioner, with just O(h−1) elements in the overlap regions. This is an important
observation since it indicates that the splitting constant, C, is of approximately the same size for
the new splitting as for the conventional two level splitting with a generous overlap. Indeed, it
is the significance of this observation that motivates our comparison between the two approaches.
Full details of the practical parallel implementation of the preconditioners is beyond the scope of
this paper (but see [5] for a complete description of our parallel implementation). Nevertheless,
the relative timings when using one subdomain per processor are also included in Tables 1 and 2
in order to illustrate the advantages of the weakly overlapping approach. It is noticeable that the
significant reduction in the size of the subproblems that must be solved at each iteration of the new
algorithm, due to the smaller number of elements in the overlap region, clearly leads to a reduced
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Fine mesh Conventional AS New AS CPU Ratio p

4096 7 8 1.0
16384 7 8 0.82
65536 7 8 0.69 2
262144 7 8 0.49
1048576 7 8 0.46

4096 11 12 1.0
16384 12 13 0.74
65536 12 13 0.66 4
262144 11 12 0.50
1048576 10 12 0.30

4096 14 15 0.90
16384 14 16 0.67
65536 13 16 0.65 8
262144 13 17 0.53
1048576 13 17 0.39

4096 18 19 0.71
16384 18 19 0.60
65536 19 20 0.58 16
262144 18 21 0.41
1048576 18 21 0.31

Table 2: The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the two different AS preconditioners when solving Problem 4.2 using piecewise linear finite
elements. Column 4 shows the relative speed of the New versus the Conventional optimal two level
preconditioner.

parallel solution time. Unsurprisingly this reduction becomes more significant the more the mesh is
refined.

It should also be noted at this point that the results of Tables 1 and 2 do show an increase in
the number of iterations required as p, the number of subdomains, is increased (for both versions
of the algorithm). This may be accounted for by the fact that nc increases as p increases from 2 to
8, and that for the relatively small values of p considered here (up to p = 16) the asymptotic limit
has not yet been reached, even though nc is at most 5 in all cases. It may be observed however that
the growth in the number of iterations as p increases is already beginning to slow down as p goes
from 8 to 16. Also, the iteration counts for Problem 4.2 are greater than those for corresponding
solutions of Problem 4.1. This may be accounted for in the theory of the previous section by noting
that the norm equivalence A(·, ·)1/2 ∼ H1 will involve a larger ratio of constants in the upper and
lower bounds for Problem 4.2 than Problem 4.1.

In practice it is not necessary to solve the subproblems involving the matrices Ai in (2.10) exactly
in order to maintain the optimality of the preconditioner. This is discussed in some detail elsewhere
(see, for example, [11, 36]) and so we merely comment that our numerical experiments suggest that
reducing the residual by a factor of between 101 and 102 when “solving” these subproblems appears
to provide a good balance between allowing a small increase in the total number of iterations and
keeping the cost of each iteration as low as possible. For the examples in this section we have
applied a preconditioned conjugate gradient solver with an algebraic preconditioner based upon an
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incomplete factorization of Ai (see [6, 7] for example).
We conclude this section by demonstrating the effectiveness of the preconditioner for a locally,

rather than uniformly, refined mesh.

Problem 4.3

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω .

Where f and g are now chosen so that the analytic solution is given by:

u = (1− (2x1 − 1)100)(1− (2x2 − 1)100) ∀x ∈ Ω . (4.3)

Note that this solution is unity in the interior of Ω but tends to zero very rapidly in a thin layer (of
width ≈ 0.02) near to the boundary; allowing the Dirichlet condition u = 0 to be satisfied throughout
∂Ω.

When solving this problem we again use a coarse triangulation which contains just 256 elements,
divided into 2, 4, 8 and 16 subdomains. Note that for this example it is only appropriate to refine
the mesh in the boundary layer, where the solution changes from one to zero, and four such sets
of results are presented in Table 3: corresponding to 5, 6, 7 and 8 levels of refinement in the layer
(for the purposes of these tests the local refinement of an element is triggered when the exact
interpolation error on that element is greater than 10−10 (2-norm) unless the element is already at
the maximum refinement level). In each case the coarse mesh T0 has been partitioned in such a way
that the number of elements in the final mesh, TJ , in each subregion is approximately equal. In the
cases where p = 8 and p = 16 this means that there are differing numbers of coarse elements in
each subregion (between 8 and 40 when p = 16 for example) — the partitions into 2 or 4 may be
computed more simply however, using the symmetry of the problem and the coarse mesh (see Fig.
7 for example). As with Tables 1 and 2, the results of Table 3 clearly show independence from h
for a sufficient level of refinement, however the independence from p is not yet evident for the small
values considered (up to p = 16): although we again see a reduction in the growth of the number of
iterations as p increases.

Refinements (Elements/Vertices) p = 2 p = 4 p = 8 p = 16

5 (48680/24853) 7 9 13 18

6 (145088/73569) 7 10 15 18

7 (362272/184685) 8 10 16 18

8 (543632/275913) 8 10 16 19

Table 3: The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the new AS preconditioner when solving Problem 4.3 using piecewise linear finite elements.

As well as verifying our theoretical results in the case of a locally refined mesh, the last example
also illustrates the potential of the technique for use within truly adaptive algorithms, based upon
a posteriori error estimates and local refinement (see [1, 35] for example). Such algorithms are
not without their difficulties however since undertaking adaptivity in parallel presents challenging
dynamic load-balancing problems (e.g. [32]) which clearly cannot be dealt with using the simple
a priori partitioning approach taken above. For one possible means of overcoming these problems
we refer the reader to [4], where a paradigm is presented in which the a posteriori error estimates
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Figure 7: The overall refined mesh (left) and a typical mesh on one processor when p = 4 (right) for
Problem 4.3. Here the coarse mesh contains 256 elements and, for this illustration, at most three
levels of refinement are permitted.

are themselves used to assist with load-balancing. We also note the additional theoretical issue of
selecting an appropriate definition for h, the mesh size parameter, for locally refined meshes. Whilst
this does not affect the theoretical results presented in this paper it does have an important bearing
on quantitative overhead estimates in terms of the problem size.

5 Extension to Three Dimensions

So far, for reasons of clarity and simplicity, our discussion has been restricted to problems of the
form (1.1) – (1.3) in two dimensions. In this section we demonstrate that both the theoretical results
and the practical realization may be successfully generalized to three dimensions. Again we consider
problems of the form (1.1) – (1.3) but now we allow Ω ⊂ <3. We will assume that Ω may be covered

by a set of tetrahedra, T0, consisting of N0 tetrahedral elements τ
(0)
j (j = 1, ..., N0). In order to

refine a tetrahedron we use the standard approach of bisecting each edge to produce 8 children, as
shown in Figure 8. Note that although the children are not generally geometrically similar their
aspect ratios are always bounded independently of h. Full details of the refinement algorithm may
be found in [31].

Using the above refinement strategy it is possible to generate a family of three-dimensional
triangulations, T0, ..., TJ , satisfying the same restrictions as the two-dimensional family introduced
in Section 3 (with the obvious modification to condition 1(b) for eight children). From this, the
spaces W, Wi,k,0 (k = 1, ..., J) and Ŵi, may be defined in the corresponding manner. Algorithm 3.1
therefore also generalizes directly to three dimensions. In fact, it is straightforward to see that, with
the exception of the proof of Lemma 3.1, all of the remaining theory in Section 3 now generalizes
immediately from two to three dimensions. Hence, in order to prove that the corresponding weakly
overlapping preconditioner is optimal for tetrahedral meshes in three dimensions it is sufficient to
prove Lemma 3.1 for this case. Such a proof is provided in appendix A.

It should be noted that in three dimensions the number of elements in the overlap regions when
using the weakly overlapping algorithm is O(h−2) as opposed to O(h−3) when a standard generous
overlap is used. Similarly, for practical (non-optimal) two level AS algorithms with a fixed number
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Figure 8: Refinement of a tetrahedron into 8 children by bisecting each edge.

of fine mesh layers in the overlap region, the number of elements in the overlap is also O(h−2) in
three dimensions. We again see therefore that the weakly overlapping approach has approximately
the same cost (and communication overhead) per iteration as the practical small overlap two level
algorithms but with the advantage of guaranteed optimality.

Having discussed the generalization of the main theoretical result of this paper to three dimen-
sions we now illustrate this with some further numerical examples. These examples have been chosen
to correspond to the two-dimensional examples already considered in the previous section.

Problem 5.1

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω .

Problem 5.2

−∇ ·


 102 0 0

0 1 0
0 0 1

∇u
 = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1) ,

u = g ∀x ∈ ∂Ω .

Here f has again been chosen in each case so as to permit the exact solution u = g throughout Ω.

Problem 5.3

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω ,

where f and g are now chosen so that the analytic solution is given by:

u = (1− (2x1 − 1)70)(1− (2x2 − 1)70)(1− (2x3 − 1)70) ∀x ∈ Ω . (5.1)

Table 4 presents iteration counts for Problems 5.1 and 5.2 using the weakly overlapping precondi-
tioner on a coarse grid of 384 elements using between 1 and 4 levels of uniform mesh refinement for
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Fine mesh size Problem 5.1 Problem 5.2 Procs.

3072 7 8
24576 8 9 2
196608 10 10
1572864 10 11

3072 13 13
24576 14 15 4
196608 15 16
1572864 16 17

3072 13 13
24576 17 18 8
196608 17 18
1572864 16 17

3072 12 13
24576 20 21 16
196608 18 20
1572864 17 17

Table 4: The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the weakly overlapping AS preconditioner when solving Problems 5.1 and 5.2 using piecewise
linear finite elements.

a typical set of partitions into 2, 4, 8 and 16 subdomains. It may be observed that the number of
iterations is indeed independent of h. Furthermore, as p increases the number of iterations appears
to have almost stopped growing by the time p = 16.

To solve Problem 5.3 local h-refinement has been used with a slightly larger coarse grid, con-
taining 3072 tetrahedral elements. As in two dimensions the precise choice of partition of this grid
is important in terms of both the final load balance and the total numbers of iterations required.
Table 5 presents iteration counts for one such set of partitions into 2, 4, 8 and 16 subdomains.
Again we see that the number of iterations is almost independent of h already (after just 4 levels
of refinement). The partition into 16 for this problem is probably far from optimal (since simple
recursive coordinate bisection, [34], was used), which may well account for the noticeable jump in
iterations between p = 8 and p = 16. Nevertheless, these simple numerical experiments do show
that the weakly overlapping technique can be effectively implemented in three dimensions as well as
two.

Refinements (Elements/Vertices) p = 2 p = 4 p = 8 p = 16

1 (20832/4403) 11 15 19 25

2 (198816/22237) 14 17 20 27

3 (499123/100708) 15 18 21 28

4 (2139159/429435) 17 21 24 30

Table 5: The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the weakly overlapping AS preconditioner when solving Problem 5.3 using piecewise linear
finite elements.
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6 Discussion

In this paper we have presented a two level additive Schwarz preconditioner based upon a weakly
overlapping domain decomposition of a nested sequence of meshes, T0, ..., TJ . Such a decomposition
involves just a single element of overlap at each level of the mesh hierarchy and so requires only
O(h−1) overlapping elements in total in two dimensions (and O(h−2) in three dimensions). It has
been demonstrated that, when combined with the full coarse mesh space W0, the splitting that is
induced by this decomposition is stable and therefore leads to an optimal preconditioner. Although
the work presented here is for an additive Schwarz algorithm there is no reason why the same
splitting should not also be used in a multiplicative manner. The resulting preconditioner will again
be optimal. The extension of this approach to a multilevel algorithm is less interesting however since
this leads to a standard multilevel Schwarz scheme (see [30] for example), with subdomains chosen
to be the same at each level and with the overlap chosen to be minimal at each level. Such schemes
are already known to be optimal.

Although the paper concentrates mainly on test problems of the form (1.1) – (1.3) in two dimen-
sions, all aspects of the theory in Sections 2 and 3 is extended to three-dimensional problems using
nested tetrahedral meshes in Section 5. Supporting numerical experiments in both two and three
dimensions are also provided. Furthermore, the simplifying assumption of zero Dirichlet boundary
conditions throughout ∂ΩE may also be dropped, so as to include other Dirichlet conditions or even
mixed conditions, without significant modification. Further extensions may also be made within the
theoretical framework described by permitting the initial mesh, T0, to have unequal element sizes.
This would therefore allow the use of a different value for H, the size of the elements of the coarse
mesh, on each subdomain.
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A Proof of Lemma 3.1 in Three-Dimensional Case

First we introduce the following change of variables:

x = H r , y = H s , z = H t ; (x, y, z) ∈ Ωi . (A.1)

Under this transformation the domain Ωi is the image of a domain Ω′i whose geometric properties
are independent of H in the (r, s, t) plane. Furthermore

1

H2
‖wh

i (x, y, z)‖2L2(Ωi)
+ |wh

i (x, y, z)|2H1(Ωi)
= H

(
‖wh

i (r, s, t)‖2L2(Ω′i)
+ |wh

i (r, s, t)|2H1(Ω′i)

)
, (A.2)

and we may define by Q′i,k the projection in the (r, s, t) variables which corresponds to Qi,k. From
[9] and [26] it follows that there exists C2 > 0, which is independent of h, H and p, such that:

1

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)
=

1

H2

(
‖Qi,0w

h
i (x, y, z)‖2L2(Ωi)

+
J∑

k=1

4k‖(Qi,k −Qi,k−1)wh
i (x, y, z)‖2L2(Ωi)

)
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= H

(
‖Q′i,0wh

i (r, s, t)‖2L2(Ω′i)
+

J∑
k=1

4k‖(Q′i,k −Q′i,k−1)wh
i (r, s, t)‖2L2(Ω′i)

)
≤ HC2‖wh

i (r, s, t)‖2H1(Ω′i)

= C2

(
1

H2
‖wh

i (x, y, z)‖2L2(Ωi)
+ |wh

i (x, y, z)|2H1(Ωi)

)
. (A.3)

A second inequality that we require comes from [26], where it is shown that there exists C3 > 0,
which is independent of h, H and p, such that

‖v̂hi (x, y, z)‖2H1(Ω̂i)
= H3‖v̂hi (r, s, t)‖2L2(Ω̂′i)

+H|v̂hi (r, s, t)|2H1(Ω̂′i)

≤ HC3 inf
v̂hi = ξ̂0 + ...+ ξ̂J

(ξ̂k ∈ Ŵ ′i,k)

J∑
k=0

4k‖ξ̂k‖2L2(Ω̂′i)
, (A.4)

where Ŵ ′i,k is the space which corresponds to Ŵi,k with the change of variables (3.28). From this,
along with (3.25) and (A.3), it follows that

‖v̂hi (x, y, z)‖2H1(Ω̂i)
≤ HC3

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂′i)

=
C3

H2

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂i,k)

≤ C0C3

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

≤ C0C2C3

(
1

H2
‖wh

i ‖2L2(Ωi)
+ |wh

i |2H1(Ωi)

)
. (A.5)

as required. ///
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