
AN ALGEBRAIC MULTILEVEL MULTIGRAPH ALGORITHM

RANDOLPH E. BANK∗ AND R. KENT SMITH†

Abstract. We describe an algebraic multilevel multigraph algorithm. Many of the multilevel
components are generalizations of algorithms originally applied to general sparse Gaussian elimina-
tion. Indeed, general sparse Gaussian elimination with minimum degree ordering is a limiting case of
our algorithm. Our goal is to develop a procedure which has the robustness and simplicity of use of
sparse direct methods, yet offers the opportunity to obtain the optimal or near-optimal complexity
typical of classical multigrid methods.

Key words. algebraic multigrid, incomplete LU factorization, multigraph methods

AMS subject classifications. 65M55, 65N55

1. Introduction. In this work, we develop a multilevel multigraph algorithm.
Algebraic multigrid methods are currently a topic of intense research interest [17, 18,
20, 46, 12, 48, 38, 11, 44, 3, 4, 1, 2, 5, 16, 7, 29, 28, 27, 42, 41, 21]. An excellent recent
survey is given in Wagner [49]. In many “real world” calculations, direct methods are
still widely used [6]. The robustness of direct elimination methods and their simplicity
of use often outweigh the apparent benefits of fast iterative solvers. Our goal here is to
try to develop an iterative solver that can compete with sparse Gaussian elimination
in terms of simplicity of use and robustness and to provide the potential of solving
a wide range of linear systems more efficiently. While we are not yet satisfied that
our method has achieved this goal, we believe that it is a reasonable first step. In
particular, the method of general sparse Gaussian elimination with minimum degree
ordering is a point in the parameter space of our method. This implies that in the
worst case, our method defaults to this well-known and widely used method, among
the most computationally efficient of general sparse direct methods [26]. In the best
case, however, our method can exhibit the near optimal order complexity of the
classical multigrid method.

Our plan is to take well studied, robust, and widely used procedures and data
structures developed for sparse Gaussian elimination, generalize them as necessary,
and use them as the basic components of our multilevel solver. The overall iteration
follows the classical multigrid V-cycle in form, in contrast to the algebraic hierarchical
basis multigraph algorithm developed in [11].

In this work we focus on the class of matrices which are structurally symmetric;
that is, the pattern of nonzeros in the matrix is symmetric, although the numerical
values of the matrix elements may render it nonsymmetric. Such structurally sym-
metric matrices arise in the discretizations of partial differential equations, say, by
the finite element method. For certain problems, the matrices are symmetric and
positive definite, but for others the linear systems are highly nonsymmetric and/or
indefinite. Thus in practice this represents a very broad class of behavior. While our
main interest is in scalar elliptic equations, as in the finite element code PLTMG [8],
our algorithms can formally be applied to any structurally symmetric, nonsingular,
sparse matrix.

Sparse direct methods typically have two phases. In the first (initialization) phase,

∗Department of Mathematics, University of California at San Diego, La Jolla, CA 92093. The
work of this author was supported by the National Science Foundation under contract DMS-9706090.
†Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974.

1

equations are ordered, and symbolic and numerical factorizations are computed. In
the second (solution) phase, the solution of the linear system is computed using the
factorization. Our procedure, as well as other algebraic multilevel methods, also
breaks naturally into two phases. The initialization consists of ordering, incomplete
symbolic and numeric factorizations, and the computation of the transfer matrices
between levels. In the solution phase, the preconditioner computed in the initialization
phase is used to compute solution using the preconditioned composite step conjugate
gradient (CSCG) or the composite step biconjugate gradient (CSBCG) method [9].

Iterative solvers often have tuning parameters and switches which require a certain
level of a priori knowledge or some empirical experimentation to set in any particular
instance. Our solver is not immune to this, although we have tried to keep the number
of such parameters to a minimum. In particular, in the initialization phase, there are
only three such parameters:

• ε, the drop tolerance used in the incomplete factorization (called dtol in our
code).

• maxfil, an integer which controls to overall fill-in (storage) allowed in a given
incomplete factorization.

• maxlvl, an integer specifying the maximum number of levels.

(The case ε = 0, maxfil = N , maxlvl = 1 corresponds to sparse Gaussian elimina-
tion.) In the solution phase, there are only two additional parameters:

• tol, the tolerance used in the convergence test.
• maxcg, an integer specifying the maximum number of iterations.

Within our code, all matrices are generally treated within a single, unified frame-
work; e.g., symmetric positive definite, nonsymmetric, and indefinite problems gener-
ally do not have specialized options. Besides the control parameters mentioned above,
all information about the matrix is generated from the sparsity pattern and the values
of the nonzeros, as provided in our sparse matrix data structure, a variant of the data
structure introduced in the Yale sparse matrix package [23, 10]. For certain block
matrices, the user may optionally provide a small array containing information about
the block structure.

This input limits the complexity of the code, as well as eliminates parameters
which might be needed to further classify a given matrix. On the other hand, it seems
clear that a specialized solver directed at a specific problem or class of problems, and
making use of this additional knowledge, is likely to outperform our algorithm on
that particular class of problems. Although we do not think our method is provably
“best” for any particular problem, we believe its generality and robustness, coupled
with reasonable computational efficiency, make it a valuable addition to our collection
of sparse solvers.

The rest of this paper is organized as follows. In section 2, we provide a general
description of our multilevel approach. In section 3, we define the sparse matrix data
structures used in our code. Our incomplete factorization algorithm is a standard
drop tolerance approach with a few modifications for the present application. These
are described in section 4. Our ordering procedure is the minimum degree algorithm.
Once again, our implementation is basically standard with several modifications to the
input graph relevant to our application. These are described in section 5. In section
6, we describe the construction of the transfer matrices used in the construction of
the coarse grid correction. Information about the block structure of the matrix, if any
is provided, is used only in the coarsening procedure. This is described in section 7.
Finally, in section 8, we give some numerical illustrations of our method on a variety

2

of (partial differential equation) matrices.

2. Matrix formulation. Let A be a large sparse, nonsingular N × N matrix.
We assume that the sparsity pattern of A is symmetric, although the numerical values
need not be. We will begin by describing the basic two-level method for solving

Ax = b. (2.1)

Let B be an N ×N nonsingular matrix, called the smoother, which gives rise to the
basic iterative method used in the multilevel preconditioner. In our case, B is an
approximate factorization of A, i.e.,

B = (L+D)D−1(D + U) ≈ P tAP, (2.2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix.

Given an initial guess x0, m steps of the smoothing procedure produce iterates
xk, 1 ≤ k ≤ m, given by

rk−1 = P t(b−Axk−1),

Bδk−1 = rk−1, (2.3)

xk = xk−1 + P tδk−1.

The second component of the two-level preconditioner is the coarse grid correction.
Here we assume that the matrix A can be partitioned as

P̂AP̂ t =

(
Aff Afc

Acf Acc

)
, (2.4)

where the subscripts f and c denote fine and coarse, respectively. Similar to the
smoother, the partition of A in fine and coarse blocks involves a permutation matrix
P̂ . The N̂ × N̂ coarse grid matrix Â is given by

Â =
(
Vcf Icc

)(Aff Afc

Acf Acc

)(
Wfc

Icc

)
= VcfAffWfc + VcfAfc +AcfWfc +Acc. (2.5)

The matrices Vcf and W t
fc are N̂ × (N − N̂) matrices with identical sparsity patterns;

thus Â has a symmetric sparsity pattern. If At = A, we require Vcf = W t
fc, so Ât = Â.

Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
. (2.6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction and
prolongation, respectively. Given an approximate solution xm to (2.1), the coarse grid
correction produces an iterate xm+1 as follows.

r̂ = V̂ (b−Axm),

Âδ̂ = r̂, (2.7)

xm+1 = xm + Ŵ δ̂.

As is typical of multilevel methods, we define the two-level preconditioner M
implicitly in terms of the smoother and coarse grid correction. A single cycle takes
an initial guess x0 to a final guess x2m+1 as follows:

3

Two-Level Preconditioner
(i) xk for 1 ≤ k ≤ m are defined using (2.3).

(ii) xm+1 is defined using (2.7).
(iii) xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (2.3).
The generalization from two-level to multilevel consists of applying recursion to

the solution of the equation Âδ̂ = r̂ in (2.7). Let ` denote the number of levels in the
recursion. Let M̂ ≡ M̂(`) denote the preconditioner for Â; if ` = 2, then M̂ = Â.
Then (2.7) is generalized to

r̂ = V̂ (b−Axm),

M̂ δ̂ = r̂, (2.8)

xm+1 = xm + Ŵ δ̂.

The general ` level preconditioner M is then defined as follows:
`-Level Preconditioner

(i) if ` = 1, M = A; i.e., solve (2.1) directly.
(ii) if ` > 1, then, starting from initial guess x0, compute x2m+1 using (iii)–(v):
(iii) xk for 1 ≤ k ≤ m are defined using (2.3).
(iv) xm+1 is defined by (2.8), using p = 1 or p = 2 iterations of the ` − 1 level

scheme for Âδ̂ = r̂ to define M̂ , and with initial guess δ̂0 = 0.
(v) xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (2.3).
The case p = 1 corresponds to the symmetric V-cycle, while the case p = 2

corresponds to the symmetric W-cycle. We note that there are other variants of both
the V-cycle and the W-cycle, as well as other types of multilevel cycling strategies [30].
However, in this work (and in our code) we restrict attention to just the symmetric
V-cycle with m = 1 presmoothing and postsmoothing iterations.

For the coarse mesh solution (` = 1), our procedure is somewhat nontraditional.
Instead of a direct solution of (2.1), we compute an approximate solution using one
smoothing iteration. We illustrate the practical consequences of this decision in section
8.

If A is symmetric, then so is M , and the `-level preconditioner could be used as a
preconditioner for a symmetric Krylov space method. If A is also positive definite, so
is M , and the standard conjugate gradient method could be used; otherwise the CSCG
method [9], SYMLQ [43], or a similar method could be used. In the nonsymmetric
case, the `-level preconditioner could be used in conjunction with the CSBCG method
[9], GMRES [22], or a similar method.

To complete the definition of the method, we must provide algorithms to
• compute the permutation matrix P in (2.2);
• compute the incomplete factorization matrix B in (2.2);
• compute the fine-coarse partitioning (P̂) in (2.4);
• compute the sparsity patterns and numerical values in the prolongation and

restriction matrices in (2.6).

3. Data structures. Let A be an N ×N matrix with elements Aij and a sym-
metric sparsity structure; that is, both Aij and Aji are treated as nonzero elements
(i.e. stored and processed) if |Aij |+ |Aji| > 0. All diagonal entries Aii are treated as
nonzero regardless of their numerical values.

Our data structure is a modified and generalized version of the data structure
introduced in the (symmetric) Yale sparse matrix package [23]. It is a rowwise version
of the data structure described in [10]. In our scheme, the nonzero entries of A are

4

stored in a linear array a and accessed through an integer array ja. Let ηi be the
number of nonzeros in the strict upper triangular part of row i and set η =

∑N
i=1 ηi.

The array ja is of length N+1+η, and the array a is of length N+1+η if At = A. If
At 6= A, then the array a is of length N + 1 + 2η. The entries of ja(i), 1 ≤ i ≤ N + 1,
are pointers defined as follows:

ja(1) = N + 2,

ja(i+ 1) = ja(i) + ηi, 1 ≤ i ≤ N.

The locations ja(i) to ja(i + 1) − 1 contain the ηi column indices corresponding to
the row i in the strictly upper triangular matrix.

In a similar manner, the array a is defined as follows:

a(i) = Aii, 1 ≤ i ≤ N,
a(N + 1) is arbitrary,

a(k) = Aij , 1 ≤ i ≤ N, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1.

If At 6= A, then

a(k + η) = Aji, 1 ≤ i ≤ N, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1.

In words, the diagonal is stored first, followed by the strict upper triangle stored row-
wise. If At 6= A, then this is followed by the strict lower triangle stored columnwise.
Since A is structurally symmetric, the column indexes for the upper triangle are iden-
tical to the row indexes for the lower triangle, and hence they need not be duplicated
in storage.

As an example, let

A =

A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35

0 A42 A43 A44 0
0 0 A53 0 A55

 .

Then

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ja 7 9 10 12 12 12 2 3 4 4 5
a A11 A22 A33 A44 A55 A12 A13 A24 A34 A35 A21 A31 A42 A43 A53

Diagonal Upper triangle Lower triangle

Although the YSMP data structure was originally devised for sparse direct meth-
ods based on Gaussian elimination, it is also quite natural for iterative methods based
on incomplete triangular decomposition. Because we assume that A has a symmetric
sparsity structure, for many matrix calculations a single indirect address computation
in ja can be used to process both a lower and a upper triangular element in A. For
example, the following procedure computes y = Ax:

procedure mult(N, ja, a, x, y)
lmtx← ja(N + 1)− ja(1)
umtx← 0
for i← 1 to N

y(i)← a(i)x(i)

5

end for
for i← 1 to N

for k ← ja(i) to ja(i+ 1)− 1
j ← ja(k)
y(i)← y(i) + a(k + umtx)x(j)
y(j)← y(j) + a(k + lmtx)x(i)

end for
end for

end mult
For symmetric matrices, set lmtx← 0, umtx← 0. Also, y = At x may be readily

computed by setting lmtx← 0, umtx← ja(N + 1)− ja(1).
The data structure for storing B = (L+D)D−1(D+U) is quite analogous to that

for A. It consists of two arrays, ju and u, corresponding to ja and a, respectively.
The first N + 1 entries of ju are pointers as in ja, while entries ju(i) to ju(i+ 1)− 1
contain column indices of the nonzeros of row i in of U . In the u array, the diagonal
entries of D are stored in the first N entries. Entry N + 1 is arbitrary. Next, the
nonzero entries of U are stored in correspondence to the column indices in ju. If
Lt 6= U , the nonzero entries of L follow, stored columnwise.

The data structure we use for the N × N̂ matrix Ŵ and the N̂ × N matrix V̂ are
similar. It consists of an integer array jv and a real array v. The nonzero entries of
Ŵ are stored rowwise, including the rows of the block Icc. As usual, the first N + 1
entries of jv are pointers; entries jv(i) to jv(i+ 1)− 1 contain column indices for row
i of Ŵ . In the v array, the nonzero entries of Ŵ are stored rowwise in correspondence
with jv but shifted by N + 1 since there is no diagonal part. If V̂ t 6= Ŵ , this is
followed by the nonzeros of V̂ , stored columnwise.

4. ILU factorization. Our incomplete (L+D)D−1(D+U) factorization is sim-
ilar to the row elimination scheme developed for the symmetric YSMP codes [23, 26].
For simplicity, we begin by discussing a complete factorization and then describe the
modifications necessary for the incomplete factorization. Without loss of generality,
assume that the permutation matrix P = I, so that A = (L+D)D−1(D + U).

After k steps of elimination, we have the block factorization(
A11 A12

A21 A22

)
=

(
D11 + L11 0

L21 I

)(
D−1

11 0
0 S

)(
D11 + U11 U12

0 I

)
, (4.1)

where A11 is k × k and A22 is N − k × N − k. We assume that at this stage, all
the blocks on the right-hand side of (4.1) have been computed except for the Schur
complement S, given by

S = A22 − L21D
−1
11 U12. (4.2)

Our goal for step k + 1 is to compute the first row and column of S, given by

Se1 = A22e1 − L21(D−1
11 U12e1),

Ste1 = At
22e1 − U t

12(D−1
11 L

t
21e1). (4.3)

Because A and (L+D)D−1(D + U) have symmetric sparsity patterns, and our data
structures take advantage of this symmetry, it is clear that the algorithms for com-
puting Se1 and Ste1 are the same and in practice differ only in the assignments of
shifts for the u and a arrays, analogous to lmtx and umtx in procedure mult. Thus

6

we will focus on the computation of just Se1. At this point, we also assume that the
array ju has been computed in a so-called symbolic factorization step.

The major substeps are as follows:

1. Copy the first column of A22 (stored in the data structures ja and a) into an
expanded work vector z of size N .

2. Find the multipliers given by nonzeros of D−1
11 U12e1.

3. For each multiplier γ = etkD
−1
11 U12e1, update z using column k of L21 (i.e.,

γL21ek).
4. Copy the nonzeros in z into the data structures ju and u.

In step 1, we need to know the nonzeros of the first column of A22, which is
precisely the information easily accessible in the ja and a data structures. In step
3, we need to know the nonzeros in columns of L21, which again is precisely the
information easily available in our data structure. In step 4, we copy a column of
information into the lower triangular portion of the ju and u data structures. Indeed,
the only difficult aspect of the algorithm is step 2, in which we need to know the
sparsity structure of the first column of U12, information that is not readily available
in the data structure. This is handled in a standard fashion using a dynamic linked
list structure and will not be discussed in detail here.

To generalize this to the incomplete factorization case, we first observe that the ju
array can be computed concurrently with the numeric factorization simply by creating
a list of the entries of the expanded array z that are updated in step 3. Next, we note
that one may choose which nonzero entries from z to include in the factorization by
choosing which entries to copy to the ju and u data structures in step 4. We do this
through a standard approach using a drop tolerance ε. In particular, we neglect a
pair of off-diagonal elements if

max |Lij |, |Uji| ≤ ε
√
|DjjAii|, (4.4)

j = k + 1 and i > j. Note Dii has not yet been computed. It is well known that
the fill-in generated through the application of a criterion such as (4.4) is a highly
nonlinear and matrix dependent function of ε. This is especially problematic in the
present context, since control of the fill-in is necessary in order to control the work
per iteration in the multilevel iteration.

Several authors have explored possibilities of controlling the maximum number
of fill-in elements allowed in each row of the incomplete decomposition [35, 47, 31].
However, for many cases of interest, and in particular for matrices arising from dis-
cretizations of partial differential equations ordered by the minimum degree algorithm,
most of the fill-in in a complete factorization occurs in the later stages, even if all the
rows initially have about the same number of nonzeros. Thus while it seems advisable
to try to control the total fill-in, one should adaptively decide how to allocate the
fill-in among the rows of the matrix. In our algorithm, in addition to the drop toler-
ance ε, the user provides a parameter maxfil, which specifies that the total number
of nonzeros in U is not larger than maxfil ·N .

Our overall strategy is to compute the incomplete decomposition using the given
drop tolerance. If it fails to meet the given storage bound, we increase the drop
tolerance and begin a new incomplete factorization. We continue in this fashion until
we complete a factorization within the given storage bound. Of course, such repeated
factorizations are computationally expensive, so we developed some heuristics which
allow us to predict a drop tolerance which will satisfy the storage bound.

7

As the factorization is computed, we make a histogram of the approximate sizes
of all elements that exceed the drop tolerance and are accepted for the factorization.
Let m denote the number of bins in the histogram; m = 400 in our code. Then for
each pair of accepted off-diagonal elements, we find the largest k ∈ [1,m] such that

ρk−1 ≤ max |Lij |, |Uji|
ε
√
|DjjAii|

. (4.5)

Here ρ > 1 (ρ = 104/m in our code). The histogram is realized as an integer array h of
size m, where h` is the number of accepted elements that exceeded the drop tolerance
by factors between ρ`−1 and ρ` for 1 ≤ ` ≤ m − 1; hm contains the number of
accepted elements exceeding the drop tolerance by ρm−1. If the factorization reaches
the storage bound, we continue the factorization but allow no further fill-in. However,
we continue to compute the histogram based on (4.5), profiling the elements we would
have accepted had space been available. Then using the histogram, we predict a
new value of ε such that the total number of elements accepted for U is no larger
than maxfil · N/θ. Such a prediction of course cannot be guaranteed, since the
sizes and numbers of fill-in elements depend in a complicated fashion on the specific
history of the incomplete factorization process; indeed, the histogram cannot even
completely profile the remainder of the factorization with the existing drop tolerance,
since elements that would have been accepted could introduce additional fill-in at
later stages of the calculation as well as influence the sizes of elements computed at
later stages of the factorization. In our implementation, the factor θ varies between
θ = 1.01 and θ = 1.4, depending on how severely the storage bound was exceeded. Its
purpose is to introduce some conservative bias into the prediction with the goal that
the actual fill-in accepted should not exceed maxfil ·N .

Finally, we note that there is no comprehensive theory regarding the stability
of incomplete triangular decompositions. For certain classes of matrices (e.g., M-
matrices and H-matrices), the existence of certain incomplete factorizations has been
proved [39, 25, 24, 40, 51]. However, in the general case, with potentially indefinite
and/or highly nonsymmetric matrices, one must contend in a practical way with
the possibility of failure or near failure of the factorization. A common approach
is to add a diagonal matrix, often a multiple of the identity, to A and compute an
incomplete factorization of the shifted matrix. One might also try to incorporate
some form of diagonal pivoting; partial or complete pivoting could potentially destroy
the symmetric sparsity pattern of the matrix. However, any sort of pivoting greatly
increases the complexity of the implementation, since the simple but essentially static
data structures ja, a, ju, and u are not appropriate for such an environment.

Our philosophy here is to simply accept occasional failures and continue with
the factorization. Our ordering procedure contains some heuristics directed towards
avoiding or at least minimizing the possibility of failures. And when they do occur,
failures often corrupt only a low dimensional subspace, so a Krylov space method
such as conjugate gradients can compensate for such corruption with only a few extra
iterations. In our implementation, a failure is revealed by some diagonal entries in D
becoming close to zero. Off-diagonal elements Lji and Uij are multiplied by D−1

ii , and
the solution of (L + D)D−1(D + U)x = b also involves multiplication by D−1

ii . For
purposes of calculating the factorization and solution, the value of D−1

ii is modified
near zero as follows:

D−1
ii =

{
1/Dii for |Dii| > α,
Dii/α

2 for |Dii| ≤ α.
(4.6)

8

Here α is a small constant; in our implementation, α = µ||A||, where µ is the machine
epsilon. Although many failures could render the preconditioner well-defined but
essentially useless, in practice we have noted that D−1

ii is rarely modified for the large
class of finite element matrices which are the main target of our procedure.

5. Ordering. To compute the permutation matrix P in (2.2), we use the well-
known minimum degree algorithm [45, 26]. Intuitively, if one is computing an in-
complete factorization, an ordering which tends to minimize the fill-in in a complete
factorization should tend to minimize the error

E = P tAP − (L+D)D−1(D + U).

For particular classes of matrices, specialized ordering schemes have been developed
[34, 15, 37, 36]. For example, for matrices arising from convection dominated prob-
lems, ordering along the flow direction has been used with great success. However, in
this general setting, we prefer to use just one strategy for all matrices. This reduces
the complexity of the implementation and avoids the problem of developing heuris-
tics to decide among various ordering possibilities. We remark that for convection
dominated problems, minimum degree orderings perform comparably well to the spe-
cialized ones, provided some (modest) fill-in is allowed in the incomplete factorization.
For us, this seems to be a reasonable compromise.

Our minimum degree ordering is a standard implementation, using the quotient
graph model [26] and other standard enhancements. A description of the graph of
the matrix is the main required input. Without going into detail, this is essentially
a small variant of the basic ja data structure used to store the matrix A. We will
denote this modified data structure as jc. Instead of storing only column indices for
the strict upper triangle as in ja, entries jc(i) to jc(i+ 1)− 1 of the jc data structure
contain column indices for all off-diagonal entries for row i of the matrix A.

We have implemented two small enhancements to the minimum degree ordering;
as a practical matter, both involve changes to the input graph data structure jc
that is provided to the minimum degree code. First, we have implemented a drop
tolerance similar to that used in the the factorization. In particular the edge in the
graph corresponding to off-diagonal entries Aij and Aji is not included in the jc data
structure if

max |Aij |, |Aji| ≤ ε
√
|AjjAii|. (5.1)

This excludes many entries which are likely to be dropped in the subsequent incom-
plete factorization and hopefully will result in an ordering that tends to minimize the
fill-in created by the edges that are kept.

The second modification involves some modest a priori diagonal pivoting designed
to minimize the number failures (near zero diagonal elements) in the subsequent
factorization. We first remark that pivoting or other procedures based on the values
of the matrix elements (which can be viewed as weights on graph edges and nodes)
would destroy many of the enhancements which allow the minimum degree algorithm
to run in almost linear time. Our modification is best explained in the context of a
simple 2× 2 example. Let

A =

(
0 c
b a

)
9

with a, b, c 6= 0. Clearly, A is nonsingular, but the complete triangular factorization
of A does not exist. However,

P tAP =

(
a b
c 0

)
=

(
a 0
c −bc/a

)(
1/a 0
0 −a/bc

)(
a b
0 −bc/a

)
. (5.2)

Now suppose that Aii ≈ 0, Ajj , Aij , Aji 6= 0. Then these four elements form a
submatrix of the form described above, and it seems an incomplete factorization of
A is less likely to fail if the P is chosen such that vertex j is ordered before vertex i.
This is done as follows: for each i such that Aii ≈ 0, we determine a corresponding
j such that Ajj , Aij , Aji 6= 0; if there is more than one choice, we choose the one for
which |AijAji/Ajj | is maximized. To ensure that vertex i is ordered after vertex j,
we replace the sparsity pattern for the off-diagonal entries for row (column) i with
the union of those for rows (columns) i and j. If we denote the set of column indices
for row i in the jc array as adj(i), then

adj(j) ∪ {j} ⊆ adj(i) ∪ {i}. (5.3)

Although the sets adj(i) and adj(j) are modified at various stages, it is well known
that (5.3) is maintained throughout the minimum degree ordering process [26], so
that at every step of the ordering process deg(j) ≤ deg(i), where deg(i) is the degree
of vertex i. As long as deg(j) < deg(i), vertex j will be ordered before vertex i by
the minimum degree algorithm. On the other hand, if deg(i) = deg(j) at some stage
of the ordering process, it remains so thereafter, and (5.3) becomes

adj(j) ∪ {j} = adj(i) ∪ {i}. (5.4)

In words, i and j become so-called equivalent vertices and will be eliminated at the
same time by the minimum degree algorithm (see [26] for details). Since the minimum
degree algorithm sees these vertices as equivalent, they will be ordered in an arbitrary
fashion when eliminated from the graph. Thus, as a simple postprocessing step, we
must scan the ordering provided by the minimum degree algorithm and exchange the
order of rows i and j if i was ordered first. Any such exchanges result in a new
minimum degree ordering which is completely equivalent, in terms of fill-in, to the
the original.

For many types of finite element matrices (e.g., the indefinite matrices arising
from Helmholtz equations), this a priori scheme is useless because none of the diagonal
entries of A is close to zero. However, this type of problem is likely to produce only
isolated small diagonal entries in the factorization process, if it produces any at all.
On the other hand, other classes of finite element matrices, notably those arising
in from mixed methods, Stokes equations, and other saddle-point-like formulations,
have many diagonal entries that are small or zero. In such cases, the a priori diagonal
pivoting strategy can make a substantial difference and greatly reduce the numbers
of failures in the incomplete triangular decomposition.

6. Computing the transfer matrices. There are three major tasks in com-
puting the prolongation and restriction matrices V̂ and Ŵ of (2.6). First, one must
determine the sparsity structure of these matrices; this involves choosing which un-
knowns are coarse and which are fine. This reduces to determining the permutation
matrix P̂ of (2.4). Second, one must determine how coarse and fine unknowns are
related, the so-called parent-child relations [49]. This involves computing the sparsity

10

patterns for the matrices Vcf and Wfc. Third, one must compute the numerical values
for these matrices, the so-called interpolation coefficients [50].

There are many existing algorithms for coarsening graphs. For matrices arising
from discretizations of partial differential equations, often the sparsity of the matrix A
is related in some way to the underlying grid, and the problem of coarsening the graph
of the matrix A can be formulated in terms of coarsening the grid. Some examples are
given in [14, 13, 17, 18, 46, 12, 49]. In this case, one has the geometry of the grid to
serve as an aid in developing and analyzing the coarsening procedure. There are also
more general graph coarsening algorithms [32, 33, 19], often used to partition problems
for parallel computation. Here our coarsening scheme is based upon another well-
known sparse matrix ordering technique, the reverse Cuthill–McKee algorithm. This
ordering tends to yield reordered matrices with minimal bandwidth and is widely used
with generalized band elimination algorithms [26]. We now assume that the graph
has been ordered in this fashion and that a jc data structure representing the graph
in this ordering is available. Our coarsening procedure is just a simple postprocessing
step of the basic ordering routine, in which the N vertices of graph are marked as
COARSE or FINE.

procedure coarsen(N, jc, type)

for i← 1 to N
type(i)← UNDEFINED

end for
for i← 1 to N

if type(i) = UNDEFINED, then
type(i)← COARSE
for j ← jc(i) to jc(i+ 1)− 1

type(jc(j))← FINE
end for

end if
end for

end coarsen

This postprocessing step, coupled with the the reverse Cuthill–McKee algorithm,
is quite similar to a greedy algorithm for computing maximal independent sets using
breadth-first search. Under this procedure, all coarse vertices are surrounded only by
fine vertices. This implies that the matrix Acc in (2.4) is a diagonal matrix. For the
sparsity patterns of matrices arising from discretizations of scalar partial differential
equations in two space dimensions, the number of coarse unknowns N̂ is typically on
the order of N/4 to N/5. Matrices with more nonzeros per row tend to have smaller
values of N̂ . To define the parents of a coarse vertex, we take all the connections of
the vertex to other fine vertices; that is, the sparsity structure of Vcf in (2.5) is the
same as that of the block Acf .

In our present code, we pick Vcf and Wfc according to the formulae

Wfc = −RffD
−1
ff Afc,

Vcf = −AcfD
−1
ff R̃ff . (6.1)

Here Dff is a diagonal matrix with diagonal entries equal to those of Aff . In this
sense, the nonzero entries in Vcf and Wfc are chosen as multipliers in Gaussian elimi-

nation. The nonnegative diagonal matrices Rff and R̃ff are chosen such that nonzero
rows of Wfc and columns of Vcf , respectively, have unit norms in `1.

11

Finally, the coarsened matrix Â of (2.5) is “sparsified” using the drop tolerance
and a criterion like (5.1) to remove small off-diagonal elements. Empirically, applying
a drop tolerance to Â at the end of the coarsening procedure has proved more efficient,
and more effective, than trying to independently sparsify its constituent matrices. If
the number of off-diagonal elements in the upper triangle exceeds maxfil · N̂ , the
drop tolerance is modified in a fashion similar to the incomplete factorization. The
off-diagonal elements are profiled by a procedure similar to that for the incomplete fac-
torization, but in this case the resulting histogram is exact. Based on this histogram,
a new drop tolerance is computed, and (5.1) is applied to produce a coarsened matrix
satisfying the storage bound.

7. Block matrices. Our algorithm provides a simple but limited functionality
for handling block matrices. Suppose that the N ×N matrix A has the K ×K block
structure

A =

A11 . . . A1K

...
. . .

...
AK1 . . . AKK

 , (7.1)

where subscripts for Aij are block indices and the diagonal blocks Ajj are square

matrices. Suppose Ajj is of order Nj ; then
∑K

j=1Nj = N .
The matrix A is stored in the usual ja and a data structures as described in

section 3 with no reference to the block structure. A small additional integer array ib
of size K + 1 is used to define the block boundaries as follows:

ib(1) = 1,

ib(j + 1) = ib(j) +Nj , 1 ≤ j ≤ K.

In words, integers in the range ib(j) to ib(j+ 1)− 1, inclusive, comprise the index set
associated with block Ajj . Note that ib(K + 1) = N + 1.

This block information plays a role only in the coarsening algorithm. First, the
reverse Cuthill–McKee algorithm described in section 6 is applied to the block diagonal
matrix

Ā =

A11

. . .

AKK

 (7.2)

rather than A. As a practical matter, this involves discarding graph edges connecting
vertices of different blocks in the construction of the graph array jc used as input.
Such edges are straightforward to determine from the information provided in the ib
array. The coarsening algorithm applied to the graph of Ā produces output equivalent
to the application of the procedure independently to each diagonal block of Ā. As
a consequence, the restriction and prolongation matrices automatically inherit the
block structure A. In particular,

V̂ =

V̂11 . . .

V̂KK

 and Ŵ =

Ŵ11

. . .

ŴKK

 , (7.3)

where V̂jj and Ŵjj are are rectangular matrices (N̂j ×Nj and Nj × N̂j , respectively),
having the structure of (2.6) that would have resulted from the application of the

12

algorithm independently to Ajj . However, like the matrix A, V̂ and Ŵ are stored
in the standard jv and v data structures described in section 3 without reference to
their block structures.

The complete matrix A is used in the construction of the coarsened matrix Â of
(2.5). However, because of (7.1) and (7.3)

Â = V̂ AŴ =

 Â11 . . . Â1K

...
. . .

...

ÂK1 . . . ÂKK

 ,

so Â also automatically inherits the K ×K block structure of A. It is not necessary
for the procedure forming Â to have any knowledge of its block structure, as this
block structure can be computed a priori by the graph coarsening procedure. Like
A, Â is stored in standard ja and a data structures without reference to its block
structure. Since the blocks of A have arbitrary order, and are essentially coarsened
independently, it is likely that eventually some of the N̂j = 0. That is, certain blocks
may cease to exist on coarse levels. Since the block information is used only to discard
certain edges in the construction of the graph array jc, “0×0” diagonal blocks present
no difficulty.

8. Numerical experiments. In this section, we present a few numerical illus-
trations. In our first sequence of experiments, we consider several matrices loosely
based on the classical case of 5-point centered finite difference approximations to −∆u
on a uniform square mesh. Dirichlet boundary conditions are imposed. This leads to
the n× n block tridiagonal system

A =

T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T

with T the n× n tridiagonal matrix

T =

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

 .

This is a simple test problem easily solved by standard multigrid methods. In contrast
to this example we also consider the block tridiagonal system

Ā = 8I −A.

Both A and Ā have the same eigenvectors and the same eigenvalues, although the
association of eigenvectors and eigenvalues are reversed in the case of Ā. That is,
the so-called smooth eigenvectors are associated with large eigenvalues, while rough
eigenvectors are associated with smaller eigenvalues. Although Ā does not arise nat-
urally in the context of numerical discretizations of partial differential equations, it is
of interest because it defies much of the conventional wisdom for multigrid methods.

13

Third, we consider block 3× 3 systems of the form

S =

 A 0 Cx

0 A Cy

Ct
x Ct

y −D

 ,

where A is the discrete Laplacian andD is a symmetric positive definite “stabilization”
matrix with a sparsity pattern similar to A. However, the nonzeros in D are of size
O(h2), compared to size O(1) nonzero elements in A. Cx and Cy also have sparsity
patterns similar to that of A, but these matrices are nonsymmetric and their nonzero
entries are of size O(h). Such matrices arise in stabilized discretizations of the Stokes
equations. One third of the eigenvalues of S are negative, so S is quite indefinite.
In addition to the ja and a arrays, for the matrix S we also provided an ib array as
described in section 7 to define its 3×3 block structure. We emphasize again that this
block information is used only in the computation of the graph input to the coarsening
procedure and is not involved in any aspect of the incomplete factorization smoothing
procedure. With many small diagonal elements, this class of matrices provides a good
test of the a priori pivoting strategy used in conjunction with the minimum degree
ordering.

In Table 8.1, Levels refers to the number of levels used in the calculation. In our
implementation the parameter maxlvl, which limits the number of levels allowed, was
set sufficiently large that it had no effect on the computation. The drop tolerance
was set to ε = 10−2 for all matrices. The fill-in control parameter maxfil was set
sufficiently large that it had no effect on the computation. The initial guess for all
problems was x0 = 0.

In Table 8.1, the parameter Digits refers to

Digits = − log
||rk||
||r0||

. (8.1)

In these experiments, we asked for six digits of accuracy. The column labeled Cy-
cles indicates the number of multigrid cycles (accelerated by CSCG) that were used to
achieve the indicated number of digits. Finally, the last two columns, labeled Init. and
Solve, record the CPU time, measured in seconds, for the initialization and solution
phases of the algorithm, respectively. Initialization includes all the orderings, in-
complete factorizations, and computation of transfer matrices used in the multigraph
preconditioner. Solution includes the time to solve (2.1) to at least six digits given
the preconditioner. These experiments were run on an SGI Octane R10000 250mhz,
using double precision arithmetic and the f90 compiler.

In analyzing these results, it is clear that our procedure does reasonably well
on all three classes of matrices. Although it appears that the rate of convergence
is not independent of N , it seems apparent that the work is growing no faster than
logarithmically. CPU times for larger vales of N are affected by cache performance
as well as the slightly larger number of cycles.

For the highly indefinite Stokes matrices S, it is important to also note the ro-
bustness, that the procedure solved all of the problems. With more nonzeros per row
on average, the incomplete factorization was more expensive to compute than for the
other cases. This is reflected in relatively larger initialization and solve times.

In our next experiment, we illustrate the effect of the parameters maxlvl and ε.
For the matrix A with N = 160000, we solved the problem for ε = 10−k, 1 ≤ k ≤ 3,
and 1 ≤ maxlvl ≤ 7. We terminated the iteration when the solution had six digits,

14

Table 8.1
Performance comparison.

n N Levels Digits Cycles Init. Solve

Discrete Laplacian A, ε = 10−2

10 100 6 6.3 2 4.4e-3 1.2e-3

20 400 7 8.2 3 2.1e-2 6.9e-3

40 1600 8 8.6 4 9.4e-2 3.7e-2

80 6400 8 6.6 4 4.1e-1 2.0e-1

160 25600 9 6.9 5 1.9e 0 1.2e 0

320 102400 11 7.1 6 9.6e 0 7.4e 0

Ā = 8I −A, ε = 10−2

10 100 6 8.8 2 4.2e-3 1.2e-3

20 400 7 6.3 2 1.9e-2 5.0e-3

40 1600 8 8.1 3 9.2e-2 3.0e-2

80 6400 8 7.2 3 4.0e-1 1.6e-1

160 25600 9 6.8 3 1.9e 0 7.9e-1

320 102400 11 6.6 3 9.5e 0 4.2e 0

Stokes matrix S, ε = 10−2

10 300 6 7.4 2 3.0e-2 5.3e-3

20 1200 7 8.2 3 2.3e-1 4.5e-2

40 4800 8 7.9 5 1.5e 0 5.1e-1

80 19200 9 6.5 5 8.1e 0 2.6e 0

160 76800 9 6.0 8 41.4e 0 20.6e 0

as measured by (8.1). We also provide the total storage for the ja and ju arrays
for all matrices, measured in thousands of entries. Since the matrices are symmetric,
this is also the total (floating point) storage for all matrices A and approximate LDU
factorizations.

Here we see that our method behaves in a very predictable way. In particular,
decreasing the drop tolerance or increasing the number of levels improves the conver-
gence behavior of the method. On the other hand, the timings do not always follow
the same trend. For example, for the case ε = 10−3 increasing the number of levels
from maxlvl = 1 to maxlvl = 2 decreases the number of cycles but increases the time.
This is because for maxlvl = 1, our method defaults to the standard conjugate gra-
dient iteration with the incomplete factorization preconditioner. When maxlvl > 1,
one presmoothing and one postsmoothing step are used for the largest matrix. With
the additional cost of the recursion, the overall cost of the preconditioner is more than
double the cost for the case maxlvl = 1.

We also note that, unlike the classical multigrid method, where the coarsest matrix
is solved exactly, in our code we have chosen to approximately solve the coarsest
system using just one smoothing iteration using the incomplete factorization. When
the maximum number of levels are used, as in Table 8.1, the smallest system is
typically 1 × 1 or 2 × 2, and this is an irrelevant remark. However, in the case
of Table 8.2, the fact that the smallest system is not solved exactly significantly
influences the overall rate of convergence. This is why, unlike methods where the
coarsest system is solved exactly, increasing the number of levels tends to improve
the rate of convergence. In the case ε = 10−1, the coarsest matrix had an exact LDU
factorization for the case maxlvl = 5 (because the matrix itself was nearly diagonal),
and setting maxlvl > 5 did not increase the number of levels. The cases ε = 10−2

15

Table 8.2
Dependence of convergence of ε and maxlvl, discrete Laplacian A, N = 160000.

ε maxlvl Digits Cycles Init. Solve
∑
|ja|

∑
|ju|

1 6.0 401 4.3 182.7 479 643

2 6.0 166 9.3 156.1 878 962

3 6.1 96 13.2 116.9 1077 1119

10−1 4 6.1 79 15.0 107.3 1176 1178

5 6.0 75 15.8 106.6 1225 1188

6 – – – – – –

7 – – – – – –

1 6.0 119 5.8 62.4 479 1236

2 6.1 56 12.1 64.9 878 2106

3 6.0 32 14.6 49.3 977 2323

10−2 4 6.4 18 15.1 29.2 1002 2376

5 6.5 9 15.3 15.5 1008 2388

6 7.2 7 15.2 12.6 1010 2390

7 6.1 6 15.3 10.9 1011 2391

1 6.0 41 8.0 24.9 479 1999

2 6.1 22 16.6 31.7 878 3649

3 6.6 13 19.4 25.4 977 4053

10−3 4 6.5 7 20.2 15.2 1002 4147

5 6.0 4 20.3 9.7 1008 4167

6 6.5 4 20.3 9.5 1010 4170

7 6.5 4 20.4 9.4 1011 4171

≈ 0 1 11.1 1 52.4 1.8 479 5626

and ε = 10−3 used a maximum of 10 and 9 levels, respectively, but the results did not
change significantly from the case maxlvl = 7.

We also include in Table 8.2 the case ε = 0, maxlvl = 1, sparse Gaussian elim-
ination. (In fact, our code uses µ||A|| as the drop tolerance when the user specifies
ε = 0 to avoid dividing by zero.) Here we see that Gaussian elimination is reasonably
competitive on this problem. However, we generally expect the initialization cost for
ε = 0 to grow like O(N3/2). For maxlvl = 1 and ε > 0, we expect the solution times to
grow like O(Np), p > 1. For the best multilevel choices, we expect both initialization
and solution times to behave like O(N)−O(N logN).

In our final series of tests, we study the convergence of the method for a suite of
test problems generated from the finite element code PLTMG [8]. These example
problems were presented in our earlier work [11], where a more complete description
of the problems, as well as numerical results for our hierarchical basis multigraph
method and the classical AMG algorithm of Ruge and Stüben [46], can be found.
As a group, the problems feature highly nonuniform, adaptively generated meshes,
relatively complicated geometry, and a variety of differential operators. For each test
case, both the sparse matrix and the right-hand side were saved in a file to serve as
input for the iterative solvers. A short description of each test problem is given below.

Problem Superior. This problem is a simple Poisson equation

−∆u = 1

with homogeneous Dirichlet boundary conditions on a domain in the shape of Lake
Superior. This is the classical problem on a fairly complicated domain. The solution

16

is generally very smooth but has some boundary singularities.
Problem Hole. This problem features discontinuous, anisotropic coefficients. The

overall domain is the region between two concentric circles, but this domain is divided
into three subregions. On the inner region, the problem is

−δ∆u = 0

with δ = 10−2. In the middle region, the equation is

−∆u = 1,

and in the outer region the equation is

−uxx − δuyy = 1.

Homogeneous Dirichlet boundary conditions are imposed on the inner (hole) bound-
ary, homogeneous Neumann conditions on the outer boundary, and the natural con-
tinuity conditions on the internal interfaces. While the solution is also relatively
smooth, singularities exist at the internal interfaces.

Problem Texas. This is an indefinite Helmholtz equation

−∆u− 2u = 1

posed in a region shaped like the state of Texas. Homogeneous Dirichlet boundary
conditions are imposed. The length scales of this domain are roughly 16× 16, so this
problem is fairly indefinite.

Problem UCSD. This is a simple constant coefficient convection-diffusion equation

−∇ · (∇u+ βu) = 1,

β = (0, 105)T posed on a domain in the shape of the UCSD logo. Homogeneous
Dirichlet boundary conditions are imposed. Boundary layers are formed at the bottom
of the region and the top of various obstacles.

Problems Jcn 0 and Jcn 180. The next two problems are solutions of the current
continuity equation taken from semiconductor device modeling. This equation is a
convection-diffusion equation of the form

−∇ · (∇u+ βu) = 0,

β = 0 in most of the rectangular domain. However, in a curved band in the interior of
the domain, |β| ≈ 104 and is directed radially. Dirichlet boundary conditions u = 10−5

and u = 1010 are imposed along the bottom boundary and along a short segment on
the upper left boundary, respectively. Homogeneous Neumann boundary conditions
are specified elsewhere. The solutions vary exponentially across the domain which is
typical of semiconductor problems.

In the first problem, Jcn 0, the convective term is chosen so the device is forward
biased. In this case, a sharp internal layer develops along the top interface boundary.
In the second problem, Jcn 180, the sign of the convective term is reversed, resulting
in two sharp internal layers along both interface boundaries.

We summarize the results in Table 8.3. As before, perhaps the most important
point is that the method solved all of the problems. While convergence rates are not
independent of h, once again the growth appears to be at worst logarithmic.

Below we make some additional remarks.

17

Table 8.3
Performance comparison.

N Levels Digits Cycles Init. Solve

Superior, ε = 10−3

5k 7 7.2 3 2.4e-1 1.0e-1

20k 9 7.3 5 1.4e 0 9.4e-1

80k 9 6.1 7 10.5e 0 6.8e 0

Hole, ε = 10−4

5k 7 6.3 3 4.3e-1 1.5e-1

20k 7 8.2 4 2.4e 0 1.3e 0

80k 8 6.1 5 16.1e 0 7.6e 0

Texas, ε = 10−5

5k 7 12.3 2 4.2e-1 1.1e-1

20k 8 8.2 2 3.0e 0 6.9e-1

80k 9 9.8 5 27.4e 0 10.0e 0

UCSD, ε = 10−3

5k 6 11.1 2 2.0e-1 1.4e-1

20k 6 9.7 2 1.2e 0 7.8e-1

80k 7 8.8 2 10.5e 0 4.0e 0

Jcn 0, ε = 10−4

5k 7 6.4 1 4.5e-1 1.7e-1

20k 7 6.5 1 2.3e 0 8.5e-1

80k 8 10.5 2 15.1e 0 6.2e 0

Jcn 180, ε = 10−5

5k 7 12.3 2 4.9e-1 2.8e-1

20k 7 7.6 2 2.6e 0 1.4e 0

80k 8 7.1 3 18.0e 0 9.3e 0

• For all problems, decreasing the drop tolerance will tend to increase the ef-
fectiveness of the preconditioner, although it generally will also make the
preconditioner more costly to apply. Thus one might optimize the selection
of the drop tolerance to minimize the decreasing number of cycles against the
increasing cost per cycle. In these experiments, we did not try such system-
atic optimization, but we did adjust the drop tolerance in a crude way such
that more difficult problems performed in a fashion similar to the easy ones.

• Problem Texas is by far the most difficult in this test suite. While we set
maxfil = 35, the problem with order 80k was the only one which came close
to achieving this storage limit. Most were well below this limit, and many
averaged less than 10 nonzeros per row in L and U factors.

• For the nonsymmetric problems the CSBCG method is used for acceleration.
Since the CSBCG requires the solution of a conjugate system with At, two
matrix multiplies and two preconditioning steps are required for each itera-
tion. As noted in section 3, with our data structures, applying a transposed
matrix and preconditioner costs the same as applying the original matrix or
preconditioner. Since these are the dominant costs in the CSBCG methods,
the cost per cycle is approximately double that for an equivalent symmetric
system.

18

REFERENCES

[1] O. Axelsson and H. Lu, On eigenvalue estimates for block incomplete factorization methods,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1074–1085.

[2] , Conditioning analysis of block incomplete factorizations and its application to elliptic
equations, Numerische Mathematik, 78 (1997), pp. 189–209.

[3] O. Axelsson and M. Neytcheva, The algebraic multilevel iteration methods - theory and
applications, in Proceedings of the Second International Colloquium in Numerical Analysis,
Plovdiv, Bulgaria, 1993, pp. 13–23.

[4] O. Axelsson and B. Polman, Stabilization of algebraic multilevel iteration methods; additive
methods, University of Nijmegen, Nijmegen, The Netherlands, 1996.

[5] O. Axelsson and P. S. Vassilevski, Algebraic multilevel preconditioning methods I, Numer.
Math., 56 (1989), pp. 157–177.

[6] I. Babuška, private communication, 2000.
[7] Z.-Z. Bai, A class of hybrid algebraic multilevel preconditioning methods, Appl. Numer. Math.,

19 (1996), pp. 389–399.
[8] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations,

Users’ Guide 8.0, Software, Environments and Tools, Vol. 5, SIAM, Philadelphia, 1998.
[9] R. E. Bank and T. F. Chan, An analysis of the composite step biconjugate gradient method,

Numerische Mathematik, 66 (1993), pp. 295–319.
[10] R. E. Bank and R. K. Smith, General sparse elimination requires no permanent integer

storage, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 574–584.
[11] R. E. Bank and R. K. Smith, The incomplete factorization multigraph algorithm, SIAM J. on

Scientific Computing, 20 (1999), pp. 1349–1364.
[12] R. E. Bank and C. Wagner, Multilevel ILU decomopsition, Numerische Mathematik, 82

(1999), pp. 543–576.
[13] R. E. Bank and J. Xu, The hierarchical basis multigrid method and incomplete LU decomposi-

tion, in Seventh International Symposium on Domain Decomposition Methods for Partial
Differential Equations (D. Keyes and J. Xu, eds.), AMS, Providence, RI, 1994, pp. 163–173.

[14] , An algorithm for coarsening unstructured meshes, Numer. Math., 73 (1996), pp. 1–36.
[15] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factorization precondi-

tioning of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.
[16] D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing, 55

(1995), pp. 379–393.
[17] A. Brandt, S. McCormick, and J. Ruge, Algebraic multigrid (AMG) for automatic multigrid

solution with application to geodetic computations, tech. rep., Institute for Computational
Studies, Colorado State University, Fort Collins CO, 1982.

[18] , Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications
(D. J. Evans, ed.), Cambridge University Press, Cambridge, UK, 1984.

[19] T. F. Chan, S. Go, and J. Zou, Boundary treatments for multilevel methods on unstructured
meshes, SIAM J. Sci Comput., 21 (1999), pp. 46–66.

[20] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones, Coarse-grid selection for
parallel algebraic multigrid, in Solving irregularly structured problems in parallel (Berkeley,
CA, 1998), vol. 1457 of Lecture Notes in Comput. Sci., Springer, Berlin, 1998, pp. 104–115.

[21] J. E. Dendy, Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366–386.
[22] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for non-

symmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.
[23] S. C. Eisenstat, M. C. Gursky, M. Schultz, and A. Sherman, Algorithms and data struc-

tures for sparse symmetric Gaussian elimination, SIAM J. Sci. Statist. Comput., 2 (1982),
pp. 225–237.

[24] H. C. Elman, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986),
pp. 191–217.

[25] H. C. Elman and X. Zhang, Algebraic analysis of the hierarchical basis preconditioner, SIAM
J. Matrix Anal., 16 (1995), pp. 192–206.

[26] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice
Hall, Englewood Cliffs, NJ, 1981.

[27] C.-H. Guo, Incomplete block factorization preconditioning for linear systems arising in the
numerical solution of the helmholtz equation, Applied Numererical Mathematics, 19 (1996),
pp. 495–508.

[28] , Incomplete block factorization preconditioning for indefinite elliptic problems, Nu-
merische Mathematik, 83 (1999), pp. 621–639.

[29] R. Guo and R. D. Skeel, An algebraic hierarchical basis preconditioner, Appl. Numer. Math.,

19

9 (1992), pp. 21–32.
[30] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
[31] W. Hackbusch and G. Wittum, Incomplete Decompositions – Theory, Algorithms and Ap-

plications, vol. 41 of Notes Numer. Fluid Mech., Vieweg, Braunschweig, 1993.
[32] G. Karypis and V. Kumar, Analysis of multilevel graph partitioning, Tech. Rep. 95-037,

Department of Computer Science, University of Minnesota, Minneapolis, MN, 1995.
[33] , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J.

Sci. Statist. Comput., (to appear).
[34] S. LeBorne, Ordering techniques for convection dominated problems on unstructured three

dimensional grids, in 11th International Symposium of Domain Decomposition Methods
for Partial Differential Equations, C. Lai, P. Bjorstad, M. Cross, and O.Widlund, eds.,
1999, p. to appear.

[35] C.-J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM J.
Sci. Comput., 21 (1999), pp. 24–45.

[36] M.-M. Magolu, Ordering strategies for modified block incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 378–399.

[37] , Taking advantage of the potentialities of dynamically modified block incomplete factor-
izations, SIAM J. Sci. Comput., 19 (1998), pp. 1083–1108.

[38] J. Mandel, M. Brezina, and P. Vanek, Energy optimization of algebraic multigrid bases,
Computing, 62 (1999), pp. 205–228.

[39] T. Mannseth, An analysis of the robustness of some incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 1428–1450.

[40] A. Messaoudi, On the stability of the incomplete LU-factorizations and characterizations of
H-matrices, Numerische Mathematik, 69 (1995), pp. 321–331.

[41] Y. Notay, Using approximate inverses in algebraic multilevel methods, Numerische Mathe-
matik, 80 (1998), pp. 397–417.

[42] , A multilevel block incomplete factorization preconditioning, Applied Numerical Math-
ematics, 31 (1999), pp. 209–225.

[43] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[44] A. Reusken, A multigrid method based on incomplete Gaussian elimination, J. Numer. Linear
Algebra Appl., 3 (1996), pp. 369–390.

[45] D. J. Rose, A graph theoretic study of the numeric solution of sparse positive definite systems,
in Graph Theory and Computing, Academic Press, New York, 1972, pp. 183–217.

[46] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, S. F. Mc-
Cormick, ed., vol. 3 of Frontiers Applied Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[47] Y. Saad, ILUT: a dual threshold incomplete LU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[48] P. Vanek, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Tech. Rep. 126, Center for Computational Mathematics, University of Col-
orado, at Denver, 1994.

[49] C. Wagner, Introduction to algebraic multigrid, tech. rep., Interdisziplinäres Zentrum für Wis-
senschaftliches Rechnen,Universität Heidelberg, 1999.

[50] W. L. Wan, T. F. Chan, and B. Smith, An energy-minimizing interpolation for robust multi-
grid methods, SIAM J. Sci Comput., 21 (1999), pp. 1632–1649.

[51] G. Wittum, On the robustness of ILU smoothing, SIAM J. Sci. Comput., 10 (1989), pp. 699–
717.

20

