
DDM Preprint
Editors: editor1, editor2, editor3, editor4 c© DDM.org

1 Multigraph Algorithms Based on Sparse Gaussian
Elimination

R. E. Bank1, R. K. Smith2

Introduction

In this work, we describe a multilevel-multigraph algorithm. An excellent recent survey
on algebraic approaches to multilevel iterative methods is given in Wagner [Wag99].
This article also contains an extensive bibliography. The algorithm discussed here is
described more fully in [BS00]. Our goal is to develop an iterative solver with the
simplicity of use and robustness of general sparse Gaussian elimination, and at the
same time to capture the computational efficiency of classical multigrid algorithms.
While we do not believe that the current algorithm achieves this goal, it represents
an important step in this direction. To guarantee robustness, general sparse Gaussian
elimination with minimum degree ordering is a point in the parameter space of our
method. This is a well known and widely used method, among the most computa-
tionally efficient of general sparse direct methods [GL81].

To obtain simplicity of use and implementation, our algorithms incorporate many
technologies and algorithms originally developed for general sparse Gaussian elimi-
nation. Besides the minimum degree algorithm, the Reverse Cuthill-McKee ordering
is the basis of our coarsening procedure. Our sparse matrix data structures are a
generalization of those first introduced in the symmetric Yale Sparse Matrix Pack-
age [EGSS82], and our (incomplete) factorization procedure is a generalization of
the sparse row elimination scheme used there. To gain computational efficiency, our
method offers the possibility to compute an incomplete factorization with the user able
to specify a drop tolerance and an absolute bound on the total fill-in. This factoriza-
tion becomes the smoother in a multilevel procedure similar to the classical multigrid
method.

Sparse direct methods typically have two phases. In the initialization phase, equa-
tions are ordered, and symbolic and numerical factorizations are computed. In the
solution phase, the solution of the linear system is computed using the factorization.
Our procedure, as well as other algebraic multilevel methods, also breaks naturally
into two phases. The initialization consists of ordering, incomplete symbolic and nu-
meric factorizations, and the computation of the transfer matrices between levels. In
the solution phase, the preconditioner computed in the initialization phase is used to
compute the solution using the preconditioned Composite Step Conjugate Gradient
(CSCG) or the Composite Step Biconjugate Gradient (CSBCG) method [BC93].

In the spirit of general sparse Gaussian elimination, we have tried to minimize
the number of user specified control parameters. In the initialization phase, there
are three parameters. The most important is the drop tolerance (dtol) for the in-

1University of California at San Diego, La Jolla CA 92093, rbank@ucsd.edu. The work of this
author was supported by the National Science Foundation under contract DMS-9706090.

2Agere Systems, Murray Hill, NJ 07974, kentsmith@agere.com.

2 BANK, SMITH

complete factorization. Because the fill-in for the ILU tends to be a very nonlinear
and unpredictable function of the drop tolerance, we also allow the user to specify
an upper bound on the amount to fill-in the be allowed in the incomplete factoriza-
tion (maxfil). Finally, the maximum number of levels in the multilevel procedure
(maxlvl) can be specified. In the solution phase, the user can specify only two control
parameters: the maximum number of iterations (maxcg) and an error tolerance (tol)
for the convergence criterion.

Our main interest is in developing a solver for discretizations of scalar elliptic
problems as in the finite element code PLTMG [Ban98]. However, our solver was
developed as a stand-alone linear equations solver, and can formally be applied to any
structurally symmetric, nonsingular, sparse matrix. By structurally symmetric, we
mean that the pattern of nonzeros in the matrix is symmetric, although the numerical
values of the matrix elements may render it nonsymmetric. Many problems arising in
practice naturally have structural symmetry, and of course all can be made structurally
symmetric by storing some extra zeroes. For certain problems handled by PLTMG,
the matrices are symmetric and positive definite, but for others, the linear systems
are highly nonsymmetric and/or indefinite. Thus in practice, this represents a very
broad class of behavior.

Structural symmetry allows for some important simplifications in the implemen-
tation. In particular, we can handle linear systems involving symmetric matrices A
and nonsymmetric matrices A and At within a single, unified code, rather than de-
veloping specialized subroutines for each of these three cases. In the nonsymmetric
case, linear systems involving At arise naturally in the context of the CSBCG algo-
rithm, and hence are important for our solver. This limits the complexity of the code,
and also eliminates additional parameters that might be needed to further classify a
given matrix. On the other hand, it seems clear that a specialized solver directed at
a specific problem or class of problems, and making use of additional knowledge, is
likely to outperform our algorithm on that particular class of problems. Although we
do not think our method is provably “best” for any particular problem, we believe its
generality and robustness, coupled with reasonable computational efficiency, make it
an interesting and useful approach for solving linear systems.

Matrix Formulation

Let A be a large sparse, nonsingular N × N matrix. We assume that the sparsity
pattern of A is symmetric, although the numerical values need not be. We consider
the solution of the linear system

Ax = b. (1)

Let B be an N ×N nonsingular smoothing matrix. In our case, B is an approximate
factorization of A, i.e.,

B = (L+D)D−1(D + U) ≈ P tAP, (2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix.

MULTIGRAPH ALGORITHMS 3

Given an initial guess x0, m steps of the smoothing procedure produce iterates xk,
1 ≤ k ≤ m, given by

rk−1 = P t(b−Axk−1),

Bδk−1 = rk−1, (3)

xk = xk−1 + P tδk−1.

The second component of the two-level preconditioner is the coarse grid correction.
Here we assume that the matrix A can be partitioned as

P̂AP̂ t =

(
Aff Afc

Acf Acc

)
, (4)

where the subscripts f and c denote fine and coarse, respectively. Similar to the
smoother, the partition of A in fine and coarse blocks involves a permutation matrix
P̂ . The N̂ × N̂ coarse grid matrix Â is given by

Â =
(
Vcf Icc

)(Aff Afc

Acf Acc

)(
Wfc

Icc

)
= VcfAffWfc + VcfAfc +AcfWfc +Acc. (5)

The matrices Vcf and W t
fc are N̂ ×N matrices, with identical sparsity patterns; thus

Â has a symmetric sparsity pattern. If At = A, we require Vcf = W t
fc, so Ât = Â.

Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
. (6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction and
prolongation, respectively. Given an approximate solution xm to (1), the coarse grid
correction produces an iterate xm+1 as follows:

r̂ = V̂ (b−Axm),

Âδ̂ = r̂, (7)

xm+1 = xm + Ŵ δ̂.

In typical multilevel fashion, the linear system Âδ̂ = r̂ in (7) is solved by recursion,
in our case a multilevel V-cycle. One the coarsest level, we apply the iteration (3). A
single cycle takes an initial guess x0 to a final guess x3 as follows: x1 is defined using
(3), x2 is defined using (7), and x3 is defined using (3). Note in particular that we use
only one pre-smoothing and one post-smoothing iteration.

Some Implementation Details

To complete the definition of the method, we must provide algorithms to:

• Compute the incomplete factorization matrix B in (2).

• Compute the permutation matrix P in (2).

4 BANK, SMITH

• Compute the fine-coarse partitioning matrix P̂ in (4).

• Compute the sparsity patterns and numerical values in the prolongation and
restriction matrices in (6).

ILU Factorization

Our incomplete (L + D)D−1(D + U) factorization is similar to the row elimination
scheme developed for the symmetric YSMP codes [EGSS82, GL81]. Without loss of
generality, assume that the permutation matrix P = I, so that A = (L+D)D−1(D+
U) + E, where E is the error matrix.

After k steps of elimination, we have the block factorization(
A11 A12

A21 A22

)
=

(
D11 + L11 0

L21 I

)(
D−1

11 0
0 S

)(
D11 + U11 U12

0 I

)
+

(
E11 E12

E21 0

)
,

where A11 is k× k and A22 is N − k×N − k. We assume that at this stage the blocks
D11, L11, L21, U11, and U12 have been computed.

Our goal for step k+ 1 is to compute the first row and column of the approximate
Schur complement S, given by

` = Se1 = A22e1 − L21(D−1
11 U12e1),

u = Ste1 = At
22e1 − U t

12(D−1
11 L

t
21e1).

This is done by a procedure similar to the row elimination scheme employed by the
symmetric YSMP codes. After the complete (sparse) vectors ` and u are computed,
certain entries are dropped (assigned to the error matrix E). In particular, we neglect
a pair of off-diagonal elements if

max |Lij |, |Uji| ≤ dtol
√
|DjjAii|, (8)

where j = k + 1; Dii has not yet been computed. The drop tolerance dtol is applied
in a symmetric fashion to maintain a symmetric sparsity pattern in the factorization.

It is well known that the fill-in generated through the application of a criterion such
as (8) is a highly nonlinear and matrix dependent function of dtol. This is especially
problematic in the present context, since control of the fill-in is necessary in order to
control the work per iteration in the multilevel iteration. Thus, in addition to the
drop tolerance dtol, the user sets the parameter maxfil, which specifies that the total
number of nonzeros in U is not larger than maxfil ·N .

Our basic strategy is to compute the incomplete decomposition using the given
drop tolerance. If it fails to meet the given storage bound, we increase the drop
tolerance and begin a new incomplete factorization. We continue in this fashion until
we complete a factorization within the given storage bound. Of course, such repeated
factorizations are computationally expensive, so we develop heuristics which allow us
to predict a drop tolerance which will satisfy the storage bound. Thus, should the
original factorization fail to satisfy the storage bound, usually only one additional ILU
factorization is needed. This is discussed in detail in [BS00].

MULTIGRAPH ALGORITHMS 5

Finally, we note that there is no comprehensive theory regarding the stability of in-
complete triangular decompositions. For certain classes of matrices (e.g., M-matrices),
the existence of certain incomplete factorizations has been established; however, in the
general case, with potentially indefinite and/or highly nonsymmetric matrices, one
must contend in a practical way with the possibility of failure or near failure of the
factorization. In our implementation, a failure is revealed by some diagonal entries in
D becoming close to zero. Off-diagonal elements Lji and Uij are multiplied by D−1

ii ,
and the solution of (L+D)D−1(D+U)x = b also involves multiplication by D−1

ii . For
purposes of calculating the factorization and solution, the value of D−1

ii is modified
near zero as follows:

D−1
ii =

{
1/Dii for |Dii| > α
Dii/α

2 for |Dii| ≤ α
.

Here α is a small constant; in our implementation, α = µ||A||, where µ is the machine
epsilon. Although many failures could render the preconditioner well-defined but
essentially useless, in practice we have noted that D−1

ii is rarely modified for a the
large class of finite element matrices which are the main target of our procedure.

Ordering

The minimum degree ordering is used to compute the permutation matrix P in (2).
Intuitively, if one is computing an incomplete factorization, an ordering which tends
to minimize the fill-in in a complete factorization should tend to minimize the error E
in the incomplete factorization. For particular classes of matrices, specialized ordering
schemes have been developed; for example, for matrices arising from convection dom-
inated problems, ordering along the flow direction has been used with great success.
However, in this general setting, we prefer to use just one strategy for all matrices,
to reduce the complexity of the implementation, and to avoid the issue of deciding
among various ordering possibilities. We remark that for convection dominated prob-
lems, minimum degree orderings perform comparably well to the specialized ones,
provided some (modest) fill-in is allowed in the incomplete factorization. For us, this
seems to be a reasonable compromise.

Our minimum degree ordering is a standard implementation. We have imple-
mented two small enhancements to the minimum degree ordering; as a practical mat-
ter, both involve changes to the input graph data structure that is provided to the
minimum degree code. First, we have implemented a drop tolerance similar to that
used in the factorization. In particular, the edge in the graph corresponding to off-
diagonal entries Aij and Aji is not included in the input data structure if

max |Aij |, |Aji| ≤ dtol
√
|AjjAii|.

This excludes many entries which are likely to be dropped in the subsequent incomplete
factorization.

The second modification involves some modest a priori diagonal pivoting designed
to minimize the number failures (near zero diagonal elements) in the subsequent fac-
torization. This procedure is described in detail in [BS00].

6 BANK, SMITH

Fine-Coarse Partitioning

Our coarsening scheme is based upon another well-known sparse matrix ordering tech-
nique, the Reverse Cuthill-McKee algorithm. This ordering tends to yield reordered
matrices with minimal bandwidth, and is widely used with generalized band elimi-
nation algorithms [GL81]. Our coarsening procedure is just a simple post-processing
step of the basic ordering routine, in which the N vertices of graph are marked as
COARSE or FINE. Initially, all vertices are UNMARKED. We proceed through the
vertices in RCM order; each UNMARKED vertex we encounter is relabeled COARSE,
and all of its neighbors are labeled FINE. This implicitly defines the matrix P̂ given
in (4).

Under this procedure, all coarse vertices are surrounded by fine vertices. This
implies that the matrix Acc in (4) is a diagonal matrix. For the sparsity patterns
of matrices arising from discretizations of scalar partial differential equations as in
PLTMG, the number of coarse unknowns N̂ is typically on the order of N/4 to N/5.

Computing the Transfer Matrices

We now define the matrices Vcf and W t
fc of (5). To define the sparsity structure, we

take all the connections of each coarse grid vertex to its fine grid neighbors; that is,
the sparsity structures of Vcf and W t

fc are the same as the block Acf .

We chose numerical values for Vcf and Wfc according to the formulae

Wfc = −RffD
−1
ff Afc,

Vcf = −AcfD
−1
ff R̃ff .

HereDff is a diagonal matrix with diagonal entries equal to those ofAff . In this sense,
the nonzero entries in Vcf and Wfc are chosen as multipliers in Gaussian Elimination.

The nonnegative diagonal matrices Rff and R̃ff are chosen such that nonzero rows
of Wfc and columns of Vcf , respectively, have unit norms in `1.

Finally, if necessary, the coarsened matrix Â of (5) is “sparsified” using the drop
tolerance and a criterion like (8) to remove small off-diagonal elements. Empirically,
applying a drop tolerance to Â at the end of the coarsening procedure has proved
more efficient, and more effective, than trying to independently sparsify its constituent
matrices.

Numerical Illustrations

In this section, we present a few numerical illustrations. The problems are all of the
form Liu = 1 in Ω = (0, 1) × (0, 1) with u = 0 on ∂Ω. The operators Li, 1 ≤ i ≤ 7,

MULTIGRAPH ALGORITHMS 7

are given by

L1u = −∆u,

L2u = −∆u− 1000ux,

L3u = −∆u− 1000ux − 1000uy,

L4u = −∆u− 1000u,

L5u = −∆u+ 1000u,

L6u = −.001uxx − uyy,
L7u = −∆u− 1000{(y − .5)ux − (x− .5)uy}.

These problems are standard PDE’s chosen to reflect a wide variety of behavior. We
solved these problems on n × n uniform meshes with n = 51, 101, 201; the resulting
linear systems are of order N = n2. Uniform meshes were used for standardization,
although these problems could be more effectively solved in PLTMG using adaptive
meshes. A 5 × 5 mesh, as well as the solutions to the seven problems are shown
in Figure 1. Continuous piecewise linear finite elements and the usual nodal basis
functions are used in PLTMG to construct the linear systems.

In Table 1, we summarize the results of the calculation. Here Levels refers to
the number of levels used in the calculation. In this test, the parameter maxlvl was
sufficiently large that it had no effect on the computation. The fill-in control parameter
maxfil was also sufficiently large that it had no effect on the computation. The
drop tolerance was set as indicated; although not carefully optimized, the tolerance
was crudely chosen according to the difficulty of the problem to produce roughly
comparable results for all problems. The initial guess for all problems was x0 = 0.

The parameter Digits refers to

Digits = − log
||rk||
||r0||

. (9)

In these experiments, we asked for 6 digits of accuracy. The column labeled Cycles
indicates the number of multigrid cycles (accelerated by composite step conjugate
gradients or biconjugate gradients) that were used to achieve the indicated number
of digits. Finally, the last two columns, labeled Init. and Solve, record the CPU time
for the initialization and solution phases of the algorithm, respectively. Initialization
includes all the orderings, incomplete factorizations, and computation of transfer ma-
trices used in the multigraph preconditioner. Solution includes the time to solve (1)
to at least 6 digits given the preconditioner. These experiments were run on an SGI
Octane R10000 250mhz, using double precision arithmetic and the f90 compiler.

In analyzing these results, it is clear that our procedure does reasonably well on
all of the problems. Although it appears that the rate of convergence is not always
independent of N , it seems apparent that the work is growing no faster than logarith-
mically. CPU times for larger values of N are affected by cache performance as well
as the slightly larger number of cycles.

In our next experiment, we illustrate the effect of the parameters maxlvl and dtol.
For the L1, L4, and L7 and N = 40401, we solved the problem for dtol = 10−k,
1 ≤ k ≤ 4 and 1 ≤ maxlvl ≤ 3. L4 and L7 are the two most challenging problems
in this suite. The results are given in Table 2. Although we expect all iterations to

8 BANK, SMITH

Figure 1: A 5× 5 uniform triangulation, and solutions to problems 1-7.

MULTIGRAPH ALGORITHMS 9

Table 1: Performance comparison.

n N Levels Digits Cycles Init. Solve

Problem 1, dtol = 10−2

51 2601 7 8.4 3 2.1e-1 5.1e-2
101 10201 7 6.8 3 1.0e 0 2.9e-1
201 40401 9 6.2 3 4.5e 0 1.4e 0

Problem 2, dtol = 10−3

51 2601 7 7.5 1 2.5e-1 6.4e-2
101 10201 8 6.1 1 1.2e 0 3.7e-1
201 40401 9 10.3 3 6.5e 0 4.6e 0

Problem 3, dtol = 10−3

51 2601 7 11.6 1 5.8e-1 1.2e-1
101 10201 8 6.5 1 4.9e 0 5.1e-1
201 40401 8 10.0 2 6.8e 0 3.7e 0

Problem 4, dtol = 10−4

51 2601 6 6.7 1 3.7e-1 3.8e-2
101 10201 7 6.1 3 2.3e 0 4.9e-1
201 40401 7 7.0 4 13.4e 0 2.9e 0

Problem 5, dtol = 10−2

51 2601 7 7.6 2 2.7e-1 4.1e-2
101 10201 7 6.4 2 1.2e 0 2.3e-1
201 40401 8 6.7 2 4.4e 0 1.0e 0

Problem 6, dtol = 10−4

51 2601 6 8.6 1 2.0e-1 2.4e-2
101 10201 7 8.2 1 8.9e-1 1.4e-1
201 40401 8 7.5 1 4.1e 0 6.7e-1

Problem 7, dtol = 10−3

51 2601 6 10.3 2 2.9e-1 1.0e-1
101 10201 7 7.7 2 1.6e 0 6.6e-1
201 40401 8 6.6 2 8.2e 0 3.1e 0

10 BANK, SMITH

eventually converge (at least in exact arithmetic), we terminated the iteration after
maxcg = 25 steps or when the solution had 6 digits, as measured by (9).

Here we see that, in general, decreasing the drop tolerance or increasing the number
of levels improves the convergence behavior of the method. On the other hand, the
timings do not always follow the same trend. For example, increasing the number
of levels from maxlvl = 1 to maxlvl = 2 often decreases the number of cycles but
increases the time. This is because for maxlvl = 1, our method defaults to the
standard CG of BCG iteration with the incomplete factorization preconditioner. When
maxlvl > 1, one pre-smoothing and one post-smoothing step are used for the largest
matrix. With the additional cost of the recursion, the overall cost of the preconditioner
is more than double the cost for the case maxlvl = 1.

We also note that, unlike the classical multigrid method, where the coarsest matrix
is solved exactly, in our code we have chosen to approximately solve the coarsest
system using just one smoothing iteration using the incomplete factorization. When
the maximum number of levels are used, as in Table 1, the smallest system is typically
1×1 or 2×2, and this is an irrelevant remark. However, in the case of Table 2, the fact
that the smallest system is not solved exactly significantly influences the convergence.

Finally we note biconjugate gradient iteration used for nonsymmetric problems
requires two matrix multiplies and two preconditioning applications (for the matrix
and its transpose), so the overall cost per step is about twice that of the regular
conjugate gradient iteration.

References

[Ban98]Randolph E. Bank. PLTMG: A Software Package for Solving Elliptic Partial
DifferentiaEquations, Users’ Guide 8.0l, volume 5 of Software, Environments and
Tools. SIAM, Philadelphia, 1998.

[BC93]Randolph E. Bank and Tony F. Chan. An analysis of the composite step
biconjugate gradient method. Numerische Mathematik, 66:295–319, 1993.

[BS00]Randolph E. Bank and R. Kent Smith. An algebraic multilevel multigraph
algorithm. Technical report, University of California at San Diego, 2000. submitted
to SIAM J. on Scientific Computing.

[EGSS82]S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Algorithms
and data structures for sparse symmetric Gaussian elimination. SIAM J. Sci. Stat.
Comput., 2:225–237, 1982.

[GL81]Alan George and Joseph Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[Wag99]Christian Wagner. Introduction to algebraic multigrid. Technical report,
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg,
1999.

MULTIGRAPH ALGORITHMS 11

Table 2: Dependence of convergence of dtol and maxlvl.

dtol maxlvl Digits Cycles Init. Solve

Problem 1, N = 40401
1 3.7 25 1.1 2.7

10−1 2 4.3 25 2.6 6.3
3 6.2 22 3.7 7.6
1 5.6 25 1.5 3.3

10−2 2 6.2 13 3.5 4.3
3 6.1 8 4.2 3.3
1 6.0 12 2.2 1.8

10−3 2 6.2 6 4.9 2.3
3 7.0 4 5.6 2.0
1 6.5 5 3.7 1.0

10−4 2 6.5 2 7.9 1.2
3 8.5 2 5.6 1.5

Problem 4, N = 40401
1 3.1 25 1.2 3.0

10−1 2 3.6 25 2.7 7.2
3 3.9 25 3.8 10.2
1 3.7 25 1.5 4.4

10−2 2 4.2 25 3.5 11.0
3 2.5 25 4.2 10.0
1 6.1 25 3.4 5.0

10−3 2 3.7 25 7.7 11.8
3 5.7 25 9.6 14.1
1 6.7 5 8.1 1.3

10−4 2 6.7 4 12.1 2.4
3 7.0 4 12.9 2.8

Problem 7, N = 40401
1 3.1 25 1.4 7.9

10−1 2 3.1 25 3.2 18.9
3 4.5 25 4.0 22.3
1 5.5 25 1.9 8.7

10−2 2 6.2 10 4.5 9.5
3 6.4 7 5.2 6.9
1 7.0 6 2.9 2.3

10−3 2 7.5 4 6.9 3.6
3 7.7 3 7.8 3.8
1 6.2 3 3.8 1.2

10−4 2 8.8 2 9.4 2.4
3 7.4 1 10.5 2.2

