
ASYMPTOTICALLY EXACT A POSTERIORI ERROR
ESTIMATORS, PART II: GENERAL UNSTRUCTURED GRIDS

RANDOLPH E. BANK∗ AND JINCHAO XU†

Abstract. In Part I of this work, we analyzed superconvergence for piecewise linear finite element
approximations on triangular meshes where most pairs of triangles sharing a common edge form
approximate parallelograms. In this work, we consider superconvergence for general unstructured
but shape regular meshes. We develop a post-processing gradient recovery scheme for the finite
element solution uh, inspired in part by the smoothing iteration of the multigrid method. This
recovered gradient superconverges to the gradient of the true solution, and becomes the basis of a
global a posteriori error estimate that is often asymptotically exact. Next, we use the superconvergent
gradient to approximate the Hessian matrix of the true solution, and form local error indicators for
adaptive meshing algorithms. We provide several numerical examples illustrating the effectiveness
of our procedures.
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1. Introduction. In Part I of this work [10], we developed some superconver-
gence estimates and a gradient recovery algorithm appropriate for piecewise linear
finite element approximations of elliptic boundary problems. In that work, we re-
stricted attention to triangular meshes that are O(h2σ) irregular [10]. In this work,
we extend the gradient recovery scheme to more general meshes and develop an a pos-
teriori error estimate and local error indicator for use in adaptive meshing algorithms.
See [15, 23, 24, 25, 14, 22, 12, 16, 20, 5, 13, 1] for related work, and in particular the
monographs by Verfürth [18], Babuška and Strouboulis [4], Chen and Huang [11], Lin
and Yan [17], Wahlbin [19] for recent surveys of the field as a whole.

Our overall development has three major steps. Let Vh ⊂ H1(Ω) be the finite
element subspace consisting of continuous piecewise linear polynomials associated
with a shape regular triangulation Th. Let uh ∈ Vh be the finite element solution
of an appropriate linear or nonlinear elliptic boundary value problem. In the first
component of our development, we prove a superconvergence result for |uh − uI |1,Ω,
where uI is the piecewise linear interpolant for u. In particular, in Part I of this
manuscript [10], we prove that

|uh − uI |1,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω. (1.1)

Estimate (1.1) holds on nonuniform meshes, where most pairs of adjacent triangles
satisfy an O(h2) approximate parallelogram property. σ > 0 in some sense measures
the extent to which this condition is violated; see [10] for details.

The second major component is a superconvergent approximation to ∇u. This
approximation is generated by a gradient recovery procedure. In particular, in Section
2 of this manuscript we compute SmQh∇uh, where S is an appropriate smoothing
operator, and Qh is the L2 projection operator. In words, the discontinuous, piecewise
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constant gradient ∇uh is projected into the space of continuous piecewise linear poly-
nomials, and then smoothed, using a multigrid-like smoothing operator. Although
the L2 projection operator is global, the overall work estimate is still O(N) for a
mesh with N vertices. In the case of a small number of smoothing steps (the most
interesting case), Theorem 2.7 shows that

||∇u− SmQh∇uh||0,Ω . h

{
min

(
hmin(1,σ)| log h|,

[
κ− 1

κ

]m)
+mh1/2

}
||u||3,∞,Ω.

(1.2)
Here κ > 1 is a constant independent of h and u. The term (1 − κ−1)m illustrates
the well-known effectiveness of a few smoothing steps, and is reminiscent of terms
arising in connection with multigrid convergence analysis [7]. If σ is sufficiently large,
then the L2 projection itself (m = 0) is sufficient to produce superconvergence. The
purpose of smoothing is to improve the performance when σ ≈ 0 and the mesh is
shape regular.

In the third major component of our analysis, presented in section 3 of this
manuscript, we use the recovered gradient to develop an a posteriori error estimate.
An obvious choice is to use (I−SmQh)∇uh to approximate the true error ∇(u−uh).
In Theorem 3.1 we show this is a good choice, and that in many circumstances we
can expect the error estimate to be asymptotically exact; that is

lim
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω

= 1.

as h→ 0 and m→∞ in an appropriate fashion.
We also use the recovered gradient to construct local approximations of interpola-

tion errors to be used as local error indicators for adaptive meshing algorithms. This
is motivated by noting that under certain circumstances, |uq − uI |1,Ω is an asymp-
totically exact estimate of |u− uh|1,Ω. Here uq is the piecewise quadratic interpolant
for u. Thus uq − uI is a locally defined quadratic polynomial with value zero at all
vertices of the mesh. On a given element τ , uq − uI can be expressed as a linear
combination of quadratic “bump functions” qk associated with the edge midpoints of
τ ,

uq − uI =

3∑
k=1

`2kt
t
kMτ tk qk(x, y) (1.3)

where `k is the length of edge k, tk is the unit tangent, and

Mτ = −1

2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
(1.4)

is the Hessian matrix (for details, see Section 3). For convenience in notation, we
let ∂iu denote the partial derivative ∂u/∂xi. All terms on the right hand side of
(1.3) are known except for the second derivatives appearing in the Hessian matrix
Mτ . In our local error indicator, we simply replace ∂ijuq by ∂iS

mQh∂juh. Let ετ
denote this locally defined a posteriori error estimate. In Theorem 3.2, we prove the
superconvergence estimate

||∂i(∂ku− SmQh∂kuh)||0,Ω .

{
min

(
hmin(1,σ)| log h|,

[
κ− 1

κ

]m)
+mh1/2

}
||u||3,∞,Ω.

(1.5)
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We remark that both our gradient recovery scheme and our a posteriori error
estimate are largely independent of the details of the partial differential equation.
This suggests that superconvergence can be expected for a wide variety of problems,
as long as the adaptive meshing yields smoothly varying, shape regular meshes.

It also is interesting to note that the superconvergent global approximation to
∇u emphasizes once again a classic dilemma in error estimation. On the one hand,
generally it seems quite advantageous to take the superconvergent approximation
SmQh∇uh as the “accepted” approximation to ∇u. Not only is it of higher order
than ∇uh, it is globally continuous and differentiable, often desirable properties. On
the other hand, the a posteriori error estimates and resulting adaptive meshing algo-
rithms use SmQh∇uh to estimate the error in ∇uh. In some respects, the situation
is analogous to adaptive time step selection schemes for initial value problems where
order p and p+1 approximations are computed to estimate the local error in the order
p approximation, which is then used to control the time step.

Finally, as a point of practical interest, since the gradient recovery and a posteri-
ori error estimates are independent of the PDE, a single implementation can be used
across a broad spectrum of problems. There is no need to have special implementa-
tions for each problem class, as is typical of schemes that involve the solution of local
problems in each element or patch of elements [3, 9].

The rest of this paper is organized as follows: In Section 2 we first provide some
notation, describe our gradient recovery scheme, and summarize the main supercon-
vergence estimates of [10] for the case of O(h2σ) irregular meshes. We then extend
the gradient recovery scheme to more general meshes through the use of a multigrid
smoother. In Section 3, we develop and analyze our a posteriori error estimate, and
prove (1.5). Finally, in Section 4, we present several numerical examples, involving
both uniform and non-uniform (adaptive) meshes, with some solutions that satisfy
our smoothness assumptions and some that do not. In the latter cases, we observe
superconvergence away from singularities for adaptive meshes, although this effect is
not covered by our current analysis.

2. A Gradient Recovery Algorithm for Shape Regular Triangulations.
Let Ω ⊂ IR2 be a bounded domain with Lipschitz boundary ∂Ω. For simplicity of
exposition, we assume that Ω is a polyhedron. We assume that Ω is partitioned by a
shape regular triangulation Th of mesh size h. Let Vh ⊂ H1(Ω) be the corresponding
continuous piecewise linear finite element space associated with this triangulation Th.

We consider the non self-adjoint and possibly indefinite problem: find u ∈ H1(Ω)
such that

B(u, v) =

∫
Ω

(D∇u+ bu) · ∇v + cuv dx = f(v) (2.1)

for all v ∈ H1(Ω). Here D is a 2× 2 symmetric, positive definite matrix, b a vector,
and c a scalar, and f(·) is a linear functional. We assume all the coefficient functions
are smooth. Choosing H1(Ω) as trial space implies Neumann boundary conditions, a
choice made for convenience. In [10], we also analyzed more general nonlinear PDEs
and boundary conditions. However, since the details of the PDE do not strongly
influence our gradient recovery scheme, here we consider only the most simple case.

In order to insure that (2.1) has a unique solution, we assume the bilinear form
B(·, ·) satisfies the continuity condition

|B(φ, η)| ≤ ν ||φ||1,Ω||η||1,Ω (2.2)
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for all φ, η ∈ H1(Ω). We also assume the inf-sup conditions

inf
φ∈H1

sup
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω
= sup
φ∈H1

inf
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω
≥ µ > 0, (2.3)

For simplicity, we assume that µ and ν are such that the standard Galerkin finite
element approximation is an appropriate discretization. Let Vh ⊂ H1(Ω) be the space
of continuous piecewise linear polynomials associated with the triangulation Th, and
consider the approximate problem: find uh ∈ Vh such that

B(uh, vh) = f(vh) (2.4)

for all vh ∈ Vh. To insure a unique solution for (2.4) we assume the inf-sup conditions

inf
φ∈Vh

sup
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω
= sup
φ∈Vh

inf
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω
≥ µ > 0, (2.5)

Xu and Zikatanov [21] have shown that under these assumptions,

||u− uh||1,Ω ≤
ν

µ
inf

vh∈Vh
||u− vh||1,Ω.

See also Babuška and Aziz [2]. In this situation, we have standard a priori estimates
of the form

||u− uh||α,Ω . h2−α||u||2,Ω

for 0 ≤ α ≤ 1.
We define the piecewise constant matrix function Dτ in terms of the diffusion

matrix D as follows:

Dτij =
1

|τ |

∫
τ

Dij dx.

Note that Dτ is symmetric and positive definite. The following results are proved in
[10].

Theorem 2.1. Let the triangulation Th be O(h2σ) irregular [10]. Assume Dτ
defined above satisfies

|Dτij | . 1,

|Dτij −Dτ ′ij | . h,

for i = 1, 2, j = 1, 2. Here τ and τ ′ are a pair of triangles sharing a common edge.
Assume that the solution of (2.1) satisfies u ∈ W 3,∞(Ω) and the uh ∈ Vh if the
solution of (2.4). Then

||∇uh −∇uI ||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω,
||∇u−Qh∇uI ||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω,
||∇u−Qh∇uh||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

When the mesh is not O(h2σ) irregular or σ becomes very close to zero, then
the superconvergence demonstrated in Theorem 2.1 will be diminished. Intuitively,
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it appears that superconvergence of Qh∇uh is diminished mainly because of high
frequency errors introduced by the small nonuniformities of the mesh. Preferentially
attenuating high frequency errors in mesh functions is of course a widely studied
problem in multilevel iterative methods. Our proposal here is to apply these ideas
in the present context. In particular, we construct a multigrid smoother S and take
SmQh∇uh as our recovered gradient. As with multigrid methods, we expect a very
small number of smoothing steps will suffice; in our code, we take m = 2 as default.

Our post-processing gradient recovery scheme is based on the following bilinear
form:

a(u, v) = (∇u,∇v) + (u, v). (2.6)

We introduce the discrete operator A : vh 7→ Vh defined by

(Auh, vh) = a(uh, vh), ∀uh, vh ∈ Vh.

We note that A is symmetric positive definite on Vh and

λ ≡ ρ(A) h h−2. (2.7)

Using A, we introduce the smoothing operator S defined by

S = I − λ−1A.

The usual multigrid convergence function

f(α, β) =
ααββ

(α+ β)(α+β)

α, β > 0, plays an important role. Here we summarize some standard properties of
f(α, β). Let p, α, β > 0. Then

sup
x∈[0,1]

xα(1− x)β = f(α, β),

f(α, β)p = f(pα, pβ),

f(α, β) = f(β, α).

For convenience in notation, we let ∂iu denote the partial derivative ∂u/∂xi. We
now state and prove some preliminary lemmas leading up the main Theorem 2.7 in
this section.

Lemma 2.2. For any z ∈ Vh,

||(I − Sm)z||0,Ω . mh
(
||z − ∂iu||1,Ω + h||u||3,Ω + h1/2|u|2,∞,∂Ω

)
Proof. We note from the definition of S,

||(I − Sm)z|| = λ−1||(I − Sm)(I − S)−1Az||
≤ λ−1 max

s∈[0,1]
[(1− sm)(1− s)−1]||Az||

≤ λ−1m||Az||
. mh2||Az||
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Let w = Az. By definition

(w, φ) = (∇z,∇φ) + (z, φ) (2.8)

for all φ ∈ Vh. We take φ = w in(2.8) and estimate the terms on the right hand side.
The critical term is (∇z,∇w), where we have

(∇z,∇w) = (∇(z − ∂iu),∇w) + (∇∂iu,∇w)

. ||∇(z − ∂iu)||||∇w|| − (∆∂iu,w) +

∫
∂Ω

∇∂iu · nw ds

. (h−1||z − ∂iu||1,Ω + ||u||3,Ω)||w||0,Ω + |u|2,∞,∂Ω

∫
∂Ω

|w| ds

.
(
h−1||z − ∂iu||1,Ω + ||u||3,Ω + h−1/2|u|2,∞,∂Ω

)
||w||0,Ω.

Also

(z, w) = (z − ∂iu,w) + (∂iu,w) . (h−1||z − ∂iu||1,Ω + ||u||3,Ω)||w||0,Ω.

Thus for z ∈ Vh,

||Az|| . h−1||z − ∂iu||1,Ω + ||u||3,Ω + h−1/2|u|2,∞,∂Ω,

completing the proof.
Lemma 2.3. Suppose that for v ∈ Vh, and some 0 < α ≤ 1, we have

||v|| ≤ ω(h, v),

||v||−α ≡ ||A−α/2v|| ≤ (Ch)αω(h, v).

Then

||Smv|| ≤ εm ω(h, v),

where

εm =

 κα/2f(m,α/2) . m−α/2 for m > (κ− 1)α/2

[(κ− 1)/κ]
m

for m ≤ (κ− 1)α/2

and κ = (Ch)2λ.
Proof. Let 0 ≤ β ≤ α. Then from the Hölder inequality

||v||−β ≤ ||v||β/α−α ||v||1−β/α

and the hypotheses of the lemma, it follows that

||v||−β ≤ (Ch)βω(h, v)

for 0 ≤ β ≤ α.
Now,

||Smv|| = λβ/2||Sm(I − S)β/2A−β/2v||
≤ λβ/2 max

s∈[0,1]
[sm(1− s)β/2]||A−β/2v||

≤ λβ/2f(m,β/2)(Ch)βω(h, v)

≤ κβ/2f(m,β/2)ω(h, v).
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where κ = (Ch)2λ. We now minimize this bound with respect to β on the interval
0 ≤ β ≤ α.

∂κβ/2f(m,β/2)

∂β
=

1

2
log {(κβ)/(2m+ β)} · κβ/2f(m,β/2) = 0

⇔ κβ/(2m+ β) = 1

⇒ β = 2m/(κ− 1)

There are two cases: the first is when 2m/(κ− 1) > α. Here the minimum occurs at
β = α. Hence, for m > (κ− 1)α/2,

εm = κα/2f(m,α/2).

The second case is when 2m/(κ− 1) ≤ α. Here β = 2m/(κ− 1) and

εm =

(
κ− 1

κ

)m
.

Lemma 2.4. Let w ∈ H1(Ω). Then, for 1/2 < α ≤ 1,

||SmQh∂iw||0,Ω . εm
(
h−1||w||0,Ω + ||w||1,Ω + h−α||w||0,∞,∂Ω

)
,

with εm defined as in Lemma 2.3.
Proof. Our plan is to apply Lemma 2.3 to v = Qh∂iw. Note

||v||−α = ||Qh∂iw||−α = sup
φ∈Vh

(Qh∂iw, φ)

||φ||α
= sup
φ∈Vh

(∂iw, φ)

||φ||α
.

Using integration by parts,

(∂iw, φ) = −(w, ∂iφ) +

∫
∂Ω

wφni ds

. ||w||0,Ω||φ||1,Ω + ||w||0,∞,∂Ω

∫
∂Ω

|φ| ds

. hα−1||w||0,Ω||φ||α,Ω + ||w||0,∞,∂Ω||φ||α,Ω

. (hα−1||w||0,Ω + ||w||0,∞,∂Ω)||φ||α,Ω.

Thus

||v||−α,Ω . hαω(h, v)

with

ω(h, v) = h−1||w||0,Ω + ||w||1,Ω + h−α||w||0,∞,∂Ω.

Since,

||v||0,Ω = ||Qh∂iw||0,Ω ≤ ω(h, v),

the desired estimate now follows from Lemma 2.3.
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Lemma 2.5. Let u ∈ H3(Ω)∩W 2,∞(Ω). Then for any vh ∈ Vh, and 1/2 < α ≤ 1,
we have

||∇u− SmQh∇vh||0,Ω . mh3/2
(
h1/2||u||3,Ω + |u|2,∞,∂Ω

)
+ εm

(
h−1||u− vh||0,Ω + ||u− vh||1,Ω + h−α||u− vh||0,∞,∂Ω

)
,

with εm defined as in Lemma 2.3.
Proof. By the triangle inequality:

||∂iu−SmQh∂ivh||0,Ω ≤ ||(I−Qh)∂iu||0,Ω + ||(I−Sm)Qh∂iu||0,Ω + ||SmQh∂i(u−vh)||0,Ω.

We now estimate these three terms. The first term is easy; by standard arguments

||(I −Qh)∂iu||0,Ω . h2||u||3,Ω.

The second is estimated by Lemma 2.2 with z = Qh∂iu. For the third, we apply
Lemma 2.4 with w = u− vh.

In the case that vh = uh ∈ Vh ∩ H1
0 (Ω) is the finite element approximation to

u ∈ H1
0 (Ω), the boundary terms vanish and

||∇u− SmQh∇vh||0,Ω . h(mh+ εm)||u||3,Ω.

In the more general case, if vh = uh ∈ Vh and 1/2 < α < 1, we use the well-known
L∞ norm estimate for the linear finite element approximation to obtain:

h−α||u− uh||0,∞,∂Ω . h1−α| log h|h|u|2,∞,Ω . h|u|2,∞,Ω

and, hence

||∇u− SmQh∇vh||0,Ω . h(mh1/2 + εm)(||u||3,Ω + |u|2,∞,Ω).

Similar estimates hold for the case v = uI . We now turn to the main theorems in
this section. This theorem is based only on the results developed in this section, and
summarizes the above discussion.

Theorem 2.6. Let u ∈ H3(Ω) ∩W 2,∞(Ω) and uh ∈ Vh be an approximation of
u satisfying

||u− uh||k,Ω . h2−k|u|2,Ω, k = 0, 1,

||u− uh||0,∞Ω . h2| log h||u|2,∞Ω.

Then

||∇u− SmQh∇uh||0,Ω . h(mh1/2 + εm) (||u||3,Ω + |u|2,∞,Ω) ,

where εm is defined as in Lemma 2.3 and 1/2 < α < 1.
This theorem combines results from this section with our earlier superconvergence

results.
Theorem 2.7. Let u ∈ W 3,∞(Ω) and assume the hypotheses of Theorem 2.1.

Then

||∇u− SmQh∇uI ||0,Ω . h
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω, (2.9)

||∇u− SmQh∇uh||0,Ω . h
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω. (2.10)
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where εm is defined as in Lemma 2.3 and 1/2 < α < 1.
Proof. Our proof combines Lemma 2.5 and Theorem 2.1. We first use the triangle

inequality

||∂iu−SmQh∂iuI ||0,Ω ≤ ||(I−Qh)∂iu||0,Ω + ||(I−Sm)Qh∂iu||0,Ω + ||SmQh∂i(u−uI)||0,Ω.

The first two terms are estimated as in Lemma 2.5. For the third term, we can first
use Theorem 2.1 as

||SmQh∂i(u− uI)||0,Ω . ||Qh∂i(u− uI)||0,Ω
. ||∂iu−Qh∂iuI ||0,Ω + ||(I −Qh)∂iu||0,Ω
. h1+min(1,σ)| log h|1/2||u||3,∞,Ω + h2||u||3,Ω.

The third term can also be estimated as in Lemma 2.5. Taken together, these esti-
mates establish (2.9). The proof of (2.10) is identical.

We conclude with a few implementation details. First, with respect to the selec-
tion of the critical parameter m: Balancing the terms(

κ− 1

κ

)m
≈ mh−1/2

suggests m should grow in a logarithmic-like fashion as the mesh is refined. On the
other hand, in our empirical investigations, we have found that taking m ≤ 2 has
been adequate for scalar PDE equations involving O(105) unknowns, which suggests
that a simple fixed strategy is good enough for most purposes.

Second, with respect to the L2 projection: This linear system is solved approxi-
mately by an iterative method, in our case, symmetric Gauss-Seidel with conjugate
gradient acceleration (SGSCG). The mass matrix is assembled in the standard nodal
basis and is sparse and diagonally dominant, so convergence is very rapid; typically
4–6 iterations are sufficient. In the context of an adaptive refinement feedback loop,
the initial guess is taken as zero for the first (coarsest) mesh, and interpolated from
the previous mesh at all subsequent refinement steps. The overall complexity of this
step is thus O(N) for a mesh with N vertices. If necessary, this step could be made
more efficient (in terms of the size of the constant, not the order of complexity) by
using some standard mass lumping scheme to construct a diagonal approximation to
the mass matrix. This would also make the calculation local rather than global.

Third, with respect to the smoothing steps: We do not compute the constant λ
exactly. In fact, we use a Jacobi-conjugate gradient (JCG) iteration. The stiffness
matrix A corresponding to the operator −∆ is assembled in the nodal basis; this ma-
trix is symmetric, positive semi-definite with a one dimensional kernel corresponding
the the constant function. (We used the complete H1 inner product in our analysis
to avoid the technical complications introduced by a nontrivial kernel). Then m JCG
steps are applied to the linear system Ax = 0, with initial guess corresponding the
the finite element function Qh∂iuh. Our default choice is m = 2 iterations; thus this
step also has complexity O(N).

3. An A Posteriori Error Estimator. In this section we use the recovered
gradient to develop an a posteriori error estimator. The obvious choice for a global a
posteriori error estimator is to approximate ||∇(u− uh)||0,Ω by ||(I − SmQh)∇uh||0,Ω.
In Theorem 3.1, we show that this is indeed a good approximation.
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Theorem 3.1. Assume the hypotheses of Theorem 2.7.

||∇(u− uh)||0,Ω ≤ ||(I − SmQh)∇uh||0,Ω

+ Ch
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω, (3.1)

||(I − SmQh)∇uh||0,Ω ≤ ||∇(u− uh)||0,Ω

+ Ch
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω, (3.2)

where εm is defined as in Lemma 2.3 for 1/2 < α < 1. Furthermore, if there exists a
positive constant c0(u) independent of h such that

||∇(u− uh)||0,Ω ≥ c0(u)h, (3.3)

then ∣∣∣∣ ||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω

− 1

∣∣∣∣ . min(hmin(1,σ)| log h|, εm) +mh1/2. (3.4)

Proof. The proof of (3.1)-(3.2) is just a simple application of the triangle inequal-
ities

||∇(u− uh)||0,Ω ≤ ||(I − SmQh)∇uh||0,Ω + ||∇u− SmQh∇uh||0,Ω,
||(I − SmQh)∇uh||0,Ω ≤ ||∇(u− uh)||0,Ω + ||∇u− SmQh∇uh||0,Ω,

and Theorem 2.7. Estimate (3.4) follows from (3.1)-(3.2) and the assumption (3.3).
Taken together, (3.1)-(3.2) show that if the true error is first order, ||∇(u −

uh)||0,Ω = O(h), then the a posteriori error estimate ||(I − SmQh)∇uh||0,Ω will also
be O(h). In particular, given a superconvergent approximation to ∇u, we can ex-
pect the effectivity ratio ||(I − SmQh)∇uh||0,Ω/||∇(u − uh)||0,Ω to be close to unity.
Furthermore, in this case Theorem 3.1 shows the a posteriori error estimate will be
asymptotically exact.

In terms of local error indicators, an obvious choice would be to estimate the local
error in a given element τ by ||(I − SmQh)∇uh||0,τ . For practical reasons discussed
below, we prefer an alternative approach where the recovered gradient is used to
approximate the Hessian matrix of second derivatives of u. By way of motivation, we
note that for an O(h2σ) irregular mesh.

||∇(u− uh)||0,Ω ≤ ||∇(u− uq)||0,Ω + ||∇(uq − uI)||0,Ω + ||∇(uI − uh)||0,Ω
≤ C(u)h1+min(1,σ)| log h|+ ||∇(uq − uI)||0,Ω,

||∇(uq − uI)||0,Ω ≤ ||∇(uq − u)||0,Ω + ||∇(u− uh)||0,Ω + ||∇(uh − uI)||0,Ω
≤ C(u)h1+min(1,σ)| log h|+ ||∇(u− uh)||0,Ω.

From this pair of estimates, it follows that ||∇(uq − uI)||0,Ω = O(h) if and only if
||∇(u−uh)||0,Ω = O(h), and that in this case ||∇(uq −uI)||0,Ω is asymptotically exact.

The function uq − uI is a locally defined, piecewise quadratic polynomial with
value zero at all vertices of the mesh. Let a canonical element τ ∈ Th have vertices
ptk = (xk, yk), 1 ≤ k ≤ 3, oriented counterclockwise, and corresponding nodal basis
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functions (barycentric coordinates) {ψk}3k=1. Let {ek}3k=1 denote the edges of element
τ , {nk}3k=1 the unit outward normal vectors, {tk}3k=1 the unit tangent vectors with
counterclockwise orientation, and {`k}3k=1 the edge lengths (see Figure 3.1). Let
qk = ψk+1ψk−1 denote the quadratic bump function associated with edge k of τ ,
where (k − 1, k, k + 1) is a cyclic permutation of (1, 2, 3). Thus in element τ , uq − uI
is a linear combination of the quadratic bump functions associated with the edge
midpoints of the element,

uq − uI =

3∑
k=1

`2kt
t
kMτ tk qk(x, y),

where

Mτ = −1

2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
.

@
@

@
@

@
@

@
@

@
@

@

τ

p1 p2

p3

n1
`2t2

e3

Fig. 3.1. Parameters associated with the triangle τ .

In our local error indicator, we simply approximate the second derivatives in the
Hessian matrix Mτ using gradients of SmQh∂iuh. In particular, let

M̃τ = −1

2

(
∂1S

mQh∂1uh ∂1S
mQh∂2uh

∂2S
mQh∂1uh ∂2S

mQh∂2uh

)
,

M̄τ =
ατ
2

(M̃τ + M̃ t
τ ),

where ατ > 0 is a constant described below. For the case of meshes that are O(h2σ)
irregular, we can have m = 0, but for general shape regular meshes, we have m > 0.
In either case, the local error estimate ετ is given by

ετ =

3∑
k=1

`2kt
t
kM̄τ tk qk(x, y). (3.5)

The normalization constant ατ is chosen such that the local error indicator ητ satisfies

ητ ≡ ||∇ετ ||0,τ = ||(I − SmQh)∇uh||0,τ .

Normally we expect that ατ ≈ 1, which is likely to be the case in regions where
the Hessian matrix for the true solution is well defined. Near singularities, u is not
smooth and we anticipate difficulties in estimating the Hessian. For elements near such
singularities, ατ provides a heuristic for partly compensating for poor approximation.

11



The form of our a posteriori error estimate (3.5) is quite useful in practice. It
explicitly shows the dependence on the shape, size, and orientation of the elements,
as well as the dependence on the second derivatives of u. This leads to many interest-
ing algorithms for adaptive mesh smoothing and topology modification (e.g., “edge
flipping”) [8]. For example, if M̄τ is assumed constant, then ετ and η2

τ are rational
functions of vertex locations, and derivatives with respect to the vertex locations are
easily computed.

Using ετ also provides a simple, robust, and elegant solution to an important
practical problem for adaptive mesh refinement schemes: how to provide error esti-
mates for the refined elements without immediately resolving the global problem. In
the past, most schemes were based on crude (or not-so-crude) extrapolation ideas,
using the error indicator of the parent element as a basis. In most such schemes it
is difficult to take into account the details of the geometry, and they tend to become
very inaccurate after only a few levels of refinement. On the other hand, with our er-
ror estimator, the children elements inherit only the Hessian matrix from the parent,
and all the geometrical information is derived from the refined elements themselves.
Thus it is possible to have many levels of refinement before the approximation breaks
down and a new global solution is required. This has proved to be very effective in
the PLTMG 8.0 package, which employs this scheme, but uses a different a posteri-
ori error estimate to compute the approximate Hessian matrix [8]. In Theorem 3.2,
we show that our recovered gradients can provide reasonable approximation to the
Hessian.

Theorem 3.2. Assume the hypotheses of Theorem 2.7. Then

||∂i(∂ku− SmQh∂kuh)||0,Ω .
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω, (3.6)

where εm is defined as in Lemma 2.3 for 1/2 ≤ α < 1.
Proof. Let z = Ih∂ku ∈ Vh. Then

||∂i(∂ku− SmQh∂kuh)||0,Ω ≤ ||∂i(∂ku− z)||0,Ω + ||∂i(z − SmQh∂kuh)||0,Ω
. h||u||3,Ω + h−1||z − SmQh∂kuh||0,Ω
. h||u||3,Ω + h−1 (||z − ∂ku||0,Ω + ||∂ku− SmQh∂kuh||0,Ω)

.
(

min(hmin(1,σ)| log h|, εm) +mh1/2
)
||u||3,∞,Ω.

4. Numerical Experiments. In this section, we present some numerical il-
lustrations of our recovery scheme in the cases of uniform and adaptively refined
(nonuniform) meshes. Our gradient recovery scheme and a posteriori error estimate
were implemented in the PLTMG package [6], which was then used for our numerical
experiments. The experiments were done on an SGI Octane using double precision
arithmetic.

In our first example, we consider the solution of the problem

−∆u = f in Ω = (0, 1)× (0, 1),

u = g on ∂Ω,

where f and g are chosen such that u = ex+y is the exact solution. This is a very
smooth solution that satisfies all the assumptions of our theory. Here we will compare
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the recovery scheme with m = 2 smoothing steps, for the case of uniform and adaptive
meshes. We begin with a uniform 3 × 3 mesh consisting of eight right triangles as
shown in Figure 4.1. Elements in Figure 4.1 are colored according to size; this allows
one to obtain some impression of the structure of highly refined meshes with many
elements, even if individual elements can no longer be resolved.

Fig. 4.1. Top left: 3 × 3 initial mesh. Top right: uniform refinement with nt = 128. Bottom
left: adaptive refinement with nt = 134. Bottom right: adaptive refinement with nt = 130961.
Elements are colored according to size.

In Table 4.1, we record the results of the computation. We give the error as
a function of the number of elements, choosing targets for the adaptive refinement
procedure to produce adaptive meshes with similar numbers of elements to the uniform
refinement case. The values are defined as follows:

L2 = ||u− uh||0,Ω,
H1 = ||∇u− SmQh∇uh||0,Ω,

H̃1 = ||∇(u− uh)||0,Ω,

Ef =
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω

.

For the cases of L2, H1 and H̃1, we made a least squares fit of the data to a function
of the form F (N) = CN−p/2 to estimate the order of convergence p. All integrals were
approximated using a 12-point order 7 quadrature formula applied to each triangle.

What is most striking is the similarity in the data. L2 is approximately the same
for both uniform and adaptive refinement, while H1 is slightly better in the adaptive
case. This is consistent with our strategy which adaptively refines with respect to
||∇ετ ||0,τ . Nonetheless, both cases exhibit some superconvergence for the recovered
gradients. This is further supported by noting that the effectivity ratios Ef suggest
asymptotic exactness of the a posteriori error estimates.
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Table 4.1
Error estimates for the case m = 2.

adaptive meshes uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.5e-1 1.7e 0 1.68 8 1.5e-1 1.7e 0 1.68

34 4.9e-2 5.9e-1 1.36 32 3.8e-2 8.7e-1 1.74
134 1.3e-2 2.9e-1 1.54 128 9.6e-3 3.6e-1 1.50
510 2.4e-3 7.1e-2 1.17 512 2.4e-3 1.6e-1 1.41

2037 5.2e-4 2.4e-2 1.09 2048 6.0e-4 6.7e-2 1.30
8148 1.1e-4 7.1e-3 1.04 8192 1.5e-4 2.6e-2 1.20

32683 2.7e-5 2.0e-3 1.01 32768 3.8e-5 1.0e-2 1.12
130961 7.0e-6 6.2e-4 1.00 131072 9.4e-6 3.7e-3 1.07

L2 H1 H̃1 L2 H1 H̃1
order 2.06 1.76 1.04 2.03 1.42 1.01

In Table 4.2, we show the effect of varying the number of smoothing steps. To
reduce the amount of data, we report only the case of adaptive meshes. Since the a
posteriori error estimates are used to create the meshes, the meshes differ for each
value of m, but at level K have nt ≈ 22K+1 elements. For m = 0, we note only slight
superconvergence; thus although the meshes are shape regular and quasi-uniform,
apparently σ ≈ 0. In contrast, uniform meshes for m = 0 have a computed order of
convergence for H1 of 1.52, essentially that predicted by our theory. However, the
data show that the situation for adaptive meshes improves dramatically for m = 1, 2.
For m = 10, one can see the effects of “too many” smoothings; Ef become more
erratic, and H1 increases for some of the coarser refinement steps. But even in this
case, for more refined meshes (e.g. K = 8), Ef again appears to be converging
towards one. This is likely due to well known (and in this case extremely useful)
effect of the smoothing iteration “slowing down” quickly as h becomes smaller.

Table 4.2
Order of convergence as a function of m for adaptive meshes.

m=0 m=1 m=2 m=3 m=10
K H1 Ef H1 Ef H1 Ef H1 Ef H1 Ef
1 6.1e 0 0.83 7.8e-1 1.16 1.7e 0 1.68 1.7e 0 1.70 1.7e 0 1.70
2 2.3e-1 0.92 3.2e-1 1.00 5.9e-1 1.36 1.3e 0 2.34 1.8e 0 3.67
3 7.8e-2 0.94 1.1e-1 1.06 2.9e-1 1.54 3.8e-1 1.64 1.8e 0 6.75
4 3.8e-2 0.95 3.4e-2 1.02 7.1e-2 1.17 1.5e-1 1.49 1.1e 0 7.09
5 1.7e-2 0.96 1.1e-2 1.01 2.4e-2 1.09 4.8e-2 1.26 3.2e-1 4.05
6 7.2e-3 0.97 3.7e-3 1.00 7.1e-3 1.04 1.3e-2 1.09 1.2e-1 3.63
7 3.0e-3 0.98 1.4e-3 1.00 2.0e-3 1.01 3.4e-3 1.03 3.2e-2 2.27
8 1.5e-3 0.98 5.7e-4 1.00 6.2e-4 1.00 8.9e-4 1.01 7.0e-3 1.34

H1 H̃1 H1 H̃1 H1 H̃1 H1 H̃1 H1 H̃1
order 1.16 1.04 1.39 1.03 1.76 1.04 1.92 1.07 2.01 1.08

In Table 4.3, we explore the effect of “lumping” the mass matrix in the L2 pro-
jection step. In particular, the mass matrix was replaced by a diagonal matrix with
diagonal entries given by the sum of all nonzero entries of the corresponding row of
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the mass matrix. In Table 4.3, we see results that are quite comparable to those
of Table 4.1, although the gradient errors are generally slightly larger. Nonetheless,
these results suggest that our gradient recovery algorithm could be modified to use
only local calculations without much loss in effectiveness.

Table 4.3
The effect of a lumped mass matrix.

adaptive meshes uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.5e-1 1.7e 0 1.69 8 1.5e-1 1.7e 0 1.69

34 4.9e-2 8.2e-1 1.70 32 3.8e-2 1.1e 0 2.02
134 1.3e-2 3.0e-1 1.57 128 9.6e-3 5.2e-1 1.96
514 2.8e-3 8.9e-2 1.23 512 2.4e-3 2.2e-1 1.74

2036 5.5e-4 2.7e-2 1.11 2048 6.0e-4 9.3e-2 1.55
8148 1.2e-4 7.7e-3 1.04 8192 1.5e-4 3.7e-2 1.37

32676 2.8e-5 2.3e-3 1.01 32768 3.8e-5 1.4e-2 1.23
130904 6.8e-6 8.2e-4 1.01 131072 9.4e-6 5.1e-3 1.13

L2 H1 H̃1 L2 H1 H̃1
order 2.10 1.64 1.05 2.03 1.43 1.01

In our second example, we consider the nonlinear problem

−∇ · (a∇u) + eu = f in Ω = (0, 1)× (0, 1),

u = 0 on ∂Ω,

where a is the 2× 2 diagonal matrix

a =

(
.01

1

)
.

The function f is chosen such that u = x(1− x)3y5(1− y) is the exact solution. We
repeat the same computations as in the first example, with uniform and adaptive
meshes. The uniform meshes are identical to those of the first example. Some of the
adaptive meshes are shown in Figure 4.2. The numerical results are summarized in
Table 4.4.

Fig. 4.2. Left: adaptive refinement with nt = 138. Right: adaptive refinement with nt =
131112. Elements are colored according to size.

This problem is more difficult than the first in several respects. The diffusion is
anisotropic and the operator is nonlinear. The solution is smooth but generally has
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Table 4.4
Error estimates for the case m = 2.

adaptive meshes uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.9e-3 1.7e-2 0.30 8 1.9e-3 1.7e-2 0.30

32 1.0e-3 1.6e-2 0.84 32 1.0e-3 1.6e-2 0.84
138 2.7e-4 1.1e-2 1.46 128 3.8e-4 1.2e-2 1.42
531 2.4e-3 3.7e-3 1.67 512 1.1e-4 7.8e-3 1.89

2060 4.4e-5 1.0e-3 1.32 2048 3.0e-5 4.1e-3 2.09
8203 1.2e-5 2.6e-4 1.09 8192 7.7e-6 1.9e-3 2.01

32736 8.6e-7 7.6e-5 1.00 32768 1.9e-6 7.7e-4 1.79
131112 2.5e-7 3.0e-5 0.98 131072 4.9e-7 3.0e-4 1.53

L2 H1 H̃1 L2 H1 H̃1
order 1.83 1.58 1.05 2.01 1.30 1.02

larger derivatives than the first example. Nonetheless, we see a similar behavior of the
gradient recovery scheme and a posteriori error estimate. In this example, the adaptive
meshes are more strongly graded than in the first example, suggesting that localization
and equilibration of the error are more important effects for superconvergence of our
gradient recovery procedure than geometric uniformity in the mesh.

In our third example, we consider the problem

−∆u = 0 in Ω,

u = g on ∂Ω1,

un = 0 on ∂Ω2,

where Ω is a circle of radius one centered at the origin, and with a crack along the
positive x-axis 0 ≤ x ≤ 1. ∂Ω2 is the bottom edge of the crack, and ∂Ω1 = ∂Ω−∂Ω2.
The function g is chosen such that the exact solution is u = r1/4 sin(θ/4), the leading
term of the singularity associated with the interior angle of 2π and change in boundary
conditions at the origin. In Figure 4.3 we illustrate the initial mesh, and several of
the uniformly and adaptively refined meshes.

Convergence results for uniform and adaptive refinement are reported in Table
4.5. The solution u is not smooth in this case (u ∈ H5/4−ε(Ω)), and this is reflected
in the results. For the case of uniform refinement, the 0.25 order of convergence of
the gradient coincides with the smoothness of the solution. For the adaptive meshes,
the order of convergence improves and seems to be approaching order one for the gra-
dient. This sort of behavior is typical of a reasonable adaptive refinement procedure.
However, even in this case, there is no apparent superconvergence.

Let Ω′ now denote the union of all triangles in Ω with a least one vertex outside
a circle of r = 0.1; note that this definition of Ω′ is mesh dependent, but eventually
Ω′ excludes small triangles close to the singularity. In Table 4.6, we report results for
the same computations but with the error calculation restricted to Ω′. For L2′, the
results do not change much. However, for the gradients (H1′), the results are quite
striking. For the case of adaptive refinement, the improvement is quite dramatic,
in that away from the singularity, the gradient recovery scheme exhibits the same
sort of behavior as for a smooth problem. For the case of uniform refinement, there
is also some improvement in order of convergence, but the recovered gradient does
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Fig. 4.3. Top left: the initial mesh. Top right: uniform refinement with nt = 128. Bottom left:
adaptive refinement with nt = 138. Bottom right: adaptive refinement with nt = 131105. Elements
are colored according to size.

Table 4.5
Error estimates for the case m = 2.

adaptive meshes uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 3.0e-1 7.1e-1 1.32 8 3.0e-1 7.1e-1 1.32

31 1.9e-1 6.0e-1 1.14 32 1.8e-1 5.9e-1 1.18
138 8.3e-2 5.3e-1 1.18 128 1.1e-1 5.4e-1 1.16
535 3.3e-2 3.9e-1 1.26 512 7.3e-2 4.6e-1 1.14

2091 1.1e-2 2.3e-1 1.22 2048 4.9e-2 3.9e-1 1.12
8242 2.9e-3 1.2e-1 1.28 8192 3.4e-2 3.3e-1 1.11

32832 6.8e-4 4.9e-2 1.08 32768 2.3e-2 2.8e-1 1.10
131105 1.3e-4 2.2e-2 1.11 131072 1.6e-2 2.3e-1 1.10

L2 H1 H̃1 L2 H1 H̃1
order 2.23 1.15 1.10 0.54 0.25 0.27

not appear significantly more accurate than ∇uh. We also note the quite different
behavior of Ef ′ compared with Ef for the case on uniform refinement. Taken as a
whole, it seems likely that the error in the uniform refinement case is not localized
and pollution effects are still dominant even on the most refined meshes.

In our fourth example, we consider a problem with discontinuous coefficients

−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is once again the unit square (0, 1) × (0, 1). The scalar coefficient function
a(p) = 1 for p ∈ Ω1 ≡ (0, 1/2) × (0, 1/2) ∪ (1/2, 1) × (1/2, 1), and a(p) = 10−2 for
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Table 4.6
The effect of the singularity.

adaptive meshes uniform meshes
nt L2′ H1′ Ef ′ nt L2′ H1′ Ef ′

8 3.0e-1 7.1e-1 1.32 8 3.0e-1 7.1e-1 1.32
31 1.9e-1 6.0e-1 1.14 32 1.8e-1 5.9e-1 1.18

138 8.3e-2 5.3e-1 1.18 128 1.1e-1 5.4e-1 1.16
535 3.0e-2 2.4e-1 0.92 512 7.3e-2 4.6e-1 1.14

2091 1.0e-2 4.3e-2 0.78 2048 4.6e-2 1.9e-1 0.69
8242 2.7e-3 1.2e-2 0.94 8192 3.1e-2 1.1e-1 0.28

32832 6.2e-4 3.0e-3 0.99 32768 2.1e-2 7.8e-2 0.19
131105 1.2e-4 7.9e-4 1.00 131072 1.5e-2 5.3e-2 0.13

L2′ H1′ H̃1
′

L2′ H1′ H̃1
′

order 2.24 1.95 1.12 0.56 0.60 0.61

p = Ω − Ω1. The function f is given by f = 8π2 sin(2πx) sin(2πy), and the exact
solution u is given by u = a−1 sin(2πx) sin(2πy). The initial mesh is that same as
in the first two examples. In Table 4.7, we give the results for both uniform and
adaptive meshes. Here we note no superconvergence for H1 in either case; indeed,
in the uniform mesh case, SmQh∇uh is much less accurate than ∇uh in terms of
order of convergence. The gradient of the exact solution is discontinuous along the
lines x = 1/2 and y = 1/2. Since the mesh is aligned with the discontinuity, ∇uh
is able to capture this discontinuity with no problem. Since Qh∇uh is continuous,
the lack of superconvergence is due to the global L2 projection; making local L2

projections in each of the four subregions where a(p) is constant would allow the
projected gradient to remain discontinuous along the interfaces. In Table 4.8, we show
the results for such a calculation. We computed SmQ̂h∇uu, where Q̂h corresponds to
the four local L2 projections. Since we used a different projection, the adaptive meshes
change slightly. Nonetheless, we see quite clearly allowing for the discontinuity in ∇u
corrects the problems. We observe superconvergence in H1′ for both the uniform and
adaptive meshes, as well as significant improvement in the effectivity ratios Ef ′. We
note in passing that away from the discontinuities, the approximation SmQh∇uh is
superconvergent. In this respect, the behavior is similar to the third example.

These numerical examples show that the effectiveness of our adaptive scheme does
not necessarily depend critically on either the quasi-uniformity of the mesh or on the
global regularity of the solution. But theoretically, there is still much work to do fill in
the gaps. We believe that our quasi-uniformity assumption on the triangular meshes
can be removed with some extra effort. Our results are very local in the sense that the
domain Ω in our Theorems could be any subdomain of the actual physical domain. It
will be much more challenging to have obtain theoretical results with more realistic
assumptions on continuous solution’s regularity. But heuristically speaking, at places
where the solution is singular, the solution will have large (or infinite) W 3

∞ norm and,
as a result, our error indicator will be large in those regions and hence the grid will
be refined there.
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Table 4.7
Error estimates for the case m = 2.

adaptive meshes uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 3.5e 1 3.2e 2 0.00 8 3.5e 1 3.2e 2 0.00

32 1.7e 1 2.9e 2 1.97 32 1.7e 1 3.0e 2 1.07
136 2.6e 0 2.2e 2 2.72 128 5.6e 0 2.5e 2 1.96
528 7.4e-1 1.1e 2 2.81 512 1.5e 0 1.7e 2 2.76

2071 2.2e-1 5.8e 1 2.67 2048 3.8e-1 9.0e 1 3.04
8143 6.9e-2 2.8e 1 2.42 8192 9.5e-2 5.4e 1 3.64

33102 2.0e-2 1.4e 1 2.36 32768 2.4e-2 3.7e 1 4.85
130809 6.1e-3 7.3e 0 2.31 131072 6.0e-3 2.6e 1 6.72

L2 H1 H̃1 L2 H1 H̃1
order 1.78 1.00 0.94 2.04 0.58 1.02

Table 4.8
The effect of the discontinuity.

adaptive meshes uniform meshes
nt L2′ H1′ Ef ′ nt L2′ H1′ Ef ′

8 3.5e 1 3.2e 2 0.00 8 3.5e 1 3.2e 2 0.00
32 7.1e 0 3.1e 2 2.11 32 1.7e 1 3.1e 2 1.11

136 3.5e 0 1.7e 2 1.83 128 5.6e 0 2.3e 2 1.81
532 9.1e-1 7.6e 1 1.85 512 1.5e 0 1.5e 2 2.49

2071 1.6e-1 2.4e 1 1.57 2048 3.8e-1 7.2e 1 2.47
8092 4.2e-2 6.3e 0 1.20 8192 9.5e-2 2.4e 1 1.84

32486 9.4e-3 1.3e 0 1.05 32768 2.4e-2 7.3e 0 1.37
130586 2.4e-3 3.0e-1 1.01 131072 6.0e-3 2.2e 0 1.15

L2 H1 H̃1 L2 H1 H̃1
order 2.10 2.16 1.09 2.04 1.68 1.02
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