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Abstract. We consider the application of primal-dual interior methods to the optimization of
systems arising in the finite-element discretization of a class of elliptic variational inequalities.
These problems lead to very large (possibly non-convex) optimization problems with upper and
lower bound constraints.

When interior methods are applied to the discretized problem, the resulting linear systems have
the same zero/nonzero structure as the finite-element equations solved for the unconstrained case.
This crucial property allows the interior method to exploit existing efficient, robust and scalable
multilevel algorithms for the solution of partial differential equations (PDEs).

We illustrate some of these ideas in the context of the elliptic PDE package PLTMG.

1 Introduction

We consider a class of elliptic partial differential equation (PDEs) for which the solution is
required to satisfy certain inequality constraints (for example, so-called obstacle problems in
the class of elliptic variational inequalities [19,20,18,21,22]). The proposed method combines
an adaptive finite-element method with a finite-dimensional primal-dual interior method for
optimization.

As background for the problem to be discussed, we introduce the self-adjoint, positive-
definite elliptic boundary value problem:

−∇ · (a∇u) + bu = f for x ∈ Ω,
(a∇u) · n = g for x ∈ ∂Ω1, (1)

u = 0 for x ∈ ∂Ω2 ≡ ∂Ω − ∂Ω1.

Here, a(x) and b(x) are smooth functions with a(x) > 0 and b(x) ≥ 0, but more generally
we could let a(x) and b(x) be symmetric positive-definite and positive semidefinite matrix
functions. It is assumed throughout that a unique solution exists (which will follow, for
example, if b > 0 or ∂Ω2 is nonempty). The methods to be considered exploit the so-called
weak formulation of problem (1) and hence require the definition of certain function spaces.
Let

H ≡ H1
E(Ω) =

{
u :

∫
Ω

|∇u|2 dx+

∫
Ω

u2 dx <∞ and u = 0 on ∂Ω2

}
.

For u ∈ H, the energy inner-product norm is |||u|||2 = a(u, u), where a(u, v) denotes the
operator

a(u, v) =

∫
Ω

a(x)∇u · ∇v dx+

∫
Ω

b(x)uv dx, u, v ∈ H.

For u, v ∈ L2(Ω), the standard inner-product norm is ||u||2 = (u, u), where (u, v) =
∫
Ω
uv dx.

Similarly, on the boundary we use the inner product 〈u, v〉 =
∫
∂Ω1

uv ds for u, v ∈ L2(∂Ω1).

The Ritz variational formulation of (1) involves the minimization problem

minimize
u∈H

q(u) = a(u, u)− 2
{

(f, u) + 〈g, u〉
}
. (2)
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Many nonlinear PDE’s have a similar variational formulation. However, unlike (2), the
objective function q(u) is not necessarily quadratic in u.

Let S ⊂ H be the n dimensional space of continuous piecewise-linear polynomials cor-
responding to a triangulation T of Ω. The finite-element approximation uh ∈ S to u ∈ H
solves the minimization problem:

minimize
uh∈S

q(uh). (3)

Let {φi}ni=1 denote the usual nodal basis for S. Any uh ∈ S can be written in the
form uh =

∑n
i=1 Uiφi, which implies that (3) can be formulated as the finite-dimensional

minimization problem
minimize
U∈Rn

Q(U).

This problem is usually solved using Newton’s method. Given an approximate solution U ,
a direction of improvement ∆U is computed from the Newton equations ∇2Q(U)∆U =
−∇Q(U), where ∇Q ∈ Rn is the gradient and ∇2Q ∈ Rn×n is the Hessian of Q. The new
estimate is then U +α∆U , where α is a step length used to enforce convergence. In the case
of the linear PDE (1), the objective is quadratic, with

Q(U) = UTAU − 2UTF,

where A is the sparse symmetric positive-definite stiffness matrix with Aij = a(φj , φi), and
Fi = (f, φi) + 〈g, φi〉. In this case, the optimal U can be computed from the single sparse
symmetric system AU = F . (Matrices with similar nonzero structure arise in the nonlinear
case, but the entries of the stiffness matrix generally depend upon the current value of
U .) Such linear systems are solved using iterative methods. In particular, the finite-element
code PLTMG [1] uses the conjugate-gradient method with a preconditioner based on the
multilevel multigraph technique [2]. Multigraph preconditioners are related to hierarchical
basis multigrid preconditioners, which have proved to be very robust for problems posed
on a sequence of nonuniform, adaptively refined meshes. However, multigrid methods rely
on the refinement structure generated through the adaptive refinement process. This limits
their applicability when geometrically complex domains require many elements just for the
definition of the domain, or when adaptivity is derived from moving mesh points rather
than refinement. In these situations, it is possible to have fine, highly nonuniform meshes
with no refinement history available to create a hierarchical basis. Multigraph methods
overcome this limitation by creating a hierarchical basis when no natural geometry is present.
The reader is referred to [2] for a detailed description of the multigraph preconditioner
used in PLTMG. It suffices here to note that the preconditioner considered in this paper
involves incomplete sparse factorizations of A and its restriction to a sequence of subspaces
of decreasing dimension.

The purpose of this paper is to extend the multigraph finite-element method to the case
where u is subject to inequality constraints. In this case, the continuous problem is

minimize
u∈H

q(u), subject to b ≤ u ≤ b̄. (4)

If I denotes the interpolation operator, then the finite-element formulation of this problem
can be written as

minimize
uh∈S

q(uh), subject to I(b) ≤ uh ≤ I(b̄).

This leads to the finite-dimensional optimization problem

minimize
U∈Rn

Q(U), subject to B ≤ U ≤ B̄, (5)
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where B and B̄ define the expansions I(b) =
∑n
i=1Biφi, and I(b̄) =

∑n
i=1 B̄iφi. Many

methods have been proposed for solving problems in this form. These methods may be
broadly categorized as active-set methods (see, e.g., [3,4,8,23]) and interior methods (see,
e.g., [9,7,17,27]). As in the unconstrained case, the quadratic form of the objective can be
exploited (see, e.g., [24,11]).

2 Solving the Finite-Dimensional Problem

In this section we focus on the solution of the finite-dimensional bound-constrained problem
(5). Accordingly, we change our notation to that used in the optimization literature. In
particular, we write the problem (5) in the form

minimize
x∈Rn

f(x) subject to x ≥ 0, (6)

where f(x) is a general smooth nonlinear function of n variables x1, x2, . . . , xn. For sim-
plicity, we start with a problem with only nonnegativity constraints. Throughout, we will
assume that f is twice-continuously differentiable, with gradient ∇f(x) and Hessian ∇2f(x)
denoted by g(x) and H(x) respectively. Since the original continuous problems are usually
convex, we will assume that f(x) is a convex function. However, we emphasize that all the
methods to be discussed can be extended to the nonconvex case.

The first-order necessary conditions for a solution of (6) are that there exist nonnegative
xi and zi (Lagrange multipliers) such that zi = gi(x) and xizi = 0. In this section we
adopt a convention common to the literature of interior-point methods of using upper-case
letters to denote diagonal matrices whose diagonal consists of the components of the vector
represented by the corresponding lower-case letter. With this convention, we can write the
first-order conditions in the compact form

z = g(x), z ≥ 0,
Xz = 0, x ≥ 0.

(7)

The pair (x, z) satisfies the property of strict complementarity if x+z > 0, i.e., one of the xi
and zi is nonzero for each i. If both xi and zi are zero, a solution is said to be degenerate, or
more precisely, dual degenerate. Second-order sufficient conditions are that (7) hold; x and
z are strictly complementary and XHX +Z is positive definite. At any point satisfying the
first-order conditions, an active nonnegativity constraint (i.e., a variable on its lower bound
of zero) causes the corresponding row and column of XHX to be zero.

Primal-dual interior methods are based on solving a system of 2n nonlinear equations
that represent the first-order optimality conditions (7) with each condition xizi = 0 per-
turbed by a scalar µ (known as the barrier parameter). For a given µ, the equations are
written as Gµ(x, z) = 0, where

Gµ(x, z) =

(
g(x)− z
Xz − µe

)
, (8)

where e is the vector of ones. Let (x, z) be an interior point, i.e., x > 0 and z > 0. For a
given µ, the equations Gµ(x, z) = 0 are solved using a form of Newton’s method in which x
and z are maintained to be interior. Linearizing the perturbed conditions (8) at an interior
point (x, z) gives

∆z = g(x) +H(x)∆x− z
X∆z + Z∆x = µe−Xz,
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where Z = diag(z1, z2, . . . , zn). This yields the linear system(
H −I
Z X

)(
∆x

∆z

)
= −

(
g − z

X(z − π)

)
, (9)

where π is the vector of primal multipliers such that π = µX−1e. (The dependencies on x,
z and µ have been suppressed for clarity.) If H is positive definite this system is nonsingular
at all interior points (x, z). If v denotes a combined 2n vector of unknowns (x, z) and Gµ(v)
denotes the function Gµ(x, z), then (9) are the equations Gµ(v)′∆v = −Gµ(v) for the
Newton direction ∆v = (∆x,∆z). Applying block elimination to (9) gives ∆x and ∆z as

(H +X−1Z)∆x = −(g − π) and ∆z = g +H∆x− z.

Scaling this system with X1/2 gives the solution

∆x = X1/2∆x̄, where ∆x̄ solves (X1/2HX1/2 + Z)∆x̄ = −X1/2(g − π). (10)

The crucial feature of this system is that X1/2HX1/2 + Z has the same dimension and
sparsity pattern as H. If the second-order sufficient conditions hold, then for µ sufficiently
small, a differentiable trajectory of solutions (x(µ), z(µ)) exists such that (x(µ), z(µ)) →
(x∗, z∗) as µ → 0+. Primal-dual interior methods attempt to follow this trajectory by
finding an approximate solution of Gµ(x, z) = 0 for a decreasing sequence of µ-values such
that µ → 0+. As the solution is approached, the scaled matrix X1/2HX1/2 converges to
a row and column-scaled version of H in which the zero rows and columns correspond to
the active bounds. It follows that if the problem is nondegenerate, the rows and columns of
X1/2HX1/2 + Z corresponding to the active bounds are diagonal.

The step length is chosen using a standard interior-point backtracking line search (for
more details see, e.g., [28]). Consider the calculation of new iterates (xk+1, zk+1) = (xk +
αk∆xk, zk+αk∆zk) at the kth iteration. First, an upper bound on the step is computed such
that αM = min{1, .99τ}, where τ is the largest positive α such that (xk +α∆xk, zk +α∆zk)
is feasible. The step αk is then the first member of the sequence {γjcαM}∞j=0 such that

||Gµ(xk + αk∆xk, zk + αk∆zk)||2 ≤ (1− αkηs)||Gµ(xk, zk)||2,

for fixed scalars ηs (0 < ηs <
1
2 ) and γc (0 < γc < 1) with typical values ηs = 1

4 and γc = 1
2 .

(Throughout this section, || · ||2 refers to the usual vector two-norm.)
In the general case where f is not convex, a more sophisticated strategy must be used

to guarantee convergence to a point satisfying the second-order necessary conditions for
problem (6). The description of such strategies is beyond the scope of this paper. However,
it is relatively straightforward to formulate methods that are not only provably convergent
to second-order points, but are also able to exploit the properties of the multilevel iterative
solver. One approach is to define line search or trust region methods that minimize the
function

Mµ(x, z) = f(x)− µ
n∑
j=1

(
lnxj + ln

(
xjzj
µ

)
+

(
µ− xjzj

µ

))
(see [13,14]). This function is well defined for all (x, z) such that xj > 0 and zj > 0 and has a
local minimizer at a point (x, z) such that Gµ(x, z) = 0. It can be arranged that algorithms
for minimizing Mµ(x, z) solve a system that has identical structure to that of (10). However,
the multilevel iterative solver must satisfy two requirements: the multigraph algorithm must
always implicitly generate a positive-definite preconditioner, and the conjugate-gradient
method must be modified to detect indefiniteness in the matrix of system (10) (see, e.g.,
[25,16]).
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2.1 Treatment of upper and lower bounds

Now consider problem (6) with finite upper and lower bounds bl ≤ x ≤ bu. If L = diag(bl)
and U = diag(bu), let X1 = X − L and X2 = X − U . Assume that x is interior, so that
X1 > 0 and X2 < 0. Let z1 and z2 denote estimates of the multipliers associated with the
constraints x ≥ bl and x ≤ bu respectively. The perturbed optimality conditions are

g(x)− (z1 + z2) = 0

X1(z1 − π1) = 0

X2(z2 − π2) = 0,

with π1 = µX−11 e and π2 = µX−12 e. Linearizing these conditions at a point (x, z1, z2) such
that bl < x < bu, z1 > 0 and z2 < 0 gives the following system analogous to (9)(

H −I
Ẑ X̂

)(
∆x

∆z

)
= −

(
g − z

X̂
(
z − π

)) ,
where X̂ = −X1X2, Ẑ = −(X2Z1 +X1Z2), z = z1 + z2 and π = π1 + π2.

It follows that ∆x can be calculated as ∆x = X̂1/2∆x̄, where ∆x̄ satisfies the system

(X̂1/2HX̂1/2 + Ẑ)∆x̄ = −X̂1/2(g − π). (11)

Again, the relevant matrix has the same dimension and sparsity pattern as H.

3 Interior Methods for the Variational Problem

Now we consider the application of the primal-dual interior method to a sequence of finite-
dimensional optimization problems (5) defined in a finite-element discretization with adap-
tive mesh refinement.

3.1 Scaling the finite-element discretization

It is well known that problem scaling has a substantial effect on the efficiency of optimization
methods. Scaling is particularly relevant when the problem is defined by an adaptive finite-
element method. For a given mesh, as the solution is approached, the magnitude of each
objective gradient element gi depends on the support of its constituent nodal basis functions.
This implies that the gradients (and hence the Lagrange multipliers) can vary widely in
magnitude depending on the degree of refinement in a particular region.

Here we use a scaling that balances the magnitudes of the Lagrange multipliers and
nonlinear equations as the mesh is refined. Let D be the positive diagonal matrix with
entries di = 2||φi||2, where {φi} are the nodal basis functions. The {di} form the diagonal
elements of the so-called lumped mass matrix M , with entries Mij = (φi, φj). Note that M
has the same sparsity pattern as the stiffness matrix A. The matrix D is used to replace
the first-order optimality condition g − z = 0 in (7) by the scaled condition g − Dz = 0.
Proceeding as in the previous section, we obtain ∆x as

∆x = X̂1/2∆x̄, where ∆x̄ satisfies (X̂1/2HX̂1/2 +DẐ)∆x̄ = −X̂1/2(g −Dπ). (12)

In the line search, a norm of the balanced vectors g−Dz and DX(z−π) is used to measure
the proximity to the solution. In particular, the two-norm of Gµ (8) is replaced by the elliptic
norm

|||Gµ|||2D−1 ≡ ||g −Dz||2D−1 + ||DX(z − π)||2D−1

= (g −Dz)TD−1(g −Dz) + (z − π)TXTDX(z − π).

Similarly, the variables are balanced using |||v|||2D ≡ ||x||2D + ||z||2D = xTDx+ zTDz.
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3.2 Mesh refinement and the choice of barrier parameter

The proposed algorithm has two levels of iteration: the multilevel computations associated
with a given finite-element mesh, and the Newton iterations associated with the given barrier
parameter µ. Here we link the choice of barrier parameter to the mesh size, the main idea
being that it is appropriate to accurately solve the optimization problem (i.e., choose µ
small) only in the final stages of the mesh refinement.

Consider the approximate solution of a sequence of bound-constrained optimization prob-
lems BCj , each associated with a given level of mesh refinement. We associate a barrier
parameter µ(j) with each problem, where µ(j−1) > µ(j). The initial point for problem BCj

is obtained by interpolating the continuous finite-element solution associated with the final
point from BCj−1. In this situation, the value of µ(j) is crucial, since a poor choice may
result in the interpolated finite-element solution from BCj−1 being far from the trajectory
for BCj .

From standard theory, the finite-element approximation uh ∈ S has the error estimate
|||uh−u∗||| = O(n−1/2), where u∗ is the optimal solution. It follows that if nj is the number of
variables associated with BCj , then the error in the finite-element approximation is reduced
by a factor of O

(
(nj−1/nj)

1/2
)

at each refinement. In practice, n is usually increased geo-
metrically. In the numerical examples of Section 4, the n for adaptive refinement is increased
by a factor of four, which implies that the error is reduced by a factor of two after each
refinement.

Next we estimate the error in any point v(µ) on the primal-dual trajectory as an estimate
of the optimal point v∗. If dv(µ)/dµ exists and is bounded, then for µ sufficiently small,
||v(µ) − v∗|| = O(µ) (see [12, Theorem 15], and [29, p. 8]). It follows that if uh(µ) ∈ S
denotes the solution associated with barrier parameter µ, we would expect the total error
in uh(µ) to be O(µ) +O(n−1/2). This bound suggests the choice of initial barrier parameter

µ(0) = O(n
−1/2
0 ), with subsequent values reduced at the same rate as the finite-element error

estimate, i.e., µ(j) = (nj−1/nj)
1/2µ(j−1).

3.3 Choosing the starting point for BCj

The initial values of the x-variables for BCj are found by interpolating the final values for
BCj−1. The initial z-variables may be defined in several ways. First, as in the primal case,
the z values can be interpolated from the final iteration of problem BCj−1. This choice will
tend to give small initial residuals for the first set of equations g − Dz = 0 of the system
Gµ(v) = 0. However, the second set of equations Xz − µe = 0 will have a large residual
since the refined z values are generally increased by the scaling with D. Another option is
to use the complementarity conditions to define new dual variables from the interpolated
primal values. In this case, (z1)i = (π1)i and (z2)i = (π2)i, where π1 and π2 are the initial
primal multipliers π1 = µX−11 e and π2 = µX−12 e. Another possibility is to define z so that
the residual for g −Dz is small. For example, if gi > 0, then we can set (z1)i = gi/di and
(z2)i = (π2)i/di, where π2 are the initial primal multipliers π2 = µX−12 e. In this case, the
residual for the equation gi − dizi = 0 is gi − di(z1 + z2)i = (π2)i.

Any one of these alternatives is reasonable when the “continuous” Lagrange multipliers
are smooth. However, when the PDE solution is not differentiable, the continuous multipliers
can resemble delta functions (see, e.g., the minimal surface problem of Section 4) and naive
refinement techniques can lead to poor initial estimates of the multipliers. To deal with this
problem, the multipliers are smoothed using the inverse Laplacian before being interpolated.
The interpolated multipliers are then mapped back to the original space to initialize the
optimization. Further details of the smoothing procedure are given in Section 3.4.

Adaptive mesh refinement introduces some algorithmic issues that are unique to interior
methods. Adaptive refinement involves not only the introduction of new elements where
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needed, but can also be combined with mesh regularization (i.e., the movement of elements)
to further improve the quality of the mesh. Either of these procedures can cause the upper
and lower bounds of the discretized problem to change, which implies that the approximate
solution of BCj−1 may not be a good estimate of the solution for BCj . In particular, the
solution of BCj−1 may not even lie in the interior of the feasible region for problem BCj .
In this situation, it is necessary to redefine the initial point for BCj so that it is interior. In
the numerical results of Section 4 the initial point is forced to lie at a distance of at least
νµ from their nearest bound, where 0 < ν ≤ 1.

3.4 Lagrange multiplier smoothing

Let ζ denote the Lagrange multipliers associated with the continuous bound-constrained
problem (4). In general, the natural space for ζ is H−1(Ω), the class of functions that are
integrable against functions in H1(Ω) (for the precise definition, see, e.g., [6]). As H−1(Ω)
functions need not be continuous and can exhibit δ-function-like behavior, interpolating in a
region that includes a jump discontinuity can not fully capture the behavior of ζ. This lack
of smoothness is problematic when ζ is approximated by a piecewise-linear function derived
by linear interpolation from a coarse mesh. If ζ is poorly behaved, then the interpolant will
invariably be a poor initial guess for the problem on the finer mesh.

An alternative approach is to smooth the coarse mesh multipliers before interpolation.
For any ζ ∈ H−1(Ω), the solution w of

−∆w = ζ in Ω (13)

is in H1(Ω) and it follows that the inverse Laplacian ∆−1 can be used as a “smoothing”
map for the approximate multipliers. Given a multiplier function ζ = ζc on the coarse mesh,
the Poisson equation (13) is solved for w = wc. The linear interpolant wf of wc is computed
for the refined mesh, and the new set of Lagrange multipliers ζf is defined as ζf = −∆wf .
Thus, the interpolation is actually applied to ∆−1ζc, and not on ζc itself. The discontinuous
behavior of ζ is better reflected in this interpolation.

4 Numerical Results

In this section we discuss the results from applying PLTMG to three problems. Each problem
was solved using adaptive mesh refinement, starting from (unless otherwise indicated) a
uniform 5× 5 mesh. At each refinement the number of unknowns was increased by a factor
of kref , where kref = 4. Two variants of PLTMG were used to solve each problem.

Method A. This method was designed to illustrate the influence of the initial interpo-
lated solution and the change of barrier parameter. For each level of refinement, the finite-
dimensional problem was first solved using a so-called refinement step in which the value
of µ is inherited from the previous mesh. In this case, the initial point for the subproblem
was the final solution on the previous mesh. The subproblem was then solved again in a
continuation step, starting from the fine mesh solution, but with µ reduced by a factor of
two. All times reported are the cumulative times to each point in the calculation. For the
refinement steps, the reported figures include error estimation and mesh refinement times as
well as time spent setting up and solving the variational inequality. In each case we report
the number Iter of major Newton iterations to solve the problem at the given step.
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Method B. In this method, the refinement and µ-reduction were performed simultane-
ously. This is the strategy recommended for practical computation, and is the basis of
Algorithm 4.1 given below.

In all cases, the Newton iteration was stopped when the relative increment |||∆v|||D/|||v|||D
was reduced by a factor η = 10−2 compared to its initial value. This test implies that at
least two Newton steps are performed for each subproblem. A more stringent convergence
criterion would result in a more accurate solution of the discrete variational inequality, but
no improvement in the accuracy of the underlying continuous problem. Indeed, given the
typical second-order convergence of the the piecewise linear discretization, 10−2 could be
considered conservative.

For each problem, the initial point for the first subproblem was 1
2 (bl + bu). The initial

values for the multipliers z1 and z2 were the primal multipliers µ0/(x− bl) and µ0/(x− bu).
The scale factor C1 for the initial barrier parameter was chosen so that µ0 = 1. The param-
eter for shifting variables away from their bounds was ν = 1. The line search parameters
were γc = 1

2 and ηs = 1
4 .

4.1 The algorithm

Algorithm 4.1. Primal-Dual method.
Define nmax; η, γc (0 < η, γc < 1); ηs (0 < ηs <

1
2 ); C1 (C1 > 0);

Choose n (0 < n ≤ nmax);
µ = C1n

−1/2; v = (x, z1, z2);
while n ≤ nmax do

tol = 0; first = true; ∆v = v;
while |||Gµ(v)|||D−1 > 0 and |||∆v|||D/|||v|||D > tol do

Compute ∆v = (∆x,∆z1,∆z2) from (12);
τ = max{α : α > 0, v + α∆v is feasible };
α = min{1, .99τ};
while |||Gµ(v + α∆v)|||D−1 > (1− αηs)|||Gµ(v)|||D−1 do

α← γcα;
end do
v ← v + α∆v;
if first then

tol = η|||∆v|||D/|||v|||D; first = false;
end if

end do
n← kref n; Refine the mesh;

µ← µ/
√
kref ;

end do

All runs were made on an SGI Octane workstation with 512MB of RAM and two 250MHz
R10000 processors (only one being used for each problem solution). The f90 compiler was
used with -n32 -O options specifying 32-bit mode and full code optimization.

Example 1: Elliptic variational inequality. Consider the variational problem

min
u∈K

q(u) =

∫
Ω

|∇u(x)|2 − 2c(x)u(x) dx,

where Ω = [0, 1]× [0, 1], K = {u ∈ H1
0(Ω) : |u| ≤ 1

4 −
1
10 sin(πx1) sin(πx2) for x ∈ Ω}, and

c(x) is chosen such that −∆w = c, with w = sin(3πx1) sin(3πx2).
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The results are summarized in Table 1. Columns 3 and 4 give the times and iterations
for the separate refinement and continuations steps. Columns 5 and 6 give the details for
Algorithm 4.1.

Table 1. Elliptic variational inequality.

Method A Method B

n µ Iter cpu secs Iter cpu secs

25 1 8 0.01 8 0.01

64 1 6 0.04

64 2−1 3 0.05 6 0.04

250 2−1 8 0.19

250 2−2 3 0.25 9 0.19

1000 2−2 12 1.05

1000 2−3 3 1.34 14 1.08

4000 2−3 10 4.84

4000 2−4 3 6.34 15 5.74

16000 2−4 10 24.37

16000 2−5 3 32.23 12 26.49

64000 2−5 9 136.10

64000 2−6 3 189.75 11 144.47

Fig. 1 gives the final adaptive mesh and corresponding approximate solution. The results
in Table 1 indicate that the refinement steps generally require more Newton iterations
than the continuation steps. This mainly reflects the quality of the initial guesses for these
problems, since the underlying discrete variational inequalities associated with each mesh
are quite similar. To some extent, the additional iterations are needed because the adaptive
refinement tends to introduce new grid points in areas where the solution is least accurate.
This is shown quite clearly in Fig. 1, where we observe that the smallest elements resolve the
interface between contact and non-contact zones, and the largest elements appear near the
centers of the contact zones, where the solution is well-defined by the obstacle. The initial
guess for refinement steps is interpolated from the previous mesh, and is clearly not as good
as the fine-grid solution that serves as initial guess for the continuation steps.

Example 2: Elastic-plastic torsion. This problem concerns an infinitely long cylindrical
bar made up of an isotropic elastic perfectly plastic material. Starting from a zero-stress
initial state, an increasing torsion moment is applied to the bar. The elastic-plastic torsion
problem [15, p. 41-46] can be formulated in terms of the cross-section Ω of the cylinder and
the torsion angle constant c per unit length. The stress field is the solution of the variational
problem

min
u∈K

q(u) =

∫
Ω

|∇u(x)|2 − 2cu(x) dx,

where Ω = [0, 1]× [0, 1], K =
{
u ∈ H1

0(Ω) : |u| ≤ dist(x, ∂Ω) for x ∈ Ω
}

, and dist(x, ∂Ω)
denotes the distance from x to the boundary of Ω. The symbol H1

0(Ω) denotes the space of
functions with gradients in L2(Ω) that vanish on the boundary of Ω. If there is no constraint,
then u will satisfy the boundary-value problem

−∆u = c for x ∈ Ω, and u = 0 for x ∈ ∂Ω.
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Fig. 1. Elliptic variational inequality. On the left is an plot of the element size in the adaptive mesh
with n = 64000 vertices. On the right is the corresponding solution.

In all the numerical results, the constant c = 5 was chosen to be consistent with the elastic-
plastic torsion problem in the COPS test set [5]. We repeated the same experiments as in
the first example, beginning with an identical 5×5 mesh. Although subsequent meshes have
the same numbers of mesh points, adaptive refinement made the meshes quite different.
The results of the calculation are summarized in Table 2, and the final adaptive mesh and
solution are shown in Fig. 2.

Table 2. Elastic-plastic torsion problem.

Method A Method B

n µ Iter cpu secs Iter cpu secs

25 1 5 0.01 5 0.01

64 1 4 0.03

64 2−1 3 0.04 4 0.03

250 2−1 4 0.12

250 2−2 3 0.17 4 0.11

1000 2−2 5 0.60

1000 2−3 3 0.85 6 0.57

4000 2−3 5 2.93

4000 2−4 3 4.31 6 2.92

16000 2−4 5 15.43

16000 2−5 3 23.34 5 14.45

64000 2−5 5 95.48

64000 2−6 4 161.47 5 89.72

Generally, this was an easier problem with a smoother solution than our first example.
This is reflected in a smaller numbers of Newton iterations needed for the refinement steps.
The final adaptive mesh is much more uniform, although, once again, the largest elements
appear in the interior of the contact zone where the solution is well-defined by the obstacle.

Example 3: Minimal surface with an obstacle. This problem involves finding the
least amount of total energy to maintain, and thus enclose a given area/volume with as
little perimeter/surface area as possible. This formulation is identical to the one in the
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Fig. 2. Elastic-plastic torsion problem. On the left is an plot of the element size in the adaptive
mesh with n = 64000 vertices. On the right is the corresponding solution.

COPS test set [10]. The aim is to minimize the area function q:K → R, such that

q(u) =

∫
Ω

(
1 + |∇u(x)|2

)1/2
dx, (14)

where Ω = [0, 1]× [0, 1], K = {u ∈ H1(Ω) : u(x) = uΩ(x) for x ∈ ∂Ω, u(x) ≥ uL(x) for x ∈
Ω}. The function uΩ : ∂Ω → R defines the boundary data, and the function uL:Ω → R
defines the obstacle. It is assumed that uL ≤ uΩ on the boundary. If no obstacle is present,
the minimal surface satisfies the boundary-value problem

div
(
(1 + |∇u|2)−1/2∇u

)
= 0 for x ∈ Ω, and u = uΩ for x ∈ ∂Ω

(see, e.g., [26, p. 174]). In the case considered here, the boundary constraint uΩ is defined
such that

uΩ =

{
1− (2x1 − 1)2, if x2 = 0, 1;
0, otherwise.

The obstacle is

uL =

{
1, if |x1 − 1

2 | ≤
1
4 and |x2 − 1

2 | ≤
1
4 ;

0, otherwise.

To make uL continuous, we added a small band abound the center box where uL varied
linearly from 0 to 1. This is illustrated in Fig. 3.

Table 3 shows the results of the computation. Because the initial mesh had n = 685
vertices, the computation was started with µ = .25 in order to ensure that the refined
meshes correspond to those of the previous examples. However, this problem differs from
the previous ones in some other significant respects. The definition of the initial coarse mesh
provides a convenient framework in which to define uL (see Fig. 3). However, the use of this
mesh also means that the boundary of the central square where uL is nearly discontinuous
is automatically and exactly incorporated into each of the refined meshes. The fact that
this (anticipated) interface is described exactly in the mesh is, of course, beneficial to the
adaptive meshing procedure. The solution and refined mesh are shown in Fig. 4.

Another difference we observed in this problem is that the Lagrange multipliers are
quite rough. In Fig. 5, we show both the Lagrange multipliers and the smoothed Lagrange
multipliers used for interpolation. It is clear that the multipliers exhibit a δ-function-like
behavior on the boundary of the contact zone, particularly at the corners of the square.
The smoothed multipliers are visibly much nicer. We also note that the number of Newton
iterations for the refinement and continuation steps is roughly comparable for this problem.
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Fig. 3. Minimal surface problem: On the left, we illustrate the skeleton corresponding to the defi-
nition of uL. On the right, we show the corresponding initial mesh with 685 mesh points.

As before, this behavior mostly reflects the quality of the initial guesses. For this problem,
the roughness of the Lagrange multipliers is probably responsible for the additional Newton
iterations needed for the continuation steps, in comparison with previous examples.

Table 3. Minimal surface problem.

Method A Method B

n µ Iter cpu secs Iter cpu secs

685 2−2 11 0.52 11 0.52

1000 2−2 7 1.09

1000 2−3 3 1.41 5 1.00

4000 2−3 14 6.10

4000 2−4 3 7.70 9 4.31

16000 2−4 7 21.86

16000 2−5 6 36.27 5 16.27

64000 2−5 5 109.61

64000 2−6 7 199.06 5 92.11

Finally, Table 4 gives the cpu seconds required for some of the principal routines of the al-
gorithm. All initialization and preprocessing, including the computation of the sparsity pat-
tern of H and the setup for the data structures for each level, is done in subroutine mginit.
The multigraph incomplete LU factorization is computed in subroutine mgilu. These factors
are used in subroutine mg to solve the main system (11). Subroutine tpick performs the
line search and computes required directional derivatives. Subroutine linsys computes the
finite element Jacobian and Newton residual. The computation of the smoothed Lagrange
multipliers is done in subroutine smlm.

Acknowledgements

We thank Michael Saunders for many helpful comments on the performance and implemen-
tation of iterative solvers for interior methods.



13

Fig. 4. Minimal surface problem. On the left is an plot of the element size in the adaptive mesh
with n = 64000 vertices. On the right is the corresponding solution.

Fig. 5. Minimal surface problem. On the left is a plot of the Lagrange multipliers for the mesh with
n = 64000 vertices. On the right is a plot of the smoothed Lagrange multipliers.
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Table 4. Minimal surface problem. Breakdown of the computation time. The
first set of times are for explicit refinement and continuation steps.

Task cpu secs cpu secs

Mesh generation 19.19 15.17
Subroutine mginit 20.40 10.35
Subroutine mgilu 31.16 14.01
Subroutine mg 26.77 10.07
Subroutine linsys 50.19 17.89
Subroutine tpick 15.43 5.94
Subroutine smlm 31.41 16.29
Other 4.51 2.39
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24. J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with
bound constraints, SIAM J. Optim., 1 (1991), pp. 93–113.

25. S. G. Nash, Newton-type minimization via the Lánczos method, SIAM J. Numer. Anal., 21
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