
MULTIGRAPH
Users’ Guide 2.1

Randolph E. Bank

Department of Mathematics
University of California at San Diego
La Jolla, California 92093-0112

July, 2017

ii MULTIGRAPH USERS’ GUIDE 2.1

Copyright (c) 2017 by the author.

This work was supported by the National Science Foundation
under awards DMS-1318480 and DMS-1345013.

This software is made available for research and instructional use only. You may copy
and use this software without charge for these non-commercial purposes, provided that
the copyright notice and associated text is reproduced on all copies. For all other uses
(including distribution of modified versions), please contact the author. This software
is provided “as is”, without any expressed or implied warranty. In particular, the
author does not make any representation or warranty of any kind concerning the
fitness of this software for any particular purpose.

Contents

1 Data Structures 1
1.1 Overview. 1
1.2 Matrix Data Structures. 3
1.3 The ka Data Structure. 5

2 Multigraph Routines 7
2.1 Overview. 7
2.2 Subroutine mginit. 7
2.3 Subroutine mgilu. 9
2.4 Subroutine mg. 10
2.5 Subroutines cycle, mtxmlt and perm. 11

3 Graphics 15
3.1 Overview. 15
3.2 Subroutine gphplt. 15
3.3 Subroutine mtxplt. 16

4 Test Driver 21
4.1 Overview. 21
4.2 Terminal Mode. 21
4.3 Web Browser Mode. 24
4.4 Batch Mode. 29
4.5 Array Dimensions and Initialization. 29
4.6 Matrix Files. 30
4.7 Matrix Generators. 30
4.8 Journal Files. 31
4.9 Machine Dependent Routines. 32

4.9.1 Arithmetic Specification. 32
4.9.2 Timing Routine. 32
4.9.3 Graphics Interface. 32

Bibliography 31

iii

iv Contents

Chapter 1

Data Structures

1.1 Overview.
The multigraph package can be used to solve large sparse linear systems of equations
of the form

Ax = b. (1.1)

In this chapter, we discuss the main data structures used in the package, and give
a brief overview of its overall structure. See [3, 4] for algorithmic details and some
numerical results.

We assume that the sparsity pattern of A is symmetric, although the numerical
values need not be. We will begin by describing the basic two-level method for
solving (1.1) Let B be an n × n nonsingular matrix, called the smoother, which
gives rise to the basic iterative method used in the multigraph preconditioner. In
our case, B is an approximate factorization of A, i.e.,

B = (L+D)D−1(D + U) ≈ P tAP, (1.2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix.

Given an initial guess x0, m steps of the smoothing procedure produce iterates
xk, 1 ≤ k ≤ m, given by

rk−1 = P t(b−Axk−1)

Bδk−1 = rk−1 (1.3)

xk = xk−1 + P tδk−1

The second component of the two-level preconditioner is the coarse grid cor-
rection. Here we assume that the matrix A can be partitioned as

P̂AP̂ t =

(
Aff Afc

Acf Acc

)
(1.4)

1

2 MULTIGRAPH USERS’ GUIDE 1.0

where the subscripts f and c denote fine and coarse, respectively. Similar to the
smoother, the partition of A in fine and coarse blocks involves a permutation matrix
P̂ . The n̂× n̂ coarse grid matrix Â is given by

Â =
(
Vcf Icc

)(Aff Afc

Acf Acc

)(
Wfc

Icc

)
= VcfAffWfc + VcfAfc +AcfWfc +Acc. (1.5)

The matrices Vcf and W t
fc are n̂×(n− n̂) matrices, with identical sparsity patterns;

thus Â has a symmetric sparsity pattern. If At = A, we require Vcf = W t
fc, so

Ât = Â.
Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
. (1.6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction and
prolongation, respectively. Given an approximate solution xm to (1.1), the coarse
grid correction produces an iterate xm+1 as follows.

r̂ = V̂ (b−Axm)

Âδ̂ = r̂ (1.7)

xm+1 = xm + Ŵ δ̂

As is typical of multilevel methods, we define the Two-Level Preconditioner
M implicitly in terms of the smoother and coarse grid correction. A single cycle
takes an initial guess x0 to a final guess x2m+1 as follows:

Two-Level Preconditioner

i. xk for 1 ≤ k ≤ m are defined using (1.3).

ii. xm+1 is defined using (1.7).

iii. xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (1.3).

The generalization from two-level to multilevel consists of applying recursion
to the solution of the equation Âδ̂ = r̂ in (1.7). Let ` denote the number of levels
in the recursion. Let M̂ ≡ M̂(`) denote the preconditioner for Â; if ` = 2 then
M̂ = Â. Then (1.7) is generalized to:

r̂ = V̂ (b−Axm)

M̂ δ̂ = r̂ (1.8)

xm+1 = xm + Ŵ δ̂

The general ` level preconditioner M is then defined as follows:

1.2. Matrix Data Structures. 3

`-Level Preconditioner

i. if ` = 1, M = A; i.e., solve (1.1) directly.

ii. if ` > 1, then, starting from initial guess x0, compute x2m+1 using (iii)-(v):

iii. xk for 1 ≤ k ≤ m are defined using (1.3).

iv. xm+1 is defined by (1.8), using p = 1 or p = 2 iterations of the ` − 1 level

scheme for Âδ̂ = r̂ to define M̂ , and with initial guess δ̂0 = 0.

v. xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (1.3).

The case p = 1 corresponds to the symmetric V-cycle, while the case p = 2
corresponds to the symmetric W-cycle. We note that there are other variants of both
the V-cycle and the W-cycle, as well as other types of multilevel cycling strategies
[7]. However, in our code we restrict attention to just the symmetric V-cycle, with
m = 1 presmoothing and postsmoothing iterations.

For the coarse mesh solution (` = 1), our procedure is somewhat non-traditional.
Instead of direct solution of (1.1), we compute an approximate solution using one
smoothing iteration.

If A is symmetric then so is M , and the `-Level Preconditioner is used as
a preconditioner for the composite step conjugate gradient method (CSCG). In
the nonsymmetric case, the `-level Preconditioner is used in conjunction with the
composite step biconjugate gradient method (CSBCG). See [1] for details of these
Krylov space methods.

1.2 Matrix Data Structures.
Let A be an n × n matrix with elements Aij , and a symmetric sparsity structure;
that is, both Aij and Aji are treated as nonzero elements (i.e. stored and processed)
if |Aij | + |Aji| > 0. All diagonal entries Aii are treated as nonzero regardless of
their numerical values.

Our data structure is a modified and generalized version of the data structure
introduced in the (symmetric) Yale Sparse Matrix Package [6]. It is a row-wise
version of the data structure described in [2]. In our scheme, the nonzero entries
of A are stored in a linear array a, and accessed through an integer array ja. Let
ηi be the number of nonzeros in the strict upper triangular part of row i, and set
η =

∑n
i=1 ηi. The array ja is of length n+1+η and the array a is of length n+1+η

if At = A. If At 6= A, then the array a is of length n+ 1 + 2η. The entries of ja(i)
1 ≤ i ≤ n+ 1 are pointers defined as follows:

ja(1) = n+ 2

ja(i+ 1) = ja(i) + ηi, 1 ≤ i ≤ n

The locations ja(i) to ja(i+ 1)− 1 contain the ηi column indices corresponding to
the row i in the strictly upper triangular matrix.

4 MULTIGRAPH USERS’ GUIDE 1.0

In a similar manner, the array a is defined as follows:

a(i) = Aii, 1 ≤ i ≤ n
a(n+ 1) is arbitrary

a(k) = Aij , 1 ≤ i ≤ n, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1

If At 6= A, then

a(k + η) = Aji, 1 ≤ i ≤ n, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1

In words, the diagonal is stored first, followed by the strict upper triangle stored row-
wise. If At 6= A, then this is followed by the strict lower triangle stored column-wise.
Since A is structurally symmetric, the column indexes for the upper triangle are
identical to the row indexes for the lower triangle, and hence need not be duplicated
in storage.

As an example, let

A =


A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35

0 A42 A43 A44 0
0 0 A53 0 A55


Then

1 2 3 4 5 6 7 8 9 10 11
ja 7 9 10 12 12 12 2 3 4 4 5
a A11 A22 A33 A44 A55 A12 A13 A24 A34 A35

Diagonal Upper Triangle

12 13 14 15 16
ja
a A21 A31 A42 A43 A53

Lower Triangle

If desired, the user can specify a block structure for the matrix A. This block
structure is used only in the coarsening phase of the algorithm (i.e. in creating V̂ and
Ŵ). If the matrix has nblock blocks, the user provides and integer array ib of length
nblock + 1, defined as follows: Let ξi be the order of block i, for 1 ≤ i ≤ nblock.
Then

ib(1) = 1

ib(i+ 1) = ib(i) + ξi, 1 ≤ i ≤ nblock.

For the case of just one block, one should set

ib(1) = 1

ib(2) = n+ 1

1.3. The ka Data Structure. 5

The data structure for storing B = (L + D)D−1(D + U) is quite analogous
to that for A. It consists of two arrays, ju and u, corresponding to ja and a,
respectively. The first n+1 entries of ju are pointers as in ja, while entries ju(i) to
ju(i+1)−1 contain column indices of the nonzeros of row i in of U . In the u array,
the diagonal entries of D are stored in the first n entries. Entry n+ 1 is arbitrary.
Next, the nonzero entries of U are stored, in correspondence to the column indices
in ju. If Lt 6= U , the nonzero entries of L follow, stored column-wise.

The data structure we use for the n × n̂ matrix Ŵ and the n̂ × n matrix V̂
are similar. It consists of an integer array jv and a real array v. The nonzero
entries of Ŵ are stored row-wise, including the rows of the block Icc. As usual, the
first n + 1 entries of jv are pointers; entries jv(i) to jv(i + 1) − 1 contain column
indices for row i of Ŵ . In the v array, the nonzero entries of Ŵ are stored row-wise
in correspondence with jv but shifted by n + 1 since there is no diagonal part. If
V̂ t 6= Ŵ , this is followed by the nonzeros of V̂ stored column-wise.

1.3 The ka Data Structure.
To avoid excessive clutter in the calling sequences, all of the relevant matrices for
all of the levels are stored in just two arrays, an integer array ja and a real array
a. In order to keep track of the internal structure of these arrays, a matrix of
pointers, ka, is created in subroutine mginit and used in subroutine mg. A casual
user need not be concerned with this array (other than allocating storage for it),
but it is available to the user should access to the various matrices generated by
the multigraph method be desired. ka is a 10 × (lvl + 1) integer array, where
lvl ≤ maxlvl is the number levels employed by the method. Column i corresponds
to variables associated mainly with level lvl + 1 − i; that is, the first column is
associated with the finest level, the second column with the next finest level, and
so on.

i ka(i, ∗)
1 n, the order of the matrix
2 nptr, pointer for multilevel vector arrays
3 japtr pointer for the integer data structure ja
4 iaptr pointer for the real data structure a
5 juptr pointer for the integer data structure ju
6 iuptr pointer for the real data structure u
7 jvptr pointer for the integer data structure jv
8 ivptr pointer for the real data structure v
9 iqptr pointer for the inverse permutation for P
10 ibptr block labels, computed from the ib array

Table 1.1. The ka array.

6 MULTIGRAPH USERS’ GUIDE 1.0

Chapter 2

Multigraph Routines

2.1 Overview.
The multigraph implementation consists of four main routines, mginit, mgilu, mg,
and cycle. Subroutine mginit is the initialization routine that creates the levels
and their associated data structures. Subroutine mgilu performs a subset of the
operations of mginit, and can be used when one solves a sequence of linear systems
with a family of related matrices (e.g. in a Newton iteration). Subroutine mgilu
computes new values for all of the real variables (a, u and v), while retaining the
integer data structures produced by mginit; this significantly reduces the initial-
ization time. Subroutine mg solves (1.1) using either the composite set conjugate
gradient or composite step biconjugate gradient method. Subroutine cycle is the
V-cycle preconditioner called by mg. It is documented separately, as it can be called
directly as the preconditioner in other iterative solvers. For such a situation, we
also provide subroutines mtxmlt and perm for matrix multiplication and reorder-
ing, respectively. Two other routines, gphplt and mtxplt, are visualization tools
that are discussed in Chapter 3.

This version of the multigraph package is written in fortran90. There is only
one version of the source code. The precision of the arithmetic is governed through
the module mthdef where the precision of integer and floating point numbers can
be specified through the parameters iknd and rknd, respectively. Module mthdef
is included in every subroutine and function in the package, and thus represents a
global specification of precision.

2.2 Subroutine mginit.
mginit is called using the statement:

call mginit(n, ispd, nblock, ib, maxja, ja, maxa, a, ncfact, maxlvl,
maxfil, ka, lvl, dtol, method, iflag)

7

8 MULTIGRAPH USERS’ GUIDE 1.0

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used.

• nblock is an integer specifying the number of blocks in the matrix (see Section
1.2).

• ib is an integer array of size nblock + 1 containing the block structure, as
defined in Section 1.2.

• maxja is an integer specifying the size of the array ja.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. On input, the head of ja should contain the
integer data structure corresponding the the linear system (1.1) to be solved.

• maxa is an integer specifying the size of the array a. A good (but inexact)
guide is to choose maxa ∼ maxja when ispd = 1 and maxa ∼ 2maxja when
ispd = 0.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. On input, the head of a should contain the real data
structure corresponding the the linear system (1.1) to be solved.

• ncfact is an integer specifying the coarsening factor. If the matrix at a given
level is of order n, then the matrix for the next coarser level will be of order
n̂ ≈ n/ncfact. We require ncfact ≥ 2.

• maxlvl is an integer specifying the maximum number of levels to be used.

• maxfil is an integer specifying the maximum storage allowed for certain ma-
trices. In particular, the ja and ju arrays for a system of order ni will have
maximum size ni + 1 + nimaxfil. Note that maxfil controls the average
number of nonzeros per row, but NOT necessarily the fill-in in any particular
row.

• ka is a 10×(lvl+1) integer array, which on output contains pointers as defined
in Section 1.3.

• lvl is an integer, which on output contains the number of levels actually gen-
erated by mginit. In particular lvl ≤ maxlvl.

• dtol is a nonnegative real, specifying the drop tolerance for the ILU factor-
izations.

2.3. Subroutine mgilu. 9

• method is an integer specifying the smoother for the multigraph algorithm.
method = 0 is the default ILU with drop tolerance; method = 1 is ILU(0)
(ja ≡ ju at all levels); method = 2 is symmetric Gauss-Seidel (ja ≡ ju
and a ≡ u at all levels). method = 1 and method = 2 are provided mainly
as a baseline to compare with method = 0; however, for certain problems
they can provide comparable performance using less time and space for the
initialization, and therefore are independently useful.

• if lag is an integer that on output contains the error flag. if lag = 0 signifies
no error; if lag = 20 signifies insufficient storage. Although this could refer to
maxja, maxa, or lenz, the typical failure is for lenz.

2.3 Subroutine mgilu.
Subroutine mgilu performs a subset of the computations of mginit. In particular,
for a related family of matrices, one can save the level and fill-in structures (essen-
tially the contents of the ja array) and simply compute new numerical values for
matrix elements (the a array). One calls mginit for the first member of the family
of matrices and then mgilu for the remainder. For example, in a Newton iteration,
one might expect the changes in the Jacobian matrices to be sufficiently small that
the level and fill-in structures could be used for all (or perhaps just several) Newton
steps. Thus one would call mginit once to initialize the arrays and compute the
first set of matrices, and then call mgilu for all other matrices, which would then
reuse the level and fill-in structure from the call to mginit.

mgilu is called using the statement:

call mgilu(ja, a, lvl, ka)

A discussion of these parameters follows.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. This should be the output from the original call
to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. On input, the head of a should contain the real data
structure corresponding the the linear system (1.1) to be solved.

• lvl is an integer, which contains the number of levels. This should be the
output from the original call to mginit.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the original call to mginit.

It is important to note that mginit reorders the original matrix stored in
the ja and a data structures. mgilu assumes that the new matrix provided in a
corresponds to this reordering. The inverse permutation array for the ordering can

10 MULTIGRAPH USERS’ GUIDE 1.0

be found using the pointer iqptr = ka(9, 1). If p(i) is the permutation, and q(i) the
inverse permutation, then p(q(i)) = i, 1 ≤ i ≤ n.

As a convenience, we provide subroutine jamap0, which takes a pair (i, j) in
the original ordering and provides pointers to the locations of Aij and Aji in the
reordered data structures. jamap0 is called using the statement:

call jamap0(i, j, n, ispd, ij, ji, ja)

A discussion of these parameters follows.

• i and j are the indices for the desired matrix element, given in the original
ordering.

• n is an integer specifying the order of the system of equations.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used.

• On output, ij and ji are pointers to the a array where matrix entries Aij and
Aji, respectively, are stored. ij = ji if i = j or ispd = 1, and ij = ji = 0 if
entry (i, j) is not present in the data structure.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. This should be the output from the original call
to mginit.

2.4 Subroutine mg.
Subroutine mg solves the linear system (1.1) using the output from mginit (or
mgilu). In the nonsymmetric case, subroutine mg can also solve problems of the
form

Atx = b. (2.1)

mg is called using the statement:

call mg(ispd, lvl, mxcg, eps1, ja, a, dr, br, ka, relerr, iflag, hist)

A discussion of these parameters follows.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used. ispd = −1 indicates that nonsymmetric storage is used and one
should solve (2.1).

• lvl is an integer specifying the number of levels. This should be the output
from the call to mginit.

• mxcg is an integer specifying the maximum number of CSCG iterations (ispd =
1) or CSBCG iterations (ispd 6= 1).

2.5. Subroutines cycle, mtxmlt and perm. 11

• eps1 it the convergence tolerance. The iteration terminates when the residual
norm is reduced by a factor of eps1 or when mxcg iterations is achieved,
whichever occurs first.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• dr is a real array of size n, which on output contains the solution of the linear
system.

• br is a real array of size n, which on input contains the right hand side of the
linear system.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

• relerr is a real number which on output specifies the ratio of the norms of
initial and final residuals.

• if lag is an integer that on output contains the error flag. if lag = 0 signifies
no error; if lag = 12 indicates that the error tolerance eps1 was not reached
in mxcg iterations, but the iteration appeared to be converging. if lag = −12
indicates that the iteration appeared to diverge. hist is a real array of size
22, which collects data used by the graphics routine gphplt.

2.5 Subroutines cycle, mtxmlt and perm.
Subroutine cycle implements the V-cycle preconditioner, and is called as needed by
mg. It is documented separately here, as it can be used as a preconditioner in other
preconditioned iterative methods. cycle is called using the statement:

call cycle(ispd, lvl, ja, a, x, b, ka)

A discussion of these parameters follows.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used. ispd = −1 indicates that nonsymmetric storage is used and one
should solve (2.1).

• lvl is an integer specifying the number of levels. This should be the output
from the call to mginit.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

12 MULTIGRAPH USERS’ GUIDE 1.0

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• x is a real array of size n, which on output contains the approximate solution
of the linear system.

• b is a real array of size n, which on input contains the right hand side of the
linear system.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

Subroutine mtxmlt computes b = Ax or b = Atx. It is a companion routine
to cycle for use in a preconditioned iterative method. mtxmlt is called using the
statement:

call mtxmlt(n, ja, a, x, b, ispd)

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• x is a real array of size n, which on contains the input vector.

• b is a real array of size n, which on output contains Ax or Atx.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric stor-
age is used. In both cases b = Ax is computed. ispd = −1 indicates that
nonsymmetric storage is used and b = Atx is computed.

Both cycle and mtxmlt assume that all vectors are ordered according the
minimum degree ordering computed in mginit. If the input and output are provided
in the original ordering, then subroutine perm should be called as necessary to
reorder the data.

perm is called using the statement:

call perm(n, x, ja, isw)

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.

2.5. Subroutines cycle, mtxmlt and perm. 13

• x is a real array of size n, which contains the vector to be reordered.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• isw is an integer switch. If isw = 1, the input is assumed to be in the original
order, and the output is reordered using the order generated in mginit. If
isw = −1, the input is assumed to be ordered using the order provided by
mginit and the output is restored to the original order.

14 MULTIGRAPH USERS’ GUIDE 1.0

Chapter 3

Graphics

3.1 Overview.
The graphics tools associated with the multigraph package consist of subroutines
gphplt and mtxplt. These routines are written in self-contained, portable Fortran,
addressing the graphics output device through subroutines pline, pfill, pframe and
pltutl. The specifications for these routines are given in Section 4.9.3.

Subroutine gphplt displays various graphs and charts containing timings, con-
vergence histories, and other items of interest. Subroutine mtxplt displays sparse
matrices associated with the multigraph solver.

3.2 Subroutine gphplt.
gphplt is called using the statement

call gphplt(ip, rp, sp, hist, ka, time)

Subroutine gphplt uses three parameters specified in the ip array and one
parameter specified in the sp array.

• igrsw is an integer switch specifying the graphs to be drawn. The possibilities
are given in Table 3.1,

• idevce is an integer switch specifying the graphics output device.

• gpane is an integer switch specifying ipane for the web broswer interface.

• mxcolr is an integer specifying the number of colors available; we assume
mxcolr ≥ 2.

• gtitle is an string specifying the title for the graph.

• grfile is an string specifying the graphics output file for XPM and PostScript
graphics.

15

16 MULTIGRAPH USERS’ GUIDE 1.0

igrsw displayed graph
0 convergence history
1 storage profile
-1 timings
2 ip array
-2 rp array
3 ka array
-3 sp array

Table 3.1. The values of igrsw.

The case igrsw = 0 is probably the most useful. In the large frame, a con-
vergence history of the multigraph iteration is displayed; iteration number appears
on the x-axis, and log(relerr) appears on the y-axis. In one of the smaller frames,
times for mginit and mg are displayed in a pie chart. In the other, storage statistics
for various matrices are displayed; log(n) for each level appears on the x-axis, and
the average number of nonzeros in ja, ju and jv for each level are displayed in
different colors on the y-axis. The cases igrsw = ±1 are permutations of the three
frames.

The case igrsw = 2 displays the ip array, an integer array of size 100 containing
global parameters used by the test driver program. The case igrsw = −2 displays
the rp array, a real array of size 100 containing global parameters used by the test
driver program. The case igrsw = −3 displays the sp array, a character*80 array
of size 100 containing global parameters used by the test driver program. Finally,
igrsw = 3 displays the sizes of all major arrays on all levels.

The remaining arguments are summarized by:

• hist is a real array of size 22, which contains the convergence history. It is
the output from subroutine mg.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

• time is a real array of size 2, containing the execution times of mginit and
mg.

3.3 Subroutine mtxplt.
Subroutine mtxplt displays the sparsity structure of the stiffness matrix A, the
LDU factors from the ILU , or the error matrix E associated with an approximate
factorization. mtxplt is called using the statement

call mtxplt(ip, rp, sp, ja, a, ka)

3.3. Subroutine mtxplt. 17

Subroutine mtxplt uses several parameters specified in the ip and rp arrays
and one parameter specified in the sp array.

• imtxsw specifies the matrix to be displayed, as summarized in Table 3.2. If
imtxsw > 0, the magnitude of matrix elements is displayed; if imtxsw < 0,
the (signed) value is displayed.

• idevce is an integer switch specifying the graphics output device.

• mpane is an integer switch specifying ipane for the web broswer interface.

• mxcolr is an integer specifying the number of colors available; we assume
mxcolr ≥ 2.

• iscale in an integer that specifies the scaling to be used for the cases imtxsw =
±2,±4,±6 as summarized in Table 3.2.

• lines is an integer that specifies the line drawing option, as summarized in
Table 3.2.

• numbrs in an integer that specifies numbering options, as summarized in
Table 3.2.

• (mx,my,mz) are three integers specifying the viewing perspective.

• ncon is an integer specifying the number of colors in the cases cases imtxsw =
±2,±4,±6.

• level is an integer, 1 ≤ level ≤ lvl, specifying the level of the matrix to be
displayed. If level > lvl or level < 1, then lvl is used.

• (smin, smax) are real numbers that optionally specify lower and upper bounds
for the color range for the cases imtxsw = ±2,±4,±6. Matrix elements with
values falling outside the given range are colored white.

• rmag is a real number specifying the magnification factor.

• (cenx, ceny) are real numbers that specify the center of the picture when
rmag > 1.

• mtitle is an string specifying the title for the graph.

• grfile is an string specifying the graphics output file for XPM and PostScript
graphics.

The remaining arguments are summarized by:

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

18 MULTIGRAPH USERS’ GUIDE 1.0

imtxsw displayed matrix
±1 LDU colored by element type
±2 LDU colored by element size
±3 A colored by element type
±4 A colored by element size
±5 E colored by element type
±6 E colored by element size

iscale scale
0 linear
1 logarithmic

2 sinh−1

lines line drawing option
0 no lines
-2 matrix element boundaries

numbrs labeling option
0 no labels
-1 matrix element values
-2 matrix element locations

Table 3.2. The values of switches.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

Chapter 4

Test Driver

4.1 Overview.
Program atest is the test driver used in the development and testing of the multi-
graph solver. atest is a flexible program in that it accepts simple command strings
directing it to call subroutines or perform other tasks. It is not limited to a fixed
sequence of tasks on a particular run; any routine can be called as often as desired,
with certain parameters reset for each call at the discretion of the user.

The program atest can operate in three modes, governed by the switch mode.
If mode = −1, atest runs as an interactive program, accepting commands from
the user via a terminal window. If mode = 0, atest runs interactively, accepting
commands from the user via a web browser interface. The communication link
between atest and the web browser is a socket, so that the client web browser can
be running on a different device from the server running atest. Finally, if mode = 1,
atest runs as a batch program, reading commands from a journal file and sending
all output to appropriate output files.

A common command syntax is used for all three modes. This is described
first for the case mode = −1 in Section 4.2. The extensions used in the web browser
interface are described in Section 4.3.

Several files are written by atest. The file bfile contains a complete record
of all commands and printed output produced during the session. The file jwfile
contains a record of all commands read and processed during the session, formatted
as a journal file. See Section 4.8 for a discussion of journal files. atest sets the
default values bfile = output.out and jwfile = journl.jnl. atest also creates a
temporary file jtfile = jnltmp.jnl which it uses in connection with journal files.

4.2 Terminal Mode.
In terminal mode, commands are entered from a terminal window in character
strings of 80 characters, counting blanks. The syntax of a command can take
several forms, but the root command is always a single letter. The commands that

21

22 MULTIGRAPH USERS’ GUIDE 1.0

are currently recognized by atest are summarized in Table 4.1.

Command Action
f call mginit
s call mg
g call gphplt
m call mtxplt
l create a linear system
r read data set from a file
j read journal file
q quit

Table 4.1. Available commands for atest.

The terminal window prompt is the string command:. At this prompt, one
can enter a command string (e.g., s), reset parameters as described below, or enter
a blank line to see a list of the available commands. In this latter case the terminal
window will appear as follows.

command:

factor f solve s gphplt g mtxplt m

linsys l read r journl j quit q

command:

A syntax error in a given command string causes the entire string to be ignored.
atest will display the string command error and present the command prompt for
a new input string.

The most simple commands are just single lower case letters as shown in
Table 4.1. However, associated with most commands are various parameters which
can be reset before calling the given routine. To see a listing of the parameters
associated with a given command and their current values, without executing the
command itself, enter the command in upper case at the command prompt. For
example, the command M will display the parameters which can be interactively
reset in connection with mtxplt.

command:M

imtxsw i 2 iscale s 0 lines l 0 numbrs n 0

mdevce d 3 mx mx 1 my my 1 mz mz 1

ncon c 11 level l 0 mxcolr mc 100 smin sn 0.0

smax sx 0.0 rmag m 1.0 cenx cx 0.5 ceny cy 0.5

mtitle t "mtxplt"

grfile f figxxx.ext

command:

These are eleven integer, five real, and two string parameters affecting sub-
routine mtxplt which can be interactively reset by the user. To the right of each

4.2. Terminal Mode. 23

parameter is a one- or two-letter alias (to avoid typing long names), followed by the
current value.

To reset some parameters associated with a command c (c = s, f, g, etc.),
without invoking the command itself, one can type a string of the form

command:C name1=value1, name2=value2, ... , namek=valuek

Note that the root command appears in upper case. The namek refer to variable
names or their aliases, and valuek refer to integer, real, or string values. Several
parameters can be reset, with different entries separated by commas. Values for
integer parameters should be integers, while values for real parameters can be spec-
ified using integer, fixed point, or exponential notation. There are three types of
string parameters: short, file, and long. Short and file strings contain no blank
characters, or special characters used by atest (”=,) and hence can be entered di-
rectly. Long strings, such a titles for graphics output, could have blanks and other
reserved characters and must appear within double quotes. Long string parame-
ters can contain any printable ascii characters (other than double quotes). Blank
spaces are ignored everywhere but within the value field of a long string parameter.
A syntax error in the input line (e.g., a misspelled variable name) causes the entire
command to be ignored and no variables to be reset. atest will respond command
error and then ask for the next command. For example, here we reset iscale = 1,
ncon = 20, cenx = .3, rmag = 10, and mtitle = A new title for mtxplt. Subroutine
mtxplt is not called, but the parameters are updated and redisplayed as

command:M s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for mtxplt"

imtxsw i 2 iscale s 1 lines l 0 numbrs n 0

mdevce d 3 mx mx 1 my my 1 mz mz 1

ncon c 20 level l 0 mxcolr mc 100 smin sn 0.0

smax sx 0.0 rmag m 10.0 cenx cx 0.3 ceny cy 0.5

mtitle t "A new title for mtxplt"

grfile f figxxx.ext

command:

One can reset some parameters for a given command c, and then invoke the
command itself, using a string of the form

command:c name1=value1, name2=value2, ... , namek=valuek

Note that the only difference is that the root command now appears in lower case
rather than upper case. Thus

command:m s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for mtxplt"

resets the indicated parameters as in the previous example. However, instead of
displaying the updated values, subroutine mtxplt is called.

Finally, the graphics commands (g and m) have a short form allowing one
crucial parameter (igrsw and imtxsw, respectively) to be reset without typing
even the alias. For example,

24 MULTIGRAPH USERS’ GUIDE 1.0

command:g0

is the short form for

command:g igrsw=0

The short and long forms of these commands cannot be mixed. Thus

command:g0, gdevce=1

is not valid.

4.3 Web Browser Mode.
When mode = 0, atest connects to a web browser interface via socket webprt. The
webgui browser interface was written by Chris Deotte. It is designed as a graphical
user interface for any C or Fortran package. Complete documentation is provided
in [5]; here we will briefly discuss its use in here. When an atest application is
launched with mode = 0, it displays a message of the form

webgui: Listening on port 15000 for web browser...

In this example webprt = 15000. To establish a connection with a web browser
running on the same computer as the atest application, type

http://localhost:15000

in the web browser’s address bar. If the web browser is running on a different client
device, replace localhost with the IP address or the hostname of the computer run-
ning the atest application. Once the connection is established, the webgui interface
should appear in the the web browser.

The functional capabilities of the web browser interface are the same as those
for terminal window mode, but the possibilities for data entry are more varied. An
example of the web browser interface interface appears in Figure 4.1. The web
browser display has four main elements. There are three graphics panes, and in
the upper left is the main control panel. The graphics interface will be described in
more detail in Section 4.9.3. Here we discuss the main control panel.

The control panel contains two elements. The upper portion of the display
contains command buttons. The bottom portion of the display is the history window.
The command buttons stand in one to one correspondence with the basic atest
command set shown in Table 4.1. To the right of each main command button
is a smaller button labeled with a plus sign. Clicking on a command button is
equivalent to the typed lower case version of the given command. For example,
clicking on the button for the mtxplt command causes subroutine mtxplt to be
called as in the command m. Clicking on the plus button to the right of any
command is equivalent to the typed upper-case version of that command. In this
case a drop down menu appears containing a display of all the parameters that can

4.3. Web Browser Mode. 25

Figure 4.1. The web browser interface.

be modified by that command. For example, clicking on the plus button for the
mtxplt command causes the parameters for the mtxplt command to be displayed
as in the command M . This is shown is figure 4.2.

The parameters associated with a given command are displayed in the reset
window in a format similar to terminal mode. However, each parameter value is
displayed in one line text-editing window, and can be reset by typing in the new
value. Some parameter names (e.g., imtxsw in Figure 4.2) appear in a button. If
the parameter is a switch with several options, clicking on the name button causes
the drop down menu to expand and display a suite of radio buttons indicating
the various options associated with the parameter. Clicking on the desired option
causes the parameter to be reset to the corresponding value. The radio buttons
associated with the parameter imtxsw appear in Figure 4.3.

On the other hand, if the parameter is a file name, clicking on the name button
causes the drop down menu to display a file selection widget. The file-selection
widget for the rwfile associated with the read command is shown in Figure 4.4.

26 MULTIGRAPH USERS’ GUIDE 1.0

Figure 4.2. Drop down menu for resetting parameters for mtxplt.

The history window displays the contents of the output file, bfile, as it is
created. When executing a journal file in web browser mode, if a graphics command
is executed, depending on the graphics device selected, atest can pause after the
picture is drawn, and create a small popup click to continue button. In this case,
atest waits until the user dismisses the click to continue popup before continuing
to execute the journal file. This allows time for the user to view the picture before
processing the next command in the journal file.

The webgui interface has several additional features that are useful in cer-
tain situations. These appear in Table 4.2. To use these features one presses the
OPTION key (ALT key on Windows machines) while also pressing the indicated
key. When OPTION + C are pressed, the command buttons disappear and are re-
placed with a command line where commands may be entered as in terminal mode.
Facsimiles of the displays created in terminal mode appear in the history window.
Pressing OPTION + C again displays the command buttons.

OPTION + W changes the display from its default 2 × 2 layout to a single

4.3. Web Browser Mode. 27

Figure 4.3. Radio buttons for the parameter imtxsw.

column 4×1 layout, with the control panel at the top, followed by the three graphics
panes. Pressing OPTION + W a second time returns to the 2× 2 display.

OPTION + F toggles the firewall on and off. When the firewall is on, atest
displays the message

webgui: Only accepting ip address = x.x.x.x

where x.x.x.x is the IP address of the client device running the web browser. The
webgui interface displays the message

FIREWALL ON: Only your ip address (x.x.x.x) can access webgui.

at the bottom left of the main display. When the firewall is turned off, atest displays
the message

webgui: Accepting all ip addresses.

while the message in the webgui interface disappears.

28 MULTIGRAPH USERS’ GUIDE 1.0

Figure 4.4. File sector for the parameter rwfile.

OPTION + E toggles endian flip on and off. Only one feature in the web
browser interface (displaying 3D graphics objects) depends on the server and client
machines having the same endianness. By default, the client assumes that client
and server have the same endianness; if this is not the case, then OPTION + E flips
the endianness as needed on the data it receives, and the webgui interface displays
the message

ENDIAN FLIP: Client receiving flipped endianness of server.

The OPTION + I and OPTION + SAVE cases will be discussed in Section 4.9.3.
Finally, we remark that webgui uses the same database of Fortran character

strings as the terminal window interface to define its displays, and returns command
strings of the same type described in the terminal windows interface. Both the web
browser interface and the terminal window interface are quite generic, in that neither
contains direct links to any of the main routines in the package. Thus changes in
the behavior of routines comprising the package have no impact on the interface

4.4. Batch Mode. 29

Key Feature

OPTION + C toggles between command buttons and command text field
OPTION + W toggles between 2× 2 and 4× 1 layout
OPTION + F toggles firewall on and off
OPTION + E toggles endian flip on and off
OPTION + I toggles displaying rotation, pan and zoom information
OPTION + SAVE saves 3D objects as text instead of binary

Table 4.2. Special Features of webgui.

routines and at most modest impact on the database of character strings that define
the displays.

4.4 Batch Mode.
When mode = 1, the atest driver runs as a batch program. All commands are read
from the journal file specified in jrfile. Graphics output should be directed to files
(PostScript and XPM) rather than to interactive displays.

4.5 Array Dimensions and Initialization.
atest has six labeled common blocks:

common /atest1/ip(100),rp(100),sp(100)

common /atest2/iu(100),ru(100),su(100)

common /atest3/mode,jnlsw,jnlr,jnlw,ibatch

common /atest4/jcmd,cmdtyp,list

common /atest5/idevce,ipane

common /atest6/nproc,myid,mpisw,mpirgn,mpiint,mpiflt

The functionality provided by blocks atest2, atest4 and atest6 is not used in
the current implementation of the multigraph solver, but is embedded in the generic
driver nonetheless.

The ip, rp, and sp and integer, real, and character*80 arrays of size 100
that contain various global parameters associated with the driver, subroutines mg,
mginit, gphplt mtxplt, etc. Their structure and current values can be displayed by
appropriate calls to gphplt.

The arrays iu, ru and su are analogous to ip, rp and sp and are provided
for user-defined variables used in usrcmd commands (no commands of this class
are used in the multigraph package). atest3 contains internal control parameters
used by atest; several have corresponding locations in the ip array, allowing the
user to specify defaults as necessary. atest4 contains a character*80 variable list, a
character*6 variable cmdtyp and an integer jcmd, used for communication between
the main user interface routines and subroutine reset, part of the usrcmd.

30 MULTIGRAPH USERS’ GUIDE 1.0

The block atest5 contains integers specifying the current graphics output de-
vice. atest6 contains some MPI parameters read internally by atest; however MPI
options are not available in this application.

The main program has a parameter statement where values of maxn, maxja,
maxa and lenw are defined. In turn, these parameters are used to allocate storage
for all the major arrays used by the package. maxn is the maximum order of linear
systems to be solved; maxja, maxa and lenw are the sizes of the matrix arrays ja,
a, and the work array w, respectively. Their sizes, relative to maxn are problem
dependent, and may need to be adjusted by the user in any particular case.

4.6 Matrix Files.
The read command (r) will read a file containing data defining a matrix and right
hand side. Although it increases the file size, matrix files are ascii (as opposed
to binary formats such as xdr) to make them readable by humans. The required
format follows:

The first line of the file contains three integers: n, ispd and nblock, (in that
order). n ≥ 1 is the order of the system; ispd = 0, 1 specifies the symmetry
structure, and nblock ≥ 1 specifies the number of blocks. The next nblock+ 1 lines
each contain two integers and are of the form:

k ib(k)

defining the ib array. The next n lines each contain one integer and one real, and
are of the form:

k bk

defining the right hand side. The remaining lines all define matrix elements; each
consists of two integers and one real and are of the form:

i j Aij

The number of nonzeros is not directly specified; EOF (end-of-file) is treated as the
end of matrix elements. Diagonal matrix entries should be defined, even if they are
zero. If ispd = 1, then either aij or aji can be used to specify off-diagonal entries
(specifying both causes no problems, but increases the file size). Within each major
grouping (ib, right hand side, matrix) the entries can be specified in any order. All
lines are free format (blank characters are used to separate entries).

4.7 Matrix Generators.
The driver provides a few routines to generate families of matrices of varying orders,
for example to study the convergence of various multigraph strategies as a function
of n. At the moment, six different classes of matrices are available, each arising
from standard discretizations of simple PDE’s on uniform meshes. The mesh has
ngrid mesh points in each space dimension. The parameter mtxtyp specifies the
matrix to be generated. A brief summary of each class follows:

4.8. Journal Files. 31

• mtxtyp = 0 (star5): This is the usual 5-point star finite difference discretiza-
tion for −∆u on a uniform ngrid× ngrid square mesh. n = ngrid2; Aii = 4
for all diagonal entries, and Aij = −1 for all nonzero off-diagonal entries.

• mtxtyp = 1 (|star5|): This is the same as star5 except Aij = 1 for all nonzero
off-diagonal entries. This is not really a PDE discretization, but provides
a simple class of symmetric positive definite matrices which are NOT M-
matrices.

• mtxtyp = 2 (star7): This is the usual 7-point star finite difference discretiza-
tion for −∆u on a uniform ngrid× ngrid× ngrid cubic mesh in three space
dimensions. n = ngrid3; Aii = 6 for all diagonal entries, and Aij = −1 for all
nonzero off-diagonal entries.

• mtxtyp = 3 (stokes): This is the mini-element discretization, with static con-
densation of cubic bubble functions, for the Stokes equations on a uniform
ngrid×ngrid square mesh in two space dimensions. n = 3ngrid2. These ma-
trices are highly indefinite and correspond to stabilized saddle-point problems.
For this class, we choose nblock = 3, with the three blocks corresponding to
x-velocity, y-velocity, and pressure.

• mtxtyp = 4 (star9): This is the usual 9-point star finite element discretization
for −∆u on a uniform ngrid × ngrid square mesh. n = ngrid2; Aii = 8 for
all diagonal entries, and Aij = −1 for all nonzero off-diagonal entries.

• mtxtyp = 5 (|star9|): This is the same as star9 except Aij = 1 for all nonzero
off-diagonal entries. As with |star5|, this is not really a PDE discretization,
but provides a second simple class of symmetric positive definite matrices
which are not M-matrices.

4.8 Journal Files.
The j command causes atest to read its command strings from the file jrfile, rather
than accepting them interactively from the user. It is the only option available in
batch mode. A journal file is an ascii file containing a sequence of command
strings as described in Section 4.2. The symbol # appearing as the first character
in a line causes that line to be interpreted as a comment. When the end of the
file is reached atest returns to terminal or web browser mode and again accepts
commands interactively. If a q command is encountered in a journal file, atest will
exit.

When reading a journal file in web browser mode, if a graphics command (g
or m) is executed, for some devices atest will pause after the picture is drawn until
the click to continue popup is pressed. This allows time for the user to view the
picture before proceeding to the next command in the journal file.

32 MULTIGRAPH USERS’ GUIDE 1.0

4.9 Machine Dependent Routines.
During the initial installation of the package, the user must provide several machine
dependent routines associated with timing and graphics. Default versions of these
routines are provided with the package, which should work without modification in
many environments, and in any event can serve as a model for a new implementation.

Fortran modulemthdef is used throughout the package to specify the precision
of the floating point arithmetic to be used. The graphics routines mtxplt and gphplt
address the graphics output device through the routines pltutl, pframe, pline, and
pfill. These routines are documented in detail below.

4.9.1 Arithmetic Specification.

atest uses module mthdef to specify the precision of arithmetic to be used. In
particular, Below appears the default version of mthdef .

module mthdef

c

integer(kind=4), parameter :: isngl=4

integer(kind=4), parameter :: idble=8

integer(kind=4), parameter :: rsngl=4

integer(kind=4), parameter :: rdble=8

integer(kind=4), parameter :: rquad=16

c

integer(kind=4), parameter :: iknd=isngl

integer(kind=4), parameter :: rknd=rdble

c

end module

The parameters rsngl rdble and rquad define single, double, and quadruple
precision arithmetic, respectively. isngl and idble define standard and long integers.
These definitions should work with no change on most systems. The parameter rknd
can be set to rsngl for a single precision version of the code, to rdble for a double
precision version, or to rquad for quadruple precision version. iknd can be set to
isngl for standard or to idble for long integer arithmetic.

4.9.2 Timing Routine.

The timing routine cpu time is used to compute the execution times for subroutines
mginit and mg. If this routine is not available on a particular system, as suitable
substitute is generally available. cpu time is called only from the main program,
and not from any internal subroutines.

4.9.3 Graphics Interface.

The four device dependent routines in the graphics package are

subroutine pltutl(ncolor, red, green, blue)
subroutine pframe(iframe)

4.9. Machine Dependent Routines. 33

subroutine pline(x, y, z, n, icolor)
subroutine pfill(x, y, z, n, icolor)

Subroutine pltutl takes various actions depending on the value of the integer
ncolor. ncolor > 0 specifies initialization; in this case, ncolor denotes the number
of colors to be used and satisfies 2 ≤ ncolor ≤ mxcolr. red, green and blue are
vectors of length ncolor. The entries red(i), green(i), and blue(i), 1 ≤ i ≤ ncolor,
are floating point numbers on the interval [0, 1], corresponding to rgb values for the
ith color. Color number 1 is always white (red(1) = green(1) = blue(1) = 1.0),
and color number 2 is always black (red(2) = green(2) = blue(2) = 0.0). The rgb
values of the remaining entries depend on the picture to be drawn and the value of
mxcolr. pltutl should create a color map with the required colors, as these will be
referenced in future calls to pline and pfill. If pltutl is called with ncolor < 0, the
drawing is complete and any necessary post processing should be carried out (e.g.,
close the plot file).

The drawing space used by the graphics routines is always assumed to be either
the unit square (0, 1)× (0, 1) or the rectangle (0, 1.5)× (0, 1). For devices that have
a so-called z-buffer, the drawing space is either the unit cube (0, 1)× (0, 1)× (0, 1)
or the brick (0, 1.5) × (0, 1) × (0, 1). The graphics display itself is always viewed
as rectangular with aspect ratio 3/2, which is either a single rectangular frame or
three square frames. These frames are numbered 1 to 4 as illustrated in Figure 4.5.
The graphics routines write their output to various lists. A list consists of a frame,
and the attributes rotating/non-rotating. This attribute may not have realizations
for all graphics devices. The five available lists are summarized in Table 4.3.

When graphics is initiated for a certain list, say list k, subroutine pframe(k)
is called to indicate that subsequent calls of pline and pfill contain data to be
written to list k. pframe(−k) indicates that the output to the given list should
be terminated. By convention, graphics routines are allowed only one open list at
a time. Therefore, when pframe is invoked with a positive argument, the given
list should be opened and the mapping from the unit cube or brick to the actual
device coordinates for the given list should be computed. If the rotation attribute
is available, it should be set as specified in Table 4.3. When pframe is invoked with
a negative argument, the given list should be closed.

1 4

3

2

Figure 4.5. Frame definitions.

Subroutine pline has arguments x, y, z, n, and icolor. x, y, and z are vectors
of length n ≥ 2. The points (x(i), y(i), z(i)) lie in the unit cube or the brick (0, 1.5)×

34 MULTIGRAPH USERS’ GUIDE 1.0

list frame rotating

1 1 no
2 2 no
3 3 no
4 4 no
5 4 yes

Table 4.3. list specifications for pframe.

(0, 1)× (0, 1). The z coordinate is useful only for devices that have a z-buffer, and
can be ignored in other cases. icolor is an integer between 1 and ncolor, where
ncolor was the argument that initialized pltutl, indicating the color to be used.
pline should draw the given polyline (x(i), y(i), z(i)) to (x(i+ 1), y(i+ 1), z(i+ 1)),
1 ≤ i ≤ n− 1, with the specified color in the proper frame.

Subroutine pfill has arguments x, y, z, n, and icolor. x, y, and z are vectors
of length n ≥ 3. The points (x(i), y(i), z(i)) lie in the unit cube or the brick
(0, 1.5)× (0, 1)× (0, 1), and define an n-sided (planar) polygonal region with sides
(x(i), y(i), z(i)) to (x(i+1), y(i+1), z(i+1)) for 1 ≤ i ≤ n−1, and (x(n), y(n), z(n))
to (x(1), y(1), z(1)). icolor is an integer between 1 and ncolor, where ncolor was
the argument that initialized pltutl, indicating the color to be used. pfill should
color the specified polygon with the specified color in the proper frame.

idevce output device

0 web browser
1 XPM file

2 PostScript file

Table 4.4. Default graphics devices.

The default installation of the atest package includes several output graphics
devices. These are described in Table 4.4. PostScript and XPM are both ASCII
files. The parameter grfile specifies the file name. To allow one file name variable
to stand for multiple files, the file name grfile is scanned for the string figXXX.
If it is found, for the first actual file name, it is replaced by fig001, for the second
by fig002, and so on, allowing each actual file to receive a unique name. The file
name is also scanned for the string .ext and if found, it is replaced by .xpm or .ps as
appropriate. If the string .ext is not found, the appropriate extension is appended
to the existing name.

The web browser interface provides both 2D and 3D graphics. The canvas
and the type of graphics are specified through the parameter ipane, as described
in Table 4.5. The parameters mpane and gpane are associated with graphics sub-
routines mtxplt and gphplt, respectively, and specify the value of ipane to be used

4.9. Machine Dependent Routines. 35

ipane webgui canvas graphics type

0 upper right WebGL 3D
1 lower left WebGL 3D
2 lower right WebGL 3D
3 upper right Pixmap 2D
4 lower left Pixmap 2D
5 lower right Pixmap 2D

Table 4.5. ipane definitions.

with that routine.
WebGL graphics written to list = 5 can be manipulated with the mouse.

Mouse button one (left) can be used to rotate the image. Button two (middle) is
used to pan the image, and button three (right) can be used to zoom. On Apple
systems with a one button mouse, button two and three are simulated by pressing
the OPTION and COMMAND keys, respectively, simultaneously with the mouse.
On Windows one button systems the ALT and WINDOWS keys play a similar role.
In WebGL windows, the OPTION + I toggle referenced in Table 4.2 can display
the numerical values for the zoom, rotation matrix and translation.

Additionally, associated with each WebGL canvas are six buttons. These are
described in Table 4.6.

button effect

RESET return a zoomed/panned/rotated image to its initial state
FREE clear the image and free associated memory
SPIN spin image
POP place canvas in its own web browser tab
PUSH return canvas to its original location in the web browser tab
SAVE save image to a file
LOAD read image from a file

Table 4.6. WebGL graphics window buttons.

When the POP button is pushed, the graphics window is removed from the
array of graphics windows in the main web browser display, and appears in a sep-
arate tab. This is useful, as typically the size of the image increases. In the new
tab, the POP button is replaced by one labeled PUSH. When the PUSH button is
pressed, the canvas is returned to its previous location in the main display. The
SAVE button saves a binary file containing the image, which can later be restored
using the LOAD button. If the OPTION key is pressed simultaneously with the
SAVE button as indicated in Table 4.2, then the image is saved as an ASCII file.

If 3 ≤ ipane ≤ 5 then only the FREE button appears. These values of ipane

36 MULTIGRAPH USERS’ GUIDE 1.0

are useful to preview pixmaps, that can then later be saved as XPM files.

Bibliography

[1] Randolph E. Bank and Tony F. Chan, An analysis of the composite step
biconjugate gradient method, Numerische Mathematik, 66 (1993), pp. 295–319.

[2] Randolph E. Bank and R. Kent Smith, General sparse elimination requires
no permanent integer storage, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 574–
584.

[3] , An algebraic multilevel multigraph algorithm, SIAM J. on Scientific Com-
puting, (to appear).

[4] , Multigraph algorithms based on sparse gaussian elimination, in Thirteenth
International Symposium on Domain Decomposition Methods for Partial Dif-
ferential Equations, Domain Decomposition Press, Bergen, to appear.

[5] Christopher Deotte, Webgui: A web browswer base graphical user interface
for scientific software users’ guide, tech. report, Department of Mathematics,
University of California at San Diego, 2017.

[6] S. C. Eisenstat, M. C. Gursky, M.H. Schultz, and A.H. Sherman, Al-
gorithms and data structures for sparse symmetric Gaussian elimination, SIAM
J. Sci. Statist. Comput., 2 (1982), pp. 225–237.

[7] Wolfgang Hackbusch, Multigrid Methods and Applications, Springer-Verlag,
Berlin, 1985.

31

	Data Structures
	Overview.
	Matrix Data Structures.
	The ka Data Structure.

	Multigraph Routines
	Overview.
	Subroutine mginit.
	Subroutine mgilu.
	Subroutine mg.
	Subroutines cycle, mtxmlt and perm.

	Graphics
	Overview.
	Subroutine gphplt.
	Subroutine mtxplt.

	Test Driver
	Overview.
	Terminal Mode.
	Web Browser Mode.
	Batch Mode.
	Array Dimensions and Initialization.
	Matrix Files.
	Matrix Generators.
	Journal Files.
	Machine Dependent Routines.
	Arithmetic Specification.
	Timing Routine.
	Graphics Interface.

	Bibliography

