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Abstract. A two-level iterative method for solving linear systems arising from finite element
approximations of self-adjoint elliptic boundary value problems is defined and analyzed. Under
relatively weak assumptions on the finite element space and differential problem, the number of
iterations of this method that are required to reduce the error by a given factor can be bounded
independently of the number of unknowns.

1. Introduction. In this work, we analyze a two-level iterative scheme for solv-
ing the large sparse linear systems which arise in connection with finite element pro-
cedures for solving self-adjoint elliptic boundary value problems. We take as our
prototype the Neumann problem

−∇ · (a∇ψ) + bψ = f in Ω,(1.1)

∂ψ

∂n
= 0 on ∂Ω,

where Ω is a polygonal domain in IR2. We assume that a and b are measurable and
that there exist positive constants a, ā, b, and b̄ such that

a ≤ a(x) ≤ ā, b ≤ b(x) ≤ b̄, for x ∈ Ω̄.

Our arguments are applicable, with only minor modifications, to the associated
Dirichlet problem

−∇ · (a∇ψ) + bψ = f in Ω,(1.2)

ψ = 0 on ∂Ω,

and we comment on this extension later.
For φ, χ ∈ H1(Ω), let

a(φ, χ) =

∫
Ω

a∇φ · ∇χ+ bφχ dx(1.3)

denote the energy inner product associated with the elliptic operator (1.1). Then the
Neumann problem can be posed in weak form as follows: Find ψ ∈ H1(Ω) satisfying

a(ψ, φ) = (f, φ)(1.4)

for all φ ∈ H1(Ω), where (·, ·) denotes the usual L2(Ω) inner product. It is well known
[16] that there exists a unique solution ψ in H1(Ω) for any given f in the dual of
H1(Ω).

LetM be an N -dimensional subspace of H1(Ω). In finite element procedures,M
is typically a space of piecewise polynomials associated with a triangulation T of Ω.
The finite element approximation u ∈M of the solution ψ of (1.4) is given by

a(u, φ) = (f, φ), φ ∈M.(1.5)
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Once a suitable basis forM has been selected, (1.5) represents an N ×N system
of linear equations to be solved. Usually N is large, and the matrix associated with
(1.5) is sparse.

Our two-level scheme for solving (1.5) involves the decomposition of the spaceM
as the direct sum M = V ⊕W . This decomposition induces a corresponding block
iterative method for the linear system. We show in Section 2 that under rather weak
assumptions about M and the decomposition, the two-level scheme converges at a
rate bounded less than one independent of N . In particular, the global convergence of
the two-level scheme depends only on the local properties of the triangulation T and
the space M. Our convergence proof does not require a quasi-uniform triangulation,
but only a condition on the allowable set of geometries for each individual triangle.
The grid may be coarse in some places and refined in others, as long as the transition
from coarse to fine triangles is made in a controlled fashion.

In Section 3 we consider some simple extensions and present some examples of
classes of spaces to which the method can be successfully applied. Our two-level
scheme can be generalized to a k-level scheme for k > 2. However, the rate of
convergence which our analysis would predict depends on N if k does. We, as well
as several others [2, 4, 12, 14], have obtained for various k-level schemes convergence
results comparable to our two-level scheme. These multi-level schemes are relatively
complicated, and the requirements of the elliptic equation and the spaceM are more
severe; e.g., the requirement that all the meshes are quasi-uniform. When the domain
has sharply re-entrant corners the work estimates for multi-grid methods are worse
than in the case of, say, a convex domain. Since the analysis of the two-level scheme
does not rely on elliptic regularity, the work estimates are independent of the geometry
of the domain.

While the asymptotic analysis of this method is not as promising as that of multi-
grid methods, we feel it may be useful in practice. In particular, for examples in which
very many finite elements are required to define the geometry of the domain, the power
of the multi-grid methods is hard to utilize since little refinement of the defining mesh
may be needed to achieve the desired accuracy. In Section 3 we see that in typical
applications of this two-level process, the work involved in matrix factorization will
be reduced by a factor of eight or more when compared with the direct solution of
the full problem.

2. The Two-Level Iteration. Let T be a triangulation of Ω. For each triangle
T ∈ T , denote by hT the diameter of the circumscribing circle for T , and by dT the
diameter of the inscribing circle divided by hT . Let h = maxT∈T hT . We let d0 be
a positive constant such that d0 ≤ dT for all T ∈ T . It is only through d0 that the
shape regularity of T will enter the constants in our estimates.

Let S denote the set of triangles T having hT = 1, d0 ≤ dT , and one vertex at
the origin. Designate a particular triangle Tr ∈ S as the reference triangle; Tr can be
mapped onto any triangle T ∈ S using a linear transformation. Let A be the set of
linear transformations in correspondence with triangles in S:

A = {AT |AT is linear, AT (Tr) = T ∈ S}.

Any triangle in T can be generated by scaling and translating a triangle in S.
Let M be an N -dimensional finite element subspace of H1(Ω) defined over the

triangulation T . We decompose M as the direct sum M = V ⊕W , where V and W
are non-trivial subspaces. For u ∈ M, we systematically use u = v + w where v ∈ V
and w ∈ W . Denote by uT = vT + wT , VT , WT the restrictions of u, V , and W ,
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respectively, to T ∈ T . Let Vr and Wr denote reference spaces of functions defined
on Tr. We require that V and W satisfy the following conditions for all T ∈ T :

(A1) If uT is constant, then vT = 0.
(A2) The space VT contains constant functions.
(A3) There exists a mapping BT , consisting og a linear map AT ∈ A, followed by a

scaling and translation, such that BT carries Tr onto T and that B−∗T defined
by B−∗T (z) = z ◦ B−1

T is an onto map of Vr to VT and Wr to WT .

In Section 3 we give examples of spaces satisfying these hypotheses.
Consider the following iteration for approximating for approximating the solution

u of (1.5): Let u0 ∈ M be given, and define a sequence uk = vk + wk, where vk ∈ V
and wk ∈W , by

a(vk+1 − vk, χ) = (f, χ)− a(uk, χ), χ ∈ V,(2.1)

a(wk+1 − wk, χ) = (f, χ)− a(uk, χ), χ ∈W.(2.2)

The sequence {uk} will be seen to converge to u of (1.5); further, if we have a family
of spaces {M} corresponding to various triangulations of Ω, the rate of convergence
(in the energy norm associated with a(·, ·)) will be independent of the particular space
M, provided Vr, Wr and d0 are the same for all M. The iteration (2.1)-(2.2) is easy
to define and analyze, but the second step can be awkward to carry out. We indicate
in Section 3 how to replace (2.2) by a more easily computable process.

Let {φi}Ni=1 be a basis for M such that

V = span {φi}NV

i=1 , W = span {φi}Ni=NV +1 .(2.3)

Define the symmetric, positive definite N × N matrix M by Mij = a(φj , φi). The
solution of (1.5) then reduces to solving the linear system of equations for U =
(U1, . . . , UN )T

MU = F,(2.4)

where Fi = (f, φi) and u =
∑N

i=1 U
iφi. Corresponding to the decomposition M =

V ⊕W , the matrix M can be partitioned as

M =

(
A C
CT B

)
(2.5)

where A is NV × NV with Aij = a(φj , φi) and B is (N − NV ) × (N − NV ) with
Bij = a(φNV +j , φNV +i). The iteration (2.1)-(2.2) can then be generalized to the
following:

M̂(Uk+1 − Uk) = ω(F −MUk), k = 0, 1, . . . ,(2.6)

where U0 is given,

M̂ =

(
A 0
0 B

)
,(2.7)

and ω is a scalar relaxation parameter (in (2.1)-(2.2), ω = 1).
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The energy norm associated with a(·, ·) is denoted by ||| · |||, and the M -norm of
the vector x is defined by ||x||2M = xTMx. For the particular M in (2.4), ||x||2M =
a(z, z) = |||z|||2, where z ∈ M is the function associated with the coefficients x. To
analyze the convergence of (2.6), we use the following theorem, whose proof can be
found in [8, 9, 11].

Theorem 2.1. Let M and M̂ be symmetric and positive definite. Let µ1 and
µ2 be positive constants such that, for all x 6= 0, xTMx/xT M̂x ∈ [µ1, µ2]. Then
for 0 ≤ ω ≤ 2/µ2, the sequence {Uk} defined in (2.6) converges to M−1F . Further,
for ω = 2/(µ1 + µ2), the M -norm of the error is reduced by a factor of at least
(µ2 − µ1)/(µ2 + µ1) in each iteration.

To estimate the convergence of (2.6), we are led to study the Rayleigh quotient

xTMx

xT M̂x
=
|||v + w|||2

|||v|||2 + |||w|||2
(2.8)

where v =
∑NV

i=1 xiφi ∈ V and w =
∑N

i=NV +1 xiφi ∈W .
Lemma 2.2. Let M = V ⊕W satisfy assumptions A1-A3. Then there exists a

positive number γ, 0 ≤ γ < 1, γ = γ(ā/a, b̄/b, d0, Vr,Wr), such that the strengthened
Cauchy inequality

|a(v, w)| ≤ γ|||v||| |||w|||(2.9)

holds for all v ∈ V and w ∈W .
Proof. It is sufficient to prove (2.9) triangle by triangle for T ∈ T ; to see this,

note that if

|a(v, w)T | ≤ γT |||v|||T |||w|||T ,(2.10)

where a(·, ·)T denotes the restriction of a(·, ·) to T and ||| · |||T the associated norm,
then

|a(v, w)| =

∣∣∣∣∣∑
T

a(v, w)T

∣∣∣∣∣
≤
∑
T

γT |||v|||T |||w|||T

≤ γ

(∑
T

|||v|||2T

)1/2(∑
T

|||w|||2T

)1/2

,

where γ = maxT γT .
We prove (2.10) by showing the existence σT and νT satisfying

|a1(v, w)| =
∣∣∣∣∫

T

a∇v · ∇w dx
∣∣∣∣ ≤ νT |||v|||1,T |||w|||1,T ,(2.11)

|a0(v, w)| =
∣∣∣∣∫

T

bvw dx

∣∣∣∣ ≤ σT |||v|||0,T |||w|||0,T ,(2.12)

where ||| · |||i,T is the (semi) norm associated with ai(·, ·), i = 0, 1. If (2.11)-(2.12) hold,
then for γT = max(σt, νT ),

a(v, w)2
T = (a0(v, w) + a1(v, w))

2
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≤ γ2
T (|||v|||0,T |||w|||0,T + |||v|||1,T |||w|||1,T )

2

≤ γ2
T

(
|||v|||20,T + |||v|||21,T

) (
|||w|||20,T + |||w|||21,T

)
(2.13)

= γ2
T |||v|||2T |||w|||2T .

We now consider the proof of (2.11). Note that ||| · |||1,T defines a norm on WT ,
but only a semi-norm on VT , since |||c|||1,T = 0 for any constant c. However, it suffices
to consider only those functions in VT with average value zero. Thus let V ′T = {v ∈
VT |

∫
T
v dx = 0}. Then

a1(v, v, ) = a1(v − c, v − c); a1(v, w) = a1(v − c, w)(2.14)

for all v ∈ Vt, w ∈ WT , and c = 1
|T |
∫
T
v dx ∈ VT . In view of (2.14), we need prove

(2.11) only for v ∈ V ′T and note ||| · |||1,T defines a norm on V ′T ⊕WT .

A simple homogeneity argument showns νT is independent of hT , hence h. Let
x̂ = (x − x0)/hT where x0 is a vertex of T . Under this change of variables (2.11)
becomes∣∣∣∣∫

T̂

â∇v̂ · ∇ŵ dx̂
∣∣∣∣ ≤ νT (∫

T̂

â∇v̂ · ∇v̂ dx̂
)1/2(∫

T̂

â∇ŵ · ∇ŵ dx̂
)1/2

,(2.15)

T̂ ∈ S, v(x) = v̂(x̂), w(x) = ŵ(x̂), and a(x) = â(x̂). In view of (2.15) and assumptions
A1-A3, we can restrict attention to the reference triangle Tr, the reference spaces Vr
and Wr, and the compact set of linear transformations A. Let B ∈ A be the linear
map taking Tr to T̂ . Then, with a∗(x) = â(Bx̂), w∗(x) = ŵ(Bx̂), v∗(x) = v̂(Bx̂),∫

T̂

â∇v̂ · ∇ŵ dx̂ = |detB|
∫
Tr

a∗(B−T∇v∗) · (B−T∇w∗) dx.(2.16)

Because both Tr and T̂ are in S, there is a positive constant κ = κ(d0) such that,
for all non-zero z ∈M′r ≡ V ′r ⊕Wr,

aκ−1 ≤ 〈z, z〉
[z, z]

≤ āκ,(2.17)

where 〈·, ·〉 is the inner product on the right-hand side of (2.16) and [·, ·] is the corre-
sponding inner product with B =identity and a∗ ≡ 1. It now follows from Lemma 4.1
in the Appendix that the angle θ between V ′r and Wr, as determined using the 〈·, ·〉
inner product, is bounded away from zero. In fact if Θ is the corresponding angle
with respect to the [·, ·] inner product, then,

sin θ ≥
(
κ2ā

a

)−2

sin Θ.(2.18)

Since Θ is positive and depends only on the spaces Vr and Wr, we see that νT < 1
where cos θ < νT , can be taken to depend only on d0, ā/a, Vr and Wr.

The argument used to prove (2.12) is similar but one works directly with VT
rather than V ′T .

Note that if a(x) is Lipschitz in each triangle T , then the ratio ā/a in (2.18) can
be replaced by 1 + chT ; a similar modification can be made in the estimation of σT .
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Theorem 2.3. Let M and M̂ be defined by (2.5) and (2.7), respectively. Then
there exists a real number γ, 0 ≤ γ < 1, γ = γ(ā/a, b̄/b, d0, Vr,Wr), such that, for all
x 6= 0,

1− γ ≤ xTMx

xT M̂x
≤ 1 + γ(2.19)

Thus the iterations (2.1)-(2.2) and (2.6) converge; the optimal value of ω in (2.6) is
one, and the energy norm of the error is reduced by at least a factor of γ per iteration.

Proof. From (2.8), we see that (2.19) is equivalent to

1− γ ≤ |||v + w|||2

|||v|||2 + |||w|||2
= 1 +

2a(v, w)

|||v|||2 + |||w|||2
≤ 1 + γ(2.20)

for v ∈ V and w ∈ W . But (2.20) is an immediate consequence of Lemma 2.2. The
remaining conclusions follow directly from Theorem 2.1.

Note that if we have a family of triangulations with h → 0, for which d0, Vr
and Wr are fixed, then γ does not depend on h. Dirichlet boundary conditions can
be treated using the two-level scheme just as easily as Neumann. If we were solving
the problem associated with (1.2), then we would require assumption A2 only for
triangles T whose closures do not meet ∂Ω. The proof of (2.11) is simplified for
boundary triangles, since the reduction to V ′T is not necessary.

3. Extensions and Examples. We can refine the iterative process of Section
2 in many ways. For example, we can consider replacing the block Jacobi iteration
(2.6) with a corresponding two-level Gauss-Seidel iteration [17]

M̄(Uk+1 − Uk) = F −MUk,(3.1)

where

M̄ =

(
A 0
CT B

)
.(3.2)

Letting uk+1/2 = vk+1 + wk, the analogues of (2.1)-(2.2) are

a(vk+1 − vk, χ) = (f, χ)− a(uk, χ), χ ∈ V,(3.3)

a(wk+1 − wk, χ) = (f, χ)− a(uk+1/2, χ), χ ∈W.(3.4)

Let εk and δk denote the errors in vk and wk, respectively. Then from (3.3)-(3.4)
we have

a(εk+1 + δk, χ) = 0, χ ∈ V,(3.5)

a(εk+1 + δk+1, χ) = 0, χ ∈W,(3.6)

Taking χ = εk+1 ∈ V in (3.5), and using Lemma 2.2, we have

|||εk+1||| ≤ γ|||δk|||.(3.7)

Similarly, taking χ = δk+1 ∈W in (3.6) yields

|||δk+1||| ≤ γ|||εk+1|||.(3.8)
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Combining (3.7)-(3.8) we get

|||εk+1||| ≤ γ2|||εk|||,(3.9)

|||δk+1||| ≤ γ2|||δk|||.

Since the overall error at the k-th step is εk + δk, we have from Lemma 2.2 and (3.9)

|||εk + δk|||2 ≤ (1 + γ)
(
|||εk|||2 + |||δk|||2

)
≤ γ4k(1 + γ)

(
|||ε0|||2 + |||δ0|||2

)
(3.10)

≤ γ4k

(
1 + γ

1− γ

)
|||ε0 + δ0|||2.

Asymptotically, this implies an error reduction of γ2 per iteration.
We could also consider the use of (2.1)-(2.2) in connection with a conjugate gra-

dient procedure [1, 6, 7]; this yields an error reduction of at least γ/(1 +
√

1− γ2)
per iteration.

A more subtle refinement involves the concept of inner iterations. We note that
(2.6) requires the solution of linear systems involving the matrices A and B at each
step, which may be relatively costly in terms of numerical computations. This is
especially true with respect to linear systems involving the matrix B. For example,
suppose M is the space of C0 piecewise polynomials of degree s > 1; we can take V
to be the space of C0 piecewise linear polynomials. The dimension of V is then NV ≈
N/s2. Under these conditions, it may be reasonable to solve linear systems involving
A directly, using sparse matrix methods based on Gaussian elimination [10, 13, 15]. It
is important, however, to devise efficient methods for solving, approximately, Bx = y,
which can be incorporated in a convenient fashion into the two-level scheme.

Let B = E − (E −B) be a splitting of B and define G = I −E−1B. We assume
limk→∞Gk = 0. We solve, approximately, Bx = y using the m-step iteration

E(xk+1 − xk) = y −Bxk, k = 0, 1 . . . ,m− 1,(3.11)

for a fixed value of m and some initial guess x0. A simple induction argument estab-
lishes that (3.11) is equivalent to solving

B(I −Gm)−1xm = B(I −Gm)−1Gmx0 + y.(3.12)

We shall analyze the two level scheme (2.6) using the inner iteration (3.11). If
the initial guess for inner iteration is taken as the latest estimate of the solution
(corresponding to x0 = 0 in (3.11)-(3.12)), the two level scheme with inner iterations
may be summarized as

M ′(Uk+1 − Uk) = ω(F −MUk),(3.13)

where

M ′ =

(
A 0
0 B(I −Gm)−1

)
.

Note that if E is symmetric, then so is M ′.
The functions in the space W are all quite oscillatory, since V contains local

constants. Thus the solution of the equations involving B should be easy, because
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on such an oscillatory space, the differential operator behaves very much like a large
multiple of the identity; this is made precise below.

Suppose that there is a basis {Φj}Jj=1 for Wr such that, for each triangle T ∈ T ,
and for each basis function φi ∈W that is nontrivial on T , φi restricted to T is given
by B−∗Φj for some j = 1, . . . , J , where B−∗ is defined in assumption A3. This is
a very natural assumption in the case of nodal finite elements for which the nodal
parameters are function values. Under this assumption we have the following lemma.

Lemma 3.1. Let D = diag(Bii) be the diagonal matrix with the same diagonal
as B. Then there exist positive constants µ1 and µ2, depending on ā/a, b̄/b, d0 and
{Φj}Jj=1, such that for x 6= 0

µ1 ≤
xTBx

xTDx
≤ µ2.(3.14)

Proof. We first note that

xTBx

xTDx
=

|||w|||2(∑N
i=NV +1 |||wi|||2

) ,(3.15)

where wi = xi−NV
φi and w =

∑N
i=NV +1 wi ∈W . Next observe that it is sufficient to

prove (3.14) triangle by triangle; if

µ1

∑
i

|||wi|||2T ≤ |||w|||2T ≤ µ2

∑
i

|||wi|||2T ,(3.16)

then (3.14) follows by summing over all T ∈ T . The homogeneity argument used in
proving (2.11)-(2.12) shows µ1 and µ2 do not depend on hT . Changing variables as
in (2.15)-(2.16), and using the equivalence of four particular norms on Wr gives the
result. When treating the gradient terms, the equivalence of norms on Wr is used
only for the norms [∑

cjφj ,
∑

cjφj

]1/2

,
{∑

c2j [φj , φj ]
}1/2

,

where [·, ·] is defined after (2.17).
From Lemma 3.1 and Theorem 2.1, it follows that the iteration (3.13) converges

if E = D/ω̃, 0 < ω̃ < 2/µ2; in particular note this is true even in the case of only
one inner iteration (m = 1). It may be advantageous, however, to take m > 1, if the
increased cost per outer iteration is offset by a reduction in spectral radius sufficient
to render a net saving in the cost of solving the problem.

If w =
∑N

i=Nv+1 ciφi, frequently ci correspond to various derivatives of w eval-
uated at grid points. In such a case, we can set W = W1 ⊕W2 ⊕ . . . ⊕W`, where
each space Wi can be associated with a particular derivative or set of derivatives.
This decomposition of W induces block iterative methods based on the corresponding
partition of B. Methods of this type can be analyzed as above.

We now return to the example of C0 piecewise polynomials of degree ≤ s and
consider the computational aspects of the two-level scheme. As above take V to be
the space of C0 piecewise linear polynomials. Then the work for factoring A using
a good ordering algorithm, such as minimal degree, will be O(N3/2/s3). The work
involved in factoring A is then 1/s3 times the work needed to factor the matrix Ã that
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would result if piecewise linear functions were used on triangles formed by dividing
each of the given triangles into s2 congruent ones. Since the matrix M has even more
nonzeroes that the matrix Ã, the factorization of A is less than 1/s3 times the work
to factor M .

Because the factorization is the leading order term in the work estimate, it is
worthwhile putting it in perspective by considering an example. Foe s = 3, multipli-
cation by M takes about 8.5N multiplies, and using a nested dissection ordering (on a
regular grid) the factorization of A takes about 9.5(N/9)3/2 multiplications [10]. Thus
the factorization is as much work as two multiplications by M when N is 2300. For
many practical problems, 2300 unknowns using piecewise cubics provides far greater
accuracy than is needed.

We now turn to the consideration of the two-level scheme for the piecewise linear
case (s = 1). We can still apply the two-level scheme through an appropriate choice
of basis functions. Suppose T2h is a triangulation of Ω; construct T ≡ Th by dividing
each triangle in T2h into four congruent triangles by pairwise connecting the midpoints
of the edges. Then M ≡Mh = M2h ⊕W , where M2h is the space of C0 piecewise
linear polynomials over T2h, and W is the span of the usual nodal basis functions
associated with nodes in Th which are not in T2h. The two-level iteration can now be
applied withM2h playing the role of V , since the restrictions A1-A3 will be satisfied
with respect to T2h.

It is now a small step, at least conceptually, to generalize to more than two levels.
Suppose that T2h has arisen from a refinement of T4h; then we can define V ≡M4h,
Z as the span of the nodal basis functions corresponding to nodes in T2h which are
not in T4h, and W as above. Then Mh =M2h ⊕W = V ⊕ Z ⊕W and we obtain a
simple three-level iteration, for uk = vk + zk + wk, vk ∈ V , zk ∈ Z, wk ∈W :

a(vk+1 − vk, χ) = (f, χ)− a(uk, χ), χ ∈ V,
a(zk+1 − zk, χ) = (f, χ)− a(uk, χ), χ ∈ Z,(3.17)

a(wk+1 − wk, χ) = (f, χ)− a(uk, χ), χ ∈W.

This is a block Jacobi iteration with three blocks; to obtain convergence results using
Theorem 2.1, we must bound the Rayleigh quotient |||v+z+w|||2/(|||v|||2 +|||z|||2 +|||w|||2).
An easy bound can be obtained using Lemma 2.2; noting that

|||v + z + w|||2

|||v|||2 + |||z|||2 + |||w|||2
=

(
|||v + z + w|||2

|||v + z|||2 + |||w|||2

)(
|||v + z|||2 + |||w|||2)

|||v|||2 + |||z|||2 + |||w|||2

)
we have

(1− γ)2 ≤ |||v + z + w|||2

|||v|||2 + |||z|||2 + |||w|||2
≤ (1 + γ)2.(3.18)

While the obvious extension of this argument will work for any fixed number
of levels, one would like the number of levels to depend on N . In this case the
above analysis will fail to show that the rate of convergence is bounded less than one
independent of h.

However, such results have been obtained for multilevel schemes [2, 4, 5, 12,
14]. To do so, the concept of simple block iteration has been abandoned in favor of
recursively defined algorithms. Furthermore, all presently known proofs explicitly or
implicitly require some elliptic regularity, that the meshes Thj

all be quasi-uniform,
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and that the spaces Mhj
satisfy certain approximation properties more severe than

A1-A3.
The results of Section 2 can be extended, under appropriate hypotheses (corre-

sponding to A1-A3), to other types of finite element spaces, e.g., those defined on
rectangles, quadrilaterals, macro-triangles, or classes of elements with curved edges.
For example, we briefly consider the case of tensor product spaces defined on rect-
angles. For the tensor product C0 quadratic space, we can take V to be the tensor
product C0 linear space. The natural basis induced by this choice of V and be asso-
ciated with the derivatives wxx, wyy and wxxyy of a function w ∈ W . This induces
natural block 3× 3 inner iterations of the form (3.11).

The case of tensor product C1 (Hermite) cubics is similar. Here we work with
the natural interpolation basis; the space V can then be taken as the span of the
value-tensor-value basis functions. Basis functions in W can be associated with the
derivatives wx, wy and wxy of w ∈ W . Again this induces natural block 3 × 3 inner
iterations. The tensor product C0 linear case can be treated in an analogous fashion
to the linear/triangle case described above. For a more complete discussion of the
tensor product case see [3].

Finally, we remark that the two-level scheme is applicable to three-dimensional
problems; here its advantages can be more fully exploited. Consider the case of C0

piecewise polynomials of degree s > 1 over a triangulation based on tetrahedrons.
Here, as before, V can be taken as the space of C0 piecewise linear polynomials, but
now NV ≈ N/s3, so that the cost of solving the linear system involving A is relatively
less significant than in the case of two-dimensional problems.

4. Appendix. In Section 2, we used the fact that if two inner products give rise
to comparable norms, then the angles measured by those norms are also comparable.
This follows from the following lemma.

Lemma 4.1. Suppose 〈·, ·〉 and [·, ·] are inner products that define norms | · | and
|| · ||, respectively, on a space X. Suppose that there exist µ and µ̄ such that, for all
nonzero z ∈ X,

0 < µ ≤ 〈z, z〉
[z, z]

≤ µ̄.(4.1)

For any non-trivial x, y ∈ X, let

β =
〈x, y〉
|x| |y|

, γ =
[x, y]

||x|| ||y||
.(4.2)

Then

1− β2 ≥
(
µ

µ̄

)4

(1− γ2).(4.3)

Proof. We can assume ||x|| = ||y|| = 1. Note that

1− β2 = (1 + β)(1− β)

=
1

4

∣∣∣∣ x|x| +
y

|y|

∣∣∣∣2 ∣∣∣∣ x|x| − y

|y|

∣∣∣∣2
=

1

4|x|4
|x+ σy|2|x− σy|2,
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where σ = |x|/|y|. From (4.1) we see that

1− β2 ≥ 1

4

(
µ

µ̄

)2

||x+ σy||2||x− σy||2.(4.4)

This inequality and the relations

||x± σy||2 = 1 + σ2 ± 2σγ(4.5)

imply that

1− β2 ≥
(
µ

µ̄

)2{
σ2(1− γ2) +

(1− σ2)2

4

}
.(4.6)

Discard the (1− σ2)2/4 term in (4.6) to see that

1− β2 ≥
(
µ

µ̄

)2

σ2(1− γ2).(4.7)

The conclusion (4.3) now follows since σ ≥ µ/µ̄.
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