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A multigrid method is presented for the numerical solution of the linearized Poisson-Boltzmann equation arising in
molecular biophysics. The equation is discretized with the finite volume method, and the numerical solution of the
discrete equations is accomplished with multiple grid techniques originally developed for two-dimensional interface
problems occurring in reactor physics. A detailed analysis of the resulting method is presented for several computer
architectures, including comparisons to diagonally scaled CG, ICCG, vectorized ICCG and MICCG, and to SOR
provided with an optimal relaxation parameter. Our results indicate that the multigrid method is superior to the
preconditioned CG methods and SOR, and that the advantage of multigrid grows with the problem size.

1 Introduction

Continuum models of molecules in ionic solutions, first
proposed in 1923 by Debye and Hückel [1], are increas-
ingly important tools for studying electrostatic interac-
tions, and are now being incorporated into molecular
dynamics simulators [2, 3, 4]. Because the electrostatic
behavior contributes to the structure, binding proper-
ties, as well as the kinetics of complex molecules such
as proteins, modeling these interactions accurately is an
important problem in biophysics.

The fundamental equation which arises in the Debye-
Hückel theory is a three-dimensional second order non-
linear elliptic partial differential equation describing the
electrostatic potential Φ(r) at a field position r. In the
case of a 1 : 1 electrolyte, this equation can be written
as

−∇ · (ε(r)∇Φ(r)) + κ̄2

(

kBT

ec

)

sinh

(

ecΦ(r)

kBT

)

= 4π

Nm
∑

i=1

qiδ(r − ri) (1)

where the permitivity ε(r) takes the values of the ap-
propriate dielectric constants in the different regions of
the model (the value εm in the molecular region, and
a second value εw in both the solution region and an
ion-exclusion layer surrounding the molecule), and the
modified Debye-Hückel parameter κ̄ =

√
εwκ, where κ,

the usual Debye-Hückel parameter, is proportional to the
ionic strength of the solution (the modification makes
κ̄ dielectric independent). The molecule is represented
by Nm point charges qi at positions ri, yielding the
delta functions in (1), and the constants ec, kB , and
T represent the charge of an electron, Boltzmann’s con-
stant, and the absolute temperature. Equation (1) is re-
ferred to as the nonlinear Poisson-Boltzmann equation

(NPBE), and it is usually approximated by the linearized

Poisson-Boltzmann equation (LPBE):

−∇ · (ε(r)∇Φ(r)) + κ̄2Φ(r) = 4π

Nm
∑

i=1

qiδ(r − ri). (2)

Analytic solutions to the LPBE and NPBE are quite
complex, even in the few simple situations for which they
exist [5]. Due to advances in computational algorithms
and hardware in recent years, several investigations into
the efficiency and accuracy of numerical methods for the
LPBE have appeared [6, 7, 8, 3, 9, 10], while numerical
solution of the NPBE remains largely unstudied (see [8]
for a discussion). These studies generally involve a finite
volume discretization of (2) with approximated bound-
ary conditions, followed by iterative solution of the dis-
crete equations with a relaxation or preconditioned con-
jugate gradient method. (Exceptions are the studies of
Yoon and Lenhoff [10] and Juffer et al. [7], in which inte-
gral equation formulations of the LPBE is used.) In this
paper, the usual finite volume discretization approach is
taken, as in [6, 8], and a multigrid method is employed
for solution of the discrete equations.

1.1 Outline

Below, a description of the multigrid approach is given,
and the difficulties presented by discontinuities occur-
ring in the NPBE and the LPBE are discussed. Meth-
ods currently in use for the LPBE are then reviewed, in-
cluding conjugate gradient methods and successive over-
relaxation. Numerical results and performance statistics
comparing the multigrid method to methods currently in
use (and some additional methods) are then presented
for solution of the LPBE, in the case of an acetamide
molecule in water. The results are then summarized and
some conclusions are drawn.

2 Multigrid Methods

Multigrid methods are highly efficient numerical tech-
niques for solving the algebraic equations resulting from
the discretization of a partial differential equation on a
fine mesh by using auxiliary problems on coarser meshes.
They are provably optimal order for certain classes of
problems[11, 12, 13], and are also extremely effective
for many other problems. Detailed descriptions of these
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methods, for both linear and nonlinear elliptic problems,
can be found in the early paper by Brandt[14], or in the
extensive text on the subject by Hackbusch[13].

2.1 The Two Grid Algorithm

To explain the multigrid approach, consider a second or-
der linear elliptic equation Lu = f on domain Ω ⊂ R

d.
Given an appropriately accurate discretization Lhuh =
fh on a mesh Ωh for some mesh parameter h, with the
nonsingular matrix Lh defined by either finite differ-
ences, finite volumes, or finite elements, a sequence of
problems LHuH = fH on coarser meshes ΩH may be
defined in a number of ways. One approach, termed
Galerkin coarsening due to its connection to finite ele-
ment theory, is defined as:

LH = IH
h LhIh

H , (3)

where the linear operators IH
h and Ih

H are restriction

and prolongation operators, respectively, which map
grid functions between the fine and coarse grid function
spaces.

With two such discretizations, a two-grid correction

scheme[14] or linear multigrid method[13] can be used to
solve the underlying continuous problem. Given current
approximation uj

h to the discrete solution uh at the jth

iteration, the method computes a correction to uj
h from

the error equation

Lhej
h = Lh(uh − uj

h) = fh − Lhuj
h = rj

h, (4)

where ej
h = uh − uj

h is the (unknown) discrete error and

rj
h is the (computable) discrete residual. If the error

is smooth, it can be represented well on a coarse grid.
Therefore, a relaxation or smoothing iteration

Sh(uj
h, fh) = Shuj

h + Thfh

is first applied for ν iterations, denoted by Sν
h , to smooth

the error in the approximation. Equation (4) is then
solved on the coarse grid, and the result is transferred
back to the fine grid. The resulting two-grid iteration is:

Let u0
h be an initial approximation on Ωh.

Do j = 0, 1, 2, . . . until convergence:

1. Pre-smooth: ūh = Sν1

h (uj
h, fh)

2. Restriction: rH = IH
h (fh − Lhūh)

3. Correction: eH = L−1

H rH

4. Prolongation: ¯̄uh = ūh + Ih
HeH

5. Post-smooth: uj+1

h = Sν2

h (¯̄uh, fh)
End Do.















































(5)

2.2 Multigrid And Nested Iteration

The multigrid method[13] or V-cycle[14] begins with the
fine grid, performs the two-grid method successively on

V-Cycle W-Cycle Nested Iteration
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Figure 1: The V-cycle, the W-cycle, and nested itera-
tion.

each level until a sufficiently coarse grid is reached (for
which the cost of complete solution is negligible), and cy-
cles back to the fine grid. The full multigrid method[14]
or nested iteration technique[13] begins with the coarse
grid, prolongates the solution to a finer grid, performs
a V-cycle, and repeats the process, until a V-cycle is
performed on the finest grid. Another variation is the
W-cycle, in which more than one V-cycle is performed
on each grid level. Each algorithm has particular ad-
vantages in various situations[13], and are depicted in
Figure 1.

2.3 Discontinuous Coefficients

In the case of elliptic problems with smooth coefficients,
a red/black Gauss-Seidel smoothing method, linear grid
transfer operators, finite volume discretization on all
grids, and direct or iterative solution on the coarse grid,
combine to yield a very efficient algorithm[15, 16].

However, in the case of interface problems occurring
in reservoir simulation and reactor physics as well as
in biophysics, the convergence rates of multigrid meth-
ods degrade drastically, and the methods may even di-
verge. Numerous studies have appeared addressing this
problem, most notably the studies by Alcouffe et al.[17],
Dendy[18, 19], and Behie and Forsythe[20, 21]. Exten-
sive numerical experiments indicate that forming the
coarse grid equations by either the Galerkin coarsening
procedure or a harmonic averaging technique, and cou-
pling either of these with grid transfer operators which
enforce continuity conditions across material interfaces
(referred to as operator-based prolongation), leads to
multigrid methods which regain their usual good con-
vergence rates.

In the following three subsections, we give some details
of how the continuity of ε(r)∇Φ(r) · n is enforced across
interfaces, and how harmonic averaging and operator-
based prolongation are implemented.

2.4 Discretization of Interface Problems

Before discussing harmonic averaging and operator-
based prolongation, we first review a standard discretiza-
tion procedure for interface problems. Consider the fol-
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lowing one-dimensional example, which will be used to
explain all three of these procedures:

− d

dx

(

a(x)
d

dx
u(x)

)

+ c(x)u(x) = f(x) in (a, b),

u(a) = u(b) = 0. (6)

The functions a(x) and c(x) are positive for all x in [a, b],
and a(x), c(x), and f(x) are continuously differentiable
everywhere, except that one or more of the three may
be discontinuous at the interface point x = ξ ∈ (a, b).

Define a discrete mesh a = x0 < x1 < . . . < xn+1 = b,
with xi+1 = xi + hi for hi > 0, such that the point of
discontinuity coincides with some mesh point xi = ξ.
Then the integral method[22] (the box or finite volume

method in two or three dimensions) provides a rigorous
technique for obtaining a discrete form of (6) at each
mesh point xi with valid error estimates, despite the
presence of the discontinuities. One considers the inter-
val [xi − hi−1/2, xi + hi/2] containing the point xi, and
integrates (6) over the interval. After performing the
integration of the first term of (6) separately over the
half-intervals [xi − hi−1/2, xi] and [xi, xi + hi/2], and
enforcing the continuity condition at the interface point
xi = ξ

lim
x→xi−

a(x)
d

dx
u(x) = lim

x→xi+
a(x)

d

dx
u(x), (7)

the following expression is obtained, which is exact for
the solution u(x) in the interval:

(

a(xi −
hi−1

2
)

d

dx
u(xi −

hi−1

2
)

)

−
(

a(xi +
hi

2
)

d

dx
u(xi +

hi

2
)

)

+

∫ xi+hi/2

xi−hi−1/2

c(x)u(x)dx =

∫ xi+hi/2

xi−hi−1/2

f(x)dx.

An algebraic expression is then obtained for an approxi-
mation to u(xi) by replacing the derivatives with differ-
ences, and replacing the integrals with quadrature for-
mulas separately over the half intervals.

Denoting ui ≡ u(xi), function values at half grid
points as ai+1/2 ≡ a(xi + hi/2), and limiting function
values at the left and right of the interface point xi as
c−i ≡ c(xi−) and c+

i ≡ c(xi+), we can for example write
down an O(h2) (with h = max(hi−1, hi)) approximation
using centered differences and the rectangle rule:

ai−1/2

(

ui − ui−1

hi−1

)

− ai+1/2

(

ui+1 − ui

hi

)

+ui

(

hi−1c
−
i + hic

+
i

2

)

=

(

hi−1f
−
i + hif

+
i

2

)

. (8)

All approximations are performed over intervals where
the functions are smooth; therefore, error estimates from
the difference and quadrature formulas are valid. The
extension to two or three dimensions is straight-forward
with use of the divergence theorem and by imposing con-
tinuity of the normal derivative a(x)∇u(x) · n at the
interfaces[22].

2.5 Harmonic Averaging

From the previous discussion, it should be clear that if
discontinuities in the coefficients of (1) or (2) lie along
grid lines and planes on all coarse grids, then the stan-
dard finite volume discretization on all grids will pro-
duce accurate approximations. However, if the disconti-
nuities are complex in shape, as in the case of nontrivial
molecules, then the discontinuities may necessarily lie
within individual elements or volumes on coarse grids,
resulting in poor coarse grid approximations and poor
multigrid convergence rates.

The Galerkin coarsening procedure, described by
equation (3), provides an algebraic mechanism in which
the fine grid equation coefficients are averaged to pro-
duce the coarse grid equation coefficients. While this
technique for improving the coarse grid approximation
properties may be the preferred one[17], it is difficult to
implement and computationally costly in three dimen-
sions, as seven-point difference stencils produced by the
finite volume method on the fine grid expand to twenty-
seven point stencils on all coarser grids when standard
grid transfer operators are used[19]. Convergence prop-
erties of methods employing this technique, as well as
implementation issues, are discussed in detail for three-
dimensional problems in the study by Dendy[19].

An alternative is to explicitly average the coefficients
in (1) or (2) to produce a new problem with smoother
coefficients, essentially smearing the interfaces so that
their effect may be captured by discrete methods. The
new problem is discretized on a coarser mesh, and the
process is continued to produce discrete equations on a
sequence of coarser meshes. These techniques are dis-
cussed in the studies of Alcouffe et al.[17] and Liu et
al.[23] for two-dimensional problems.

For example, in our one-dimensional problem (6), the
discrete equations (8) require that the function a(x) be
sampled at the half-grid points xi−1/2 and xi+1/2. In
multigrid implementations, coarse grids are often con-
structed to be subsets of the next finer grid, referred to as
nested grids. In this situation, assume that the fine grid
points xi−1 and xi+1 correspond to adjacent coarse grid
points. For discretization on the coarse grid, the func-
tion a(x) must be sampled at the coarse grid half-grid
point, which will correspond to the fine grid point xi.
Therefore, given the function values ai−1/2 and ai+1/2,
we wish to produce a value ai for use in the coarse grid
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discrete equations, such that ai in some sense represents
the discontinuity in a(x) at xi.

Using results from homogenization theory and electri-
cal network arguments, Alcouffe et al.[17] suggest the
use of the harmonic average

ai = δ(ai−1, ai+1) ≡
2ai−1ai+1

ai−1 + ai+1

to represent the coefficients across interfaces. In their
paper, this approach is discussed in detail for two-
dimensional problems, where the harmonic average
across interfaces is combined with arithmetic averages
in the second grid direction to produce coefficients for
coarser grids. Their extensive numerical experiments
indicate that this technique is effective for regaining
fast convergence rates for many types of interface prob-
lems, when combined with the prolongation operators
discussed below.

Note that this approach requires little extra computa-
tion over a standard discretization on coarse grids, and
in the three-dimensional case results in seven-point sten-
cils on all coarse grids.

2.6 Operator-Based Prolongation

These techniques can be explained by considering again
our example (6). With two nested grids, assume we are
given a coarse grid function at points which correspond
to the fine grid points xi−1 and xi+1, and we wish to
prolongate (or interpolate) the coarse grid function to
the fine grid points xi−1, xi, and xi+1.

For the fine grid points xi−1 and xi+1 which corre-
spond to coarse grid points, we can take the values of
the new fine grid function to be equal to the coarse grid
function, referred to as injection. To obtain the fine
grid function value at the point xi not coincident with a
coarse grid point, a standard linear interpolation can be
used:

ui =

(

hi−1

hi−1 + hi

)

ui−1 +

(

hi

hi−1 + hi

)

ui+1. (9)

On the other hand, in the case that the new point xi is
an interface point, we would like to impose the continuity
condition (7). We can approximate this by imposing:

ai−1/2

(

ui − ui−1

hi−1

)

= ai+1/2

(

ui+1 − ui

hi

)

. (10)

Solving for ui gives the more general prolongation for-
mula:

ui =

(

hiai−1/2

hi−1ai+1/2 + hiai−1/2

)

ui−1

+

(

hi−1ai+1/2

hi−1ai+1/2 + hiai−1/2

)

ui+1, (11)

which reduces to (9) in the case that ai−1/2 = ai+1/2.

This approach can be extended to two and three di-
mensions in a number of ways[13, 17, 23]. Our approach,
as outlined by Hackbusch[13] for two dimensions, begins
by noting that an alternative procedure for producing
the more general prolongation formula (11) is by solving
the ith equation of the system Lhuh = 0 for ui. The
coefficients in the prolongation rule then come from the
discrete stencil for the ith equation of Lh, which in the
one-dimensional example (8) is:

[

− ai−1/2

hi−1

(

ai−1/2

hi−1

+
ai+1/2

hi
+

hi−1c
−
i + hic

+
i

2

)

−ai+1/2

hi

]

. (12)

Ignoring the terms involving ci gives the prolongation
formula (11) above, while including the ci terms pro-
vides a formula that uses additional information about
the discrete differential operator. The difficulty with
this approach in dimensions higher than one is that the
resulting prolongation formula for ui involves not only
coarse grid points, but as yet undefined fine grid points
as well, unless the grids are defined in a non-standard
fashion[13].

This difficulty can be avoided with standard nested
grids in the following way. In three dimensions, one must
consider four types of fine grid points in the prolongation
procedure:

1. points coincident with coarse points.

2. points on a coarse line but not of Type 1.

3. points on a coarse plane not of Type 1 or Type 2.

4. points points not on a coarse line or plane.

Injection is used for Type 1 points. For Type 2 points,
dependencies in the discrete stencil corresponding to
directions not on the coarse grid line are removed by
compressing the three-dimensional stencil to a one-
dimensional stencil (by simply summing the entries),
producing a two-point prolongation formula, as in the
one-dimensional case (11). A four-point prolongation
formula for Type 3 points results by summing away de-
pendencies in the direction not coincident with a coarse
grid plane. Type 4 points will require all six surrounding
points in the prolongation formula. Note that if the pro-
longation is performed in the order Type 1 → Type 4,
then all computations involve only fine grid quantities
that have been previously computed by the preceding
prolongation formulas.

It is common to take the restriction operator to be
IH
h = (Ih

H)∗, the adjoint of the prolongation operator
with respect to the inner product

〈uh, vh〉 = hd
∑

x∈Ωh

uh(x)vh(x),
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where d is the dimension of the problem, and Ih
H is the

d-dimensional version of either (9) or (11).

2.7 A Multigrid Solver For The LPBE

The multigrid method developed for this study is based
on the above techniques. In particular, a three-
dimensional version of the harmonic averaging proce-
dure for coarse grid operator construction described for
two-dimensional problems in Alcouffe et al.[17]. was de-
veloped, and three-dimensional operator-based prolon-
gation procedures were also implemented. These are
combined with a vectorized point-wise red/black Gauss-
Seidel smoother, nested iteration, and a variable V-cycle
algorithm[12]. (a V-cycle algorithm in which the number
of smoothings employed is doubled each time a coarser
grid is reached, yielding convergence properties similar
to the W-cycle). A maximum number of grid levels are
employed for each problem size (e.g., six levels in the
65 × 65 × 65 grid case, resulting in a coarse grid equa-
tion with one unknown). The resulting method is an
extremely efficient numerical solution technique for the
linearized Poisson-Boltzmann equation.

3 Other Methods

Of recent investigations into numerical solution of the
differential form of the LPBE, the two most effi-
cient methods appear to be the adaptive successive
over-relaxation (SOR) procedure described by Nicholls
and Honig[8], and the incomplete Cholesky precondi-
tioned conjugate gradient (CG) method of Davis and
McCammon[6]. Consequently, it is these two methods
that will be the focus of the comparison to follow.

3.1 Successive Over-Relaxation

The successive over-relaxation procedure, an accelerated
form of Gauss-Seidel iteration, is a product of the pio-
neering work of David Young to automate the process
of “hand” relaxation. The classic reference is Young’s
book[24], while its application to the Poisson-Boltzmann
equation, along with an adaptive procedure for deter-
mining the optimal relaxation parameter, is described
by Nicholls and Honig[8], and will not be discussed here.

In our comparisons with the multigrid method, we use
an SOR method provided with the optimal relaxation
parameter, implemented with a red/black ordering and
array oriented data structures, yielding maximal vector
lengths and, as will be apparent, very high performance
on both the Convex C240 and the Cray Y-MP.

3.2 Preconditioned Conjugate Gradient

Methods

Krylov subspace methods, of which the conjugate gradi-
ent method of Hestenes and Stiefel[25] is the most im-
portant representative, are extensively used for the in-
terative solution of linear systems in numerical analy-
sis and scientific computing. Their application to the
Poisson-Boltzmann equation is discussed by Davis and
McCammon[6], including comparisons with some classi-
cal iterative methods such as SOR.

If the matrix is badly conditioned, then Krylov sub-
space methods may require excessive iterations to con-
verge to the solution, as they are sensitive to both the
condition number of the matrix and the clustering of its
eigenvalues. By preconditioning the linear system, the
number of iterations may be brought down to yield an ef-
ficient method. Among the most effective precondition-
ers for linear systems arising from the discretization of
partial differential equations are the incomplete factor-
izations; unfortunately, the very implicitness which gives
these preconditioners their effectiveness also makes them
difficult to vectorize on vector computers. However, the
incomplete Cholesky factorizations for symmetric prob-
lems on uniform grids developed by van der Vorst and
others[26] employ special orderings to improve vector-
ization during the back substitutions.

We present experiments with a preconditioned con-
jugate gradient method (implemented so as to yield
maximal vector lengths and high performance), pro-
vided with four different preconditioners: (1) diago-
nal scaling; (2) an incomplete Cholesky factorization
(the method for which Davis and McCammon present
results[6]; (3) the same factorization but with a plane-

diagonal-wise ordering[26] allowing for some vectoriza-
tion of the backsolves; and (4) a vectorized modified

incomplete Cholesky factorization[26] with modification
parameter α = 0.95, which has an improved convergence
rate over standard ICCG.

Note that vectorized ICCG and MICCG results for
the Poisson-Boltzmann equation do not appear to have
been reported previously.

4 Test Problems

The first test problem consists of an acetamide molecule
CH3CONH2 lying in a water solution. The dielectric
constant ε(r) in the LPBE is set to 80 in the ionic solu-
tion region, and 2 in the molecular region. The infinite
domain R

3 is truncated to a finite box Ω ⊂ R
3 containing

the molecule, with boundary ∂Ω, and boundary condi-
tions are provided by the analytic solution in the case of
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uniform dielectric ε(r) = εw = 80, given as:

Φ(r) =

Nm
∑

i=1

e−κ|r−ri|

εw|r− ri|
on ∂Ω.

A second test problem will also be used briefly to illus-
trate a point in the next section. This problem is quite
similar to the first problem, except that molecular re-
gion consists of a cube lying completely within Ω. This
test problem allows us to look the performance of each
method for various problem sizes.

5 Numerical Results

Table 1 describes the methods investigated in this study,
and provides a key to the plots and tables to follow.

Table 1: Linearized Poisson-Boltzmann Equation
Solvers.

Method Description
MG harmonically averaged multigrid method
OSOR SOR with optimal parameter ω
DSCG diagonally scaled CG
ICCG1 incomplete Cholesky preconditioned CG
ICCG2 ICCG1 with plane-diagonal-wise ordering
MICCG ICCG2 with parameter α = .95

Unless otherwise indicated, all data in the plots and
tables to follow include the pre-processing costs incurred
by the various methods. In other words, the multigrid
times include the additional time required to set up the
problem on coarse grids, and the times for the conju-
gate gradient methods employing incomplete factoriza-
tions include the initial costs of performing the factor-
izations. This gives a complete and fair assessment of
the total time required to reach the solution.

An initial approximation of zero was taken to start
each method, and each method used a relative residual
stopping criterion:

‖rj
h‖

‖fh‖
=

‖fh − Lhuj
h‖

‖fh‖
< TOL = 1.0e− 6,

where uj
h represents the jth iterate. Normally, ‖rj

h‖ is
not available in the preconditioned conjugate gradient
iteration (the quantity < Crj

h, rj
h >1/2 is available, where

C is the preconditioner), and must be computed at extra
cost; however, this additional cost was not included in
the conjugate gradient timings in order to avoid unfairly
penalizing the conjugate gradient methods.

5.1 Timings and Megaflop Rates

Timings, operation counts, and megaflops (one million
floating point operations per second) figures on the Cray
Y-MP were obtained from the performance monitoring
hardware accessed through perftrace and perfview. Tim-
ing figures on the Convex C240 were obtained from the
system timing routine getrusage, and megaflop rates
were computed from the exact operation counts provided
earlier by the Cray.

Figure 2 gives the reduction in the relative residual per
time work unit for each method on the Convex C240 (a
work unit was chosen to be the time taken to perform a
matrix-vector operation on the given architecture, equal
to 0.246 CPU seconds on the Convex C240). Figure 3
gives the corresponding information on the Cray Y-MP
(with a time work unit of 0.0151 CPU seconds). In Ta-
ble 2, the information from Figures 2 and 3 is translated
into a single number for each method, representing the
total time required to reach the solution on a given ar-
chitecture. Table 3 gives the performance in megaflops

for each method, with and without pre-processing costs
such as matrix construction and Cholesky factorizations.

These graphs and tables show that multigrid is nearly
two times faster than the next best method, MICCG. It
is interesting to note from Table 2 that optimal SOR is
in fact equal or superior to all of the conjugate gradient
methods for this problem, except for MICCG. Table 3
indicates that our implementation of the optimal SOR
method is exceptionally efficient, operating at near the
peak rate available from FORTRAN of matrix-vector op-
erations on the Cray Y-MP. In addition, the vectorized
incomplete Cholesky preconditioned conjugate gradient
methods execute with very high rates, consistent with
the earlier reports[26] for these methods on the Cray X-
MP.

Our results are consistent with an earlier study by
Dendy and Hyman[27], who compared multigrid to
non-vectorized forms of ICCG and MICCG for two-
dimensional interface problems, including the multi-
group neutron diffusion problem. Their conclusions for
the two-dimensional case were that the multigrid method
developed by Alcouffe et al.[17] was superior to both
ICCG and MICCG. One observation they made, which
we did not take advantage of in this study, was the fol-
lowing: multigrid reaches discretization error accuracy

very rapidly – with far fewer iterations than that re-
quired to reach a small residual tolerance. In fact, one
can prove for model problems that a small fixed number
of V-cycle iterations, coupled with an initial guess pro-
vided by nested iteration, reaches an approximation to
the continuous problem with accuracy on the order of
discretization error[13].

While the implementations presented here may also
be used for general second order problems in three di-
mensions, in the case of the Poisson-Boltzmann equation
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Figure 2: Relative residual reduction per time work unit on the Convex C240.

Table 2: Total time to reach solution with a 65 × 65 × 65 grid (CPU seconds, with relative residual tolerance of
1.0e-6).

Machine Method
(1 Processor) MG MICCG OSOR ICCG2 DSCG ICCG1
Convex C240 13.2 23.1 35.9 35.7 56.8 69.9
Cray Y-MP 1.40 2.45 3.22 3.62 4.76 13.8

special techniques may be used to increase solver effi-
ciency. In particular, the highly optimized SOR method
of Nicholls and Honig[8], using a technique referred to as
stripping, along with a novel procedure for determining
the optimal relaxation parameter adaptively, achieves a
factor of two improvement over our “unstripped” op-
timal SOR method (35.9 CPU seconds, from Table 2).
Their code solves the same problem on the Convex C240
in 17.3 CPU seconds, compared to 13.2 CPU seconds for
our multigrid implementation.

It should be stressed that their optimization tech-
niques may be used to equal advantage with the multi-
grid method presented here, as it is based on a red/black
Gauss-Seidel smoothing iteration; therefore, we would
expect a similar (factor of two) improvement in multi-
grid speed. However, it is unclear how to take advan-

tage of their stripping technique in the preconditioning
phases of the incomplete Cholesky conjugate gradients
methods, which in our experiments made up more than
sixty percent of the total execution times of these meth-
ods (more than eighty-five percent in the non-vectorized
ICCG case).

5.2 Computational Complexity

Multigrid methods are provably optimal order for a
broad class of problems, meaning that the cost to
solve a problem with N unknowns is proportional to
N . Unfortunately, the discontinuities of ε(r) in the
LPBE preclude the use of the existing theory, which re-
quires strong smoothness assumptions on the problem
coefficients[11, 12, 13]. However, the optimal order be-
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Figure 3: Relative residual reduction per time work unit on the Cray Y-MP.

Table 3: Megaflop rates with [and without] matrix construction and Cholesky factorization pre-processing.

Machine Method
(1 Processor) MG MICCG OSOR ICCG2 DSCG ICCG1
Convex C240 12.3 [12.7] 13.1 [13.6] 18.9 [20.4] 13.6 [14.1] 18.1 [18.5] 7.24 [7.05]
Cray Y-MP 118 [120] 135 [158] 215 [220] 142 [158] 215 [218] 36.8 [35.5]

havior may be investigated empirically, which is what
the final set of experiments is designed to do.

Figure 4 gives the cost of each method to solve the
second test problem, in time work units on the Convex
C240, as the problem size is increased by a factor of two
beginning with a 17 × 17 × 17 grid, and ending with a
129×129×129 grid. Note that in this figure, the time per

unknown is being plotted as a function of the problem
size. The fact that the multigrid curve is virtually hor-
izontal reflects the optimal order behavior of multigrid.
In particular, we can see that the superiority of multigrid
increases as we move to larger grids. This behavior can
often be demonstrated for the multigrid method even
when the existing theory is no longer applicable.

6 Conclusions

The first conclusion to be drawn from the numerical ev-
idence presented earlier is that the multigrid method
is the most efficient method presented for the two test
problems with a grid size of 65 × 65 × 65. Secondly,
the advantage of multigrid grows with the problem size,
as it demonstrates optimal order behavior for our test
problems.

A point that should be stressed is that the SOR and
conjugate gradient performance results reported here are
based on highly optimized codes, and these codes ran
close to their respective maximal rates on both archi-
tectures. Based on earlier results[15, 16], we expect a
fully optimized multigrid method to run at rates compa-
rable to the smoothing iteration alone on architectures
such as those considered here. Thus, we expect that the
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multigrid method can achieve nearly the peak rate ob-
tained by the SOR iteration, shown in Table 3. As a
consequence of these points, it should be clear that the
results presented here for the multigrid method are con-
servative, and give only an indication of its potential for
the LPBE.

Finally, while we have considered only the LPBE
in this paper, the multigrid method can be extended
to nonlinear problems through either a combination of
Newton’s method and the linear multigrid algorithm
presented here, or a nonlinear multigrid algorithm[13].
These methods have been used successfully for nonlin-
ear problems in computational fluid mechanics[28] and
semiconductor device simulation[29], and their applica-
tion to the NPBE will be investigated in a future paper.
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